
ICT-317756

TRILOGY2

Trilogy2: Building the Liquid Net

Specific Targeted Research Project

FP7 ICT Objective 1.1 The Network of the Future

D2.1 Initial Liquid Net Architecture

Due date of deliverable: 31 December 2013

Actual submission date: January 30, 2014

Start date of project 1 January 2013

Duration 36 months

Lead contractor for this deliverable Universidad Carlos III de Madrid

Version v1.0 , 24-Jan-2014

Confidentiality status Confidential to TRILOGY2 project and Commis-

sion Services

c© TRILOGY2 Consortium 2014 Page 1 of (72)

Abstract

Trilogy 1 successfully defined a set of mechanisms to provide optimal fault tolerant transport across

an IP network by creating and exploiting multiple simultaneous path across the network. Trilogy 2

sets out to extend the results of Trilogy 1 to be cross-resource, cross-layer, and cross-provider. Cross-

resource seeks a generalisation to all IT resources including processing and storage. Cross-layer seeks

to generalise beyond the simple two layers of Trilogy 1 and include intermediate layers. Cross-provider

seeks to provide solutions which can work across commercial boundaries. The architecture described

in this document gives a framework which directly addresses the requirements of cross-resource and

cross-layer and implicitly cross-provider. The architecture is based on an extension of functional block

methodology to incorporate virtualisation and as a result includes features beyond current state of the

art. It has been already been presented to and adopted by the ETSI NFV ISG for its work.

Target Audience

The ultimate target audience for this deliverable is the community of knowledge engineers who define

the structure of ICT systems, and those who define the standards and frameworks that are necessary

for these ICT systems to interwork across the industry. While this initial deliverable is confidential to

the Trilogy 2 consortium, the audience is a) the project participants to ensure the whole is understood

to be greater than the parts and b) the project’s scientific advisory board and reviewers to articulate the

approach being taken across the project in order to elicit useful feedback and criticism.

Disclaimer

This document contains material, which is copyright of certain TRILOGY2 consortium parties and may not

be reproduced or copied without permission. The information contained in this document is the proprietary

confidential information of certain TRILOGY2 consortium parties and may not be disclosed except in accor-

dance with the consortium agreement.

The commercial use of any information in this document may require a license from the proprietor of that

information.

Neither the TRILOGY2 consortium as a whole, nor a certain party of the TRILOGY2 consortium warrant

that the information contained in this document is capable of use, or that use of the information is free from

risk, and accept no liability for loss or damage suffered by any person using the information. This document

does not represent the opinion of the European Community, and the European Community is not responsible

for any use that might be made of its content.

Page 2 of (72) c© TRILOGY2 Consortium 2014

Impressum

Full project title TRILOGY2: Building the Liquid Net

Title of the workpackage WP2 Tussle over Liquidity

Editor Andy Reid, BT

Project Co-ordinator Marcelo Bagnulo Braun, UC3M

Copyright notice c© 2014 Participants in project TRILOGY2

c© TRILOGY2 Consortium 2014 Page 3 of (72)

Executive Summary
The Trilogy 2 project follows on from the Framework 7 Trilogy project (2008-2011). The the original Trilogy

project (Trilogy 1) developed mechanisms to create and control ‘liquidity’ of bandwidth in the Internet. The

aim of Trilogy 2 is extend the result of Trilogy 1 to create and control liquidity of other resources, in particular

storage and processing, as well as to extend the applicable environments beyond the Internet to mobile devices

and more general operator infrastructure.

This document describes an initial view on the architecture for the Trilogy 2 project. The requirements for the

architecture start with a consideration of the various use cases which are software platforms being developed

within the project which and include the following.

• Bandwidth Liquidity

– MultiPath TCP (MPTCP) - enhancements to the protocol for controlling bandwidth liquidity de-

veloped in Trilogy 1

– PolyVersal TCP (PVTCP) - extension of the concept of MPTCP to optimise liquidity across mul-

tiple protocols including protocols at different layers, for example HTTP

– ConEx - a protocol designed to enable providers of communications infrastructure to give the

correct economic incentives to data senders to manage their traffic load and to enforce limits if

they do not.

• Storage Liquidity

– Irminsule - a large-scale distributed database co-ordination scheme

– Trevi - a transport protocol specialised for controlling data transfer to and from multiple storage

replicas (i.e. bandwidth liquidity specific to storage I/O)

• Processing Liquidity

– Virtual Broadband Remote Access Servers (vBRAS) - a high performance, distributed, load adap-

tive, fault tolerant implementation of a network operator’s BRAS function

– Virtual CPE - a flexible and virtualised implementation on customer premises equipment func-

tionality which can be host in a datacentre and not at the customer site

– Virtual Machine Migration for Mobile Devices - a mechanism which can migrate an application

between mobile devices including the GUI

– Mobile Kibbutz - a way for a localised group of mobile devices to take turns in using each other’s

cellular connections

Page 4 of (72) c© TRILOGY2 Consortium 2014

These uses cases have then been distilled into three broad canonical problems which highlight particular

common issues in the creation and control of liquidity across the broadened scope of Trilogy 2. These three

are

• Infrastructure as a Service (IaaS) Resource Control - cloud technology have developed a number of

‘as a service’ concepts including Software as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure as a Service (IaaS). While each of these is a mechanism which creates liquidity, it is the

last of these, IaaS that is most directly relevant to Trilogy 2 and on which many of the use cases are at

least broadly based. IaaS allows physical servers and storage to create virtual servers and storage, that

is ‘virtual machines’ and virtual machines are common to many use cases. Cloud technologies already

have some mechanisms for controlling the liquidity of IaaS which the project seeks to both exploit and

extend.

• Consequences of Middleboxes - middleboxes are in widespread use by service providers today in an

attempt to control traffic at higher protocols layers than IP. These boxes directly contradict the end to

end principle of the Internet and therefore create complexity as protocols above IP cannot be assumed

to be transparent to higher layer protocols such as TCP and HTTP and so solutions based on adaptations

to these high layer protocols may not work. Trilogy 2 has two reasons to focus on middleboxes

– the existence of middleboxes hinders the operation of bandwidth liquidity mechanisms and there-

fore makes it worthwhile to extend liquidity mechanisms to even higher layer protocols (see

PVTCP)

– the middleboxes themselves are frequently implemented as software on generic servers and there-

fore are strong candidate for liquid implementation (see vBRAS)

• Lightweight Virtualisation - the standard virtual machines of cloud computing are generally designed

to be of a size and performance needed to run applications designed to run on dedicated servers. As a

result VMs tend to be large and a physical server will only support a small number of VMs. However,

there are use cases where a much smaller and more flexible scale of VM would create more efficient

liquidity of processing and storage resources.

When seeking to address these canonical problems, it is apparent that there is no general framework within

which solutions can be developed. In particular, the general techniques of functional modelling and functional

specification does not have the means of describing the essential properties of liquidity. This observation was

also apparent in the work of the ETSI ISG on Network Functions Virtualisation (ETSI NFV ISG).

This deliverable develops and presents a basic functional architecture which can accurately describe and

specify functionality, including processing and storage, in such a way that functional uses can be decoupled

from the resources that implement these uses, thus allowing for liquidity in the implementation. This basic

functional architecture can then give a technical framework and language for the rest of the architecture.

c© TRILOGY2 Consortium 2014 Page 5 of (72)

This basic functional architecture uses and extends the well know functional modelling method of systems

engineering to include virtualisation. At this stage, virtualisation is treated in a very general way which can

include virtual machines, virtual networks, and effectively any network service. Virtualisation is also shown

to be conceptually identical to abstraction at this fundamental level, and more significantly, it is the basic

mechanism which creates liquidity.

Having established this basic framework, this document then develops and presents an initial view of the

abstract functional architecture for Trilogy 2. This is based on virtual machines (which present processing

and storage resources) and virtual networks (which present bandwidth resources) and the basic mechanisms

for creating and mapping virtual functions to these liquid VM and VN resources.

Finally, important aspect of security are developed into an initial security architecture. This is an area of

particular importance as the creation of liquidity opens up a number of potential security threats.

Future work on the architecture will develop the Trilogy 2 abstract functional architecture as well as develop-

ing functional architecture for each of the use cases along with, respectively the associated Trilogy 2 abstract

information model and the use case specific information models. These relationships are illustrated in the

Figure below.

Use Cases Use Cases

Functional Architectures Information Models

Canonical
Problems

Primary relationship

Trilogy 2 Abstract
Functional Architecture

Base Abstract
Functional Architecture

Base Ontology

Trilogy 2 Abstract
Information Model

Primary relationship

abstraction

abstraction

abstraction

abstraction

abstraction

Figure: Levels of Functional Abstraction and Relationship with Information Models

Page 6 of (72) c© TRILOGY2 Consortium 2014

List of Authors
Authors Andy Reid, John Thomson, Bob Briscoe

Participants BT, OnApp

Work-package WP2 : Tussle over Liquidity

Security CONFIDENTIAL (CO)

Nature R

Version v1.0

Total number of pages 72

c© TRILOGY2 Consortium 2014 Page 7 of (72)

Contents

Executive Summary 4

List of Authors 7

List of Figures 10

List of Tables 12

1 Introduction 13

1.1 Background to Trilogy 2 . 13

1.2 Aims of the Architecture Task and This Deliverable Within Trilogy 2 14

1.3 Additional Relationship of Trilogy 2 with the ETSI NFV ISG 14

2 High Level Architecture Overview 16

2.1 General Scope of Trilogy 2 Architecture . 16

2.2 Extension from Trilogy 1 . 17

2.3 Basic Features of the Trilogy 2 Architecture . 18

3 Use Cases 22

3.1 MPTCP Outline . 23

3.2 PVTCP Outline . 23

3.3 Trevi Outline . 23

3.4 ConEx Outline . 24

3.5 Irminsule Outline . 24

3.6 vM3 Outline . 24

3.7 vBRAS Outline . 25

3.8 vCPE Outline . 25

3.9 Mobile Kibbutz Outline . 25

4 Problem Statement 26

4.1 Canonical Problems . 26

4.1.1 IaaS Resource Control . 26

4.1.2 Consequences of Middleboxes . 29

4.1.3 Lightweight Virtualisation . 31

4.2 Requirement for a layers of Abstraction in the Functional Architecture 32

5 Architecture 35

Page 8 of (72) c© TRILOGY2 Consortium 2014

5.1 Basic Functional Architecture . 35

5.1.1 Virtual Functional Blocks as the Architectural Building Blocks 36

5.1.2 Virtualisation and Abstraction . 39

5.1.3 Recursive Virtualisation and A Middle Out Perspective 46

5.2 Initial Trilogy 2 Abstract Functional Architecture . 49

5.2.1 Create Liquidity (1) - Establish an Infrastructure of Resources 49

5.2.2 Create Liquidity (2) - Definition of Abstract Specification of Desired Functions . . . 52

5.2.3 Control Liquidity (1) - Creation and Activation of Applications and Services 53

5.2.4 Control Liquidity (2) - Resource Optimisation . 54

5.3 Trilogy 2 Security Architecture . 55

5.3.1 Security for Cross-Resource Liquidity . 56

5.3.1.1 Narrowing the Security Problem Space 56

5.3.1.2 Economic Metrics for Performance Isolation 56

5.3.2 Security of Cross-Layer Liquidity . 58

5.3.3 Security of Cross-Provider Liquidity . 61

5.3.3.1 Vertical Cross-Provider . 61

5.3.3.2 Horizontal Cross-Provider . 63

5.3.4 Security Disciplines . 64

5.3.4.1 Information Isolation using Virtual Networking 65

5.3.4.2 Information Isolation using Virtualisation 66

5.3.4.3 Performance Isolation . 67

5.3.5 General Good Security Practice . 68

6 Evaluation and Future Work 69

6.1 Dissemination and Standards Already Achieved . 69

6.2 Future Architecture Work . 69

References 71

c© TRILOGY2 Consortium 2014 Page 9 of (72)

List of Figures
1.1 Conceptual Outline of Trilogy 2 Architecture . 13

2.1 Scope and Conceptual Framework for Trilogy 2 . 16

2.2 Architecture from Trilogy 1 . 17

2.3 Representation of Trilogy 1 Architecture . 18

2.4 Representation of Cross-Resource Generalisation of the Trilogy 2 Architecture 19

2.5 Generalisation to Virtual Functional Block and Host Functional Blocks 21

4.1 Liquidity with Homogeneous Bandwidth . 27

4.2 Liquidity with Heterogeneous Virtual Machines . 28

4.3 Liquidity with Virtual Middleboxes . 30

4.4 Options available to implementing a virtual application . 32

4.5 Levels of Functional Abstraction and Relationship with Information Models 34

5.1 A Functional Block . 38

5.2 Binding of Functional Blocks and Interconnection Graph 39

5.3 Recursive Composition of Functional Blocks . 39

5.4 Partitioning of State to Create a Host Function . 40

5.5 Partitioning of Interfaces . 41

5.6 Creating a Virtual Transfer Function . 42

5.7 Creating a Virtual Function . 42

5.8 Virtualisation of Existing Functional Blocks . 43

5.9 Equivalence of Abstract Function, Virtual Function, and Suitably Configured Host Function 44

5.10 Definition of Resource Usage . 45

5.11 General Mapping of Virtual Functional Blocks to Host Functional Blocks 46

5.12 Recursive Abstraction Leading to “Middle Out” Architecture 48

5.13 Liquidity Infrastructure . 50

5.14 Creation of an Equivalent Implementation File from an Abstract Specification 52

5.15 Creation and Activation of a VFB Instance . 54

5.16 Change in the Threat Surface by Combining Networking with Compute Virtualisation 56

5.17 Rearrangement of the Layers of Dependency in a System when Virtualising Network Functions 58

5.18 Partitioning Boundaries Between Infrastructure Networks 59

5.19 Example Cross-Layer Network . 59

5.20 Example Partitioned Infrastructure Network . 60

5.21 Security Dependencies between Providers in Various Deployment Scenarios 61

Page 10 of (72) c© TRILOGY2 Consortium 2014

5.22 Example Partitioned Management Network . 66

c© TRILOGY2 Consortium 2014 Page 11 of (72)

List of Tables
2.1 Generalisation of Concepts from Trilogy 1 to Trilogy 2 . 20

3.1 Mapping of Trilogy 2 Use-Cases to Canonical Architectural Problems 23

5.1 Comparison of Computation Model and Functional Block Model 36

5.2 Some realistic deployment scenarios. 62

Page 12 of (72) c© TRILOGY2 Consortium 2014

1 Introduction

1.1 Background to Trilogy 2
Trilogy 2 builds form the work of the first Trilogy project (Trilogy 1 [2]). A way of summarising the work

of Trilogy 1 is that it devised a way of providing a set of parallel, fault tolerant paths through an IP network,

and a way to couple their congestion controls that would balance congestion across all links even if up to

about 2/3 of traffic was not using the approach. This technique has been adopted and published by the

Internet Engineering Task Force (IETF) including the experimental standard called Multi-Path Transmission

Control Protocol (MPTCP [15]), and multiple implementations have been deployed. Trilogy 1 also devised

a way for network operators to encourage and ultimately enforce limits on the amount of congestion that

network customers could cause, to drive the network towards economic optimality for all traffic, whether

multipath or not, whether TCP-controlled or not, and whether in long or in short flows. The principals of this

technique have been adopted by the IETF in an approach called Congestion Exposure (ConEx [11]), however

the specific experimental standards are still emerging.

Trilogy 1 was firmly focused on the network problem and was seeking ways of improving on a) the limitations

of the long established Transmission Control Protocol (TCP) that provides for control of resource utilisation

and b) the routing protocols that separately provide for fault tolerance.

The concept of Trilogy 2 is to build on this successful work by seeking to extend its applicability such that it

is

• cross-resource so that it also includes storage and processing;

• cross-layer so that it can extend beyond the two layer model of Trilogy 1; and

• cross-provider so a full and practical range of commercial interfaces can be accommodated.

Processing	
 Bandwidth	

Storage	

Interac3ons	

Informa3on	

Model	

Figure 1.1: Conceptual Outline of Trilogy 2 Architecture

Description of functions and their resources is fundamental to this extension of scope. Therefore the present

document motivates what needs to be described, e.g. the units to be used for describing resources, how to

c© TRILOGY2 Consortium 2014 Page 13 of (72)

describe the relationship between virtualisation and the underlying pool of hosted resources, and so forth.

The centrality of description—the information model—is depicted in Fig 1.1. The companion deliverable,

“D2.2 Basic tools for liquidity control” [4] catalogues the requirements for this information model in more

detail.

1.2 Aims of the Architecture Task and This Deliverable Within Trilogy 2

The aim of the Architecture Task, Task 2.1, is stated in the project proposal as follows.

The aim will be to produce an architecture for controlling pooled resources that crosses stakeholders,

layers and different resource types. If this turns out to be too ambitious, the scope will be reduced, e.g. to

solving each of these dimensions separately.

The architecture glues together in one coherent whole the information sharing mechanisms (task 2.2), the

incentives for behaving well (task 2.3) and the tools available for enforcement (task 2.4). Each of these

also build on the techniques to create liquidity developed in WP1 and will aim to support the use cases

described in WP3.

The architecture must interface both applications and operating systems – it must be wider than just edge-

to-edge scope. It must build on how applications use resources today, extending this to pools of resources.

It must describe APIs into the information model that will extend and improve existing application prac-

tices.

It will show how the incentives can be used in the system as a whole to encourage sharing, and how

information can be used as a basis for effective enforcement.

The aim of this deliverable, deliverable 2.1, as stated in the project proposal is as follows.

The deliverables described the initial version of the Liquid Net architecture, bringing together the tools

for creating liquidity and the tools for controlling it. This initial version will be updated with the feedback

of the work on the tools and the use cases.

1.3 Additional Relationship of Trilogy 2 with the ETSI NFV ISG

In late 2012, after Trilogy 2 was first proposed, agreed and established as a project, a number of network

operators from across the world (led by BT and Telefónica the network operator partners in Trilogy 2) became

the founding members of an ETSI Industry Specification Group (ISG) with the aim of defining architecture

for Network Functions Virtualisation (NFV), identifying appropriate current standards where they exist, and

promoting new standardisation work in appropriate expert standards bodies where no appropriate standard

currently exists.1 The architecture requirements and performance objectives of the ETSI NFV ISG have many

parallels with the scope of Trilogy 2.

With the current implementation of network functions by network equipment vendors, many of the silicon

1Note that the ETSI NFV ISG does not set out to define standards of its own. The stated aim of the ISG is to produce documents
of the style of ’White Papers’. In addition, the ISG aims to publish results from Proof of Concept (PoC) demonstrations relating to
NFV.

Page 14 of (72) c© TRILOGY2 Consortium 2014

chips are specific to the network function being implemented as are the plug-in units and normally the chassis

as well. This means that the resource assigned to the network function is essentially preassigned by the

equipment manufacturer. For example, when a manufacturer supplies a router, the capacity of the router

is implicitly defined by the resources of the box that is sold. To the user of the router, this assignment of

resources to the desired function, that is the router, is permanent and inflexible. It is not normally possible

to add capacity to the router, nor is it possible to reassign the resources of the box to a different function, for

example a Web server. These constraints disappear with the NFV approach.

One of the advantages of the NFV approach is that the assignment of resources to desired functionality can be

flexible and dynamically optimised. The desired network function is supplied as a piece of software (normally

expected to be in the form of a virtual machine image) and this is then activated on standard compute, storage

and switching components using the same virtualisation techniques as cloud technology. The definition of the

network function and the resources assigned to implement it are separated and a dynamic resource assignment

and optimisation process is required to make this dynamic assignment.

This is an example of the architecture envisage by Trilogy 2 and therefore NFV represents a valuable use case

for Trilogy 2. As a use case, it has a number of advantages:

• there is a practical overlap in the timing of the three-year Trilogy 2 project and the ETSI NFV ISG,

which started in the same month and aims to complete its work within two years;

• the functionality of network functions is familiar to the majority of project partners;

• as the resources used for implementing NFV are the same generic resources used for more general

functions, there is no loss of generality in the resource infrastructure architecture;

• there are a set of ’bootstrap’ and security issues which arise directly and clearly with network functions

and so an NFV compatible architecture must address these issues while other use cases might miss

these important issues.

The project had identified IETF and IRTF as important standardisation bodies for the dissemination of the

work of Trilogy 2. ETSI NFV ISG has now emerged as an important addition to these bodies.

c© TRILOGY2 Consortium 2014 Page 15 of (72)

2 High Level Architecture Overview
Trilogy 2 is about the creation and control of liquidity in the resources required to provide a wide range of

ICT applications and services, not just telecoms services. By creating liquidity in the resources, it becomes

possible to assign the resources to applications and services in a much more efficient way both in the short

term and in the long term.

The example of Network Functions Virtualisation (NFV) illustrates this point. Currently, network functional-

ity is supplied as equipment; boxes which have a predefined set of resources inside the box which implement

the function that the box performs. There is no flexibility in the assignment of resources to the network

function. From a resource assignment point of view, the box is ’solid’. With NFV, the resources are generic

compute (eg server blades), storage (eg storage arrays), and infrastructure network (eg packet/optical carrier

Ethernet network) resources and these can be deployed without reference to a precise network function, for

example, BRAS, CDN, DPI, GGSN, Firewall, EPC, etc that the resources will be assigned to over the life of

the resources. In this case, the resources are ’liquid’.

2.1 General Scope of Trilogy 2 Architecture

The general scope of Trilogy 2 is shown in Figure 2.1.

Operations

Resources

Environments

Figure 2.1: Scope and Conceptual Framework for Trilogy 2

From the top level perspective, Trilogy 2 is about the creation and control of liquidity. The creation of

liquidity requires the creation of an infrastructural pool of generic resources which can be flexibly used by

individual applications and services. Along with this creation of liquidity is the control of the liquidity which

ensures that use of the pool of resources is economically efficient, which requires the optimisation to rapidly

adapt and re-optimise over time.

There are three primary forms of resource which are relevant to Trilogy 2. These are bandwidth, storage, and

processing. These are the basic raw materials of any information system. However, we also note that these

resources themselves require powering and increasingly they are very hungry consumers of electricity and

hence greenhouse gases. As a result we also track , the energy required to maintain the bandwidth, storage,

and processing resources within the scope of Trilogy 2.

Page 16 of (72) c© TRILOGY2 Consortium 2014

Finally, Trilogy 2 is applicable to a number of different environments ranging from the end user devices to

major carrier networks and data centres and includes both fixed and mobile connectivity. Indeed, mobile

devices and datacentres are two focal points of technological development in the wider industry. These

environments provide the places where the liquidity of resources can be exploited.

2.2 Extension from Trilogy 1

Trilogy 1 addressed the creation and control of bandwidth liquidity and devised a number of mechanisms for

creating and controlling it. These mechanisms were architected in three categories; first resource capacity

measurement and exposure of the available capacity; second, calculation and control of multiple alternative

routing options through the network; and third, the control of traffic load onto multiple alternative paths.

Figure 2.2 is reproduced from the final communication report of Trilogy 1. Trilogy 1 resulted in a number of

new mechanisms and standards including the MultiPath TCP (MPTCP) protocol and Congestion Exposure

(ConEx). This of course was conceived within a networking context and therefore is naturally described

within the general language of networking.

Figure 2.2: Architecture from Trilogy 1

This figure already shows some of the framework needed for generalisation. On the top are the services, in

this case the Multipath TCP services while below are the resources needed to support the services. There are

therefore a number of points from Trilogy 1 which were specific to network but the power of the liquidity

concept can be greatly enhanced if these are generalised. These are:

• network bandwidth is the only resource which is considered;

• there is an implicit fixed two layer model of a lower network layer providing resource and an upper

layer demanding this resource;

• coupled to the first point, any commercial boundaries within the architecture are limited to relationships

between Internet Service Providers (ISPs).

The objective of Trilogy 2 is to extend beyond these specific restrictions to be cross-resource, cross-layer,

and cross- provider.

c© TRILOGY2 Consortium 2014 Page 17 of (72)

Figure 2.3 is an alternative illustration of the Trilogy 1 mapping of the transport services to the resources and

emphases that:

• the resources are fixed in relation to the services they support;

• the services are realised by a) a routing algorithm selecting equipment for the service to traverse and

b) a resource assignment algorithm to assign the resource of each equipment to the services using the

equipment, for example MPTCP.

Independent
Software

Vendors

Routing and resource assignment/control

Connectivity Uses of Network

Pre-Built Network

Figure 2.3: Representation of Trilogy 1 Architecture

In considering especially the cross-resource generalisation, it is possible to generalise to include both compute

and storage resources with the pre-built network as part of a common infrastructure and to broaden the scope

of the services to include general ICT applications and services. This generalisation is shown in Figure

2.4 below. This figure, at least in general form, has been used extensively for presenting NFV concepts.

This illustrates how the Trilogy 2 architecture is both a simple extension and generalisation of the Trilogy 1

architecture and also illustrates how Trilogy 2 anticipated and is directly applicable to the needs of NFV.

2.3 Basic Features of the Trilogy 2 Architecture

There are a number of features of the generalisation which present considerable challenges compared to

Trilogy 1.

• In Trilogy 1, the resource of the network is bandwidth which is essentially homogeneous across all

forms of technology and is characterised by a minimal set of parameters (eg bit/s, latency, packet loss

probability). The storage resource is potentially similarly homogeneous however, this is not the case

with processing resource. With bandwidth and storage, the network and storage systems are transparent

to what is being transported or stored and the user of bandwidth and storage is able to select their data

Page 18 of (72) c© TRILOGY2 Consortium 2014

Independent
Software

Vendors

High volume
Ethernet switches

High volume
standard servers

High volume
standard storage

Instantiation and resource assignment/control

Virtual Function Uses of
Infrastructure

Pre-Built Infrastructure

Figure 2.4: Representation of Cross-Resource Generalisation of the Trilogy 2 Architecture

completely independently of the network and storage systems. This is not the case with processing

resources. Every processing resource has some form of atomic instruction set or logic elements. These

atomic instructions and/or logic elements are normally specific to the design of the specific processing

resource meaning that there is normally a strong dependence between service and the processing re-

source. A simple illustration in a CPU instruction set. The binary code which implements a required

service will vary depending on the instruction set of a CPU.

• The lack of homogeneity of processing resource means that there is not a readily available measure of

a processing resource’s capacity in the same way that the ’bit’ measures the capacity of a bandwidth

and storage.

• Even in the real world of networks they are multi-layered, and this reality is more complex than “ev-

erything over IP and IP over everything” architecture. Flexible packet/optical transport networks now

generally exist below the IP layer and “middleboxes” route on layers above the IP layer. When process-

ing and storage is added, even with relatively simple examples such as content distribution networks

(CDNs), the architecture is unavoidably multi-layered.

• The commercial models when processing and storage are added are also considerably more complex

compared to the inter-ISP model. Both the range of functionality, and hence protocols, that commercial

service providers need to interconnect necessarily increase with Trilogy 2, and the range of service

providers extends to include cloud service providers and probably others as well.

Having said this, there is a strong correlation in the way in which resource assignment takes place in Trilogy

1. We should therefore expect that the algorithms and even the protocols of resource assignment should be

adaptable to the generalisation.

c© TRILOGY2 Consortium 2014 Page 19 of (72)

The first task for the Trilogy 2 architecture is to identify the more general entities which are appropriate

to Trilogy 2 and which, when specialised, correspond to the entities of Trilogy 1. This cannot be a ’me-

chanical’ task as there are always many possible generalisations of any particular entity. We are seeking the

generalisation which maintains the overall behaviour characteristics of liquidity.

As we describe in Chapter 5 below, a general and powerful architecture emerges from this generalisation

which gives a framework for unifying a number of currently largely disparate disciplines. For now, we

present a very simple summary of this architecture.

The first observation is that a general service in the context of Trilogy 2 will itself be a defined function.

The service has input interfaces, output interfaces, and can carry out operations. This is the definition of a

function. Second we observe that resources are always presented as belonging to host functions. We then

note that functions have two basic recursive properties.

• A function can be recursively composed by assembling together consistent component functions with

the composition being defined by a graph that defines how the interfaces of the component functions

are joined to each other.

• Host functions can be recursively configured and once they are appropriately configured, they imple-

ment a virtual function. There is a functional equivalence between the suitably configured host function

and the specification of the virtual function.

The basic entities of the generalisation are listed in Table 2.1.

Table 2.1: Generalisation of Concepts from Trilogy 1 to Trilogy 2
TRILOGY 1 TRILOGY 2

SERVICE transport connection virtual function
RESOURCE network capacity host function
SERVICE

COMPOSITION

routing through IP
network

graph of component virtual functions
mapping of virtual functions to host functions

CAPACITY

ALLOCATION

MPTCP and TCP control
and congestion policing

allocation of host function capacity to virtual
functions according to mapping

CAPACITY

PARAMETERS

congestion-bit/s
latency

congestion-bit/s for bandwidth
to be developed for storage

to be developed for processing

Figure 2.5 below gives a diagrammatic summary of the generalisation of Trilogy 1 into Trilogy 2.

Page 20 of (72) c© TRILOGY2 Consortium 2014

Trilogy 1 Trilogy 2

End to end
connections

IP Network

Virtual Functional
Blocks

Host Functional
Blocks

1. Generalise
Cross-resource

Optimal use
of resource

Optimal use
of resource

2. Generalise
Cross-layer

Recursive
layered
model

3. Generalise
Cross-provider

Figure 2.5: Generalisation to Virtual Functional Block and Host Functional Blocks

c© TRILOGY2 Consortium 2014 Page 21 of (72)

3 Use Cases
The project is considering a variety of use cases [7] covering and illustrating the scope and applicability of

Trilogy 2. Some are immediately recognisable as application-level use-cases, while others develop lower

layer infrastructure for highly generic use (e.g. MPTCP), but they can still be considered use-cases even

though their domain of applicability is broad. To Control Liquidity (WP2), the primary focus of these use

cases at this stage is within the Information Modelling Task (Task 2.2) and the requirements from each use

case are set out in detail in Deliverable D2.2 [4].

From the perspective of the architecture task, the use cases are useful in setting the scope of the architecture

and useful for validating the architecture. They also aid the interaction between the architecture task and the

rest of the project by:

• providing a framework for capturing requirements, notably the information and behaviour requirements

of the systems being developed within the project (WP1);

• providing a superset of use cases from which a smaller set of use cases can be selected for end to end

development and demonstration of the Trilogy 2 concepts (WP3);

• providing a set of examples against which the overall results of Trilogy 2 may be evaluated, including

examples beyond systems developed within the project;

• providing a set of examples some of which exemplify the architectural problem which the project is

addressing.

This last purpose is taken up in the Problem Statement below (Chapter 4) where a selection of canonical

architectural problems have been distilled from the use cases to illustrate the practical issues that the archi-

tecture needs to resolve. The use cases set out in D1.1 and D2.2 are reasonably detailed and oriented to the

needs of specific developments within the project. This is their first and most important role. However, for

the purposes of clearly setting out the scope and requirements of the architecture, it has been useful to distil

all the use cases to inform and form the basis for three canonical problems for developing this stage of the

architecture.

The initial canonical architecture problems are:

(i) IaaS (Cloud Infrastructure as a Service) and its tradable resource characteristics;

(ii) middleboxes and the way they interact with layering;

(iii) lightweight virtual machines.

Each of these canonical problems is discussed and analysed in Chapter 4 in order to assemble a set of ob-

servations which are then summarised as a set of requirements on the architecture. Table 3.1 shows that all

use-cases exhibit at least two of these canonical problems.

Page 22 of (72) c© TRILOGY2 Consortium 2014

Use-case Canonical Problem
IaaS Resource

Ctrl
Middleboxes Lightweight

Virtualisation
MPTCP X
PVTCP X X X
Trevi X X
ConEx X X
Irminsule X X X
vBRAS X X X
vCPE X X X
vM3 X X X
Mobile Kibbutz X X X

Table 3.1: Mapping of Trilogy 2 Use-Cases to Canonical Architectural Problems

To keep the present document self-contained, a one-paragraph summary of each use-cases is also given be-

low.

3.1 MPTCP Outline

Multipath TCP (MPTCP [15]) controls packet transport over multiple paths between two host processes. It

improves resilience, performance and efficiency in the use of network capacity. It is applicable where at least

one host has multiple network interfaces, and there is sufficient data to be transferred to warrant the initial

connection setting up sub-flows. Typically the data to be transferred may be split over multiple paths and the

congestion controls of all the paths are coupled in order to balance network load. However, but other path-

scheduling functions can be implemented, such as duplication, hot-stand-by or lowest latency. The IETF has

agreed experimental standards for MPTCP and multiple implementations now exist.

3.2 PVTCP Outline

Polyversal TCP (PVTCP [7, §2.2]) aims to control data transport for inter-process communication (IPC) by

abstracting the underlying means of communication and the end-point addressing scheme from the appli-

cation. The underlying transport may be sockets, shared memory channels, pipes, etc. and the end-point

processes may reside within the same core, on separate cores, separate processors, separate machines or sep-

arate sites. It is being investigated whether PVTCP would benefit from using multiple paths in a similar way

to MPTCP. The design of PVTCP is still under development.

3.3 Trevi Outline

Trevi [20] is a transport protocol specialised for controlling data transfer to and from multiple storage replicas.

The read and write modes of Trevi use considerably different protocols, but both rely on fountain coding for

reliable delivery. In write-mode, Trevi multicasts data blobs to the replicas using fountain codes, and each

receiver uses a TCP channel to control the sending window for flow control and network congestion control.

In read-mode, the transport is multi-sourced, using multiple unreliable channels to read randomised symbols

c© TRILOGY2 Consortium 2014 Page 23 of (72)

from each storage replica, each managed by a reliable control channel. The client continues to request parts

of the blob (symbols) from each storage replica only until it has received enough data to reconstruct the

whole blob. Thus the client enjoys the resilience of multiple replicas while only sending or receiving any

one part of the data once, and always balancing demand in parallel across all the replicas while respecting

the available rates of the different storage devices and the relevant parts of the I/O system and network. A

detailed straw-man design of Trevi has been published and it is planned to be implemented.

3.4 ConEx Outline
Congestion Exposure (ConEx [11]) is a protocol designed to enable providers of communications infrastruc-

ture to give the correct economic incentives to data senders to manage their traffic load and to enforce limits if

they do not. ConEx is an extension to IP that allows the sender to signal the amount of congestion it expects

its traffic to experience in-band. These signals are then visible to traffic management nodes at the ingress

to each network the traffic traverses. The integrity of the congestion information can be tested, and if the

sender understates congestion signals relative to actual congestion experienced, an audit function can discard

sufficient traffic to negate any benefit a sender would accrue from lying. ConEx is slowly being standardised

experimentally by the IETF. The standards have not stabilised sufficiently for implementation, but prototype

implementations exist of a similar protocol called re-ECN.

3.5 Irminsule Outline
Irminsule [7, §4.1] is a large-scale distributed database co-ordination scheme. Each distributed processor can

use a part of a data structure by optimistically replicating it for local low latency access as a branch operation

in the distributed version control system, git. The ACID (atomicity, consistency, isolation, durability) prop-

erties can hold within each branch, but there is loose consistency with the rest of the system. Conflicts when

branches are merged have to be resolved by programmers exploiting conflict-free replicated data types, or

data types with custom merge operators. Stored data is always immutable so there is never a need to lock data

replicas while another replica is altered. This allows storage to be arbitrarily divided up between processes

(e.g. by a load balancer), making it a liquid resource where it previously had to be treated as constrained and

solid because of all the possibilities of different parts needing to be locked. Irminsule is in the process of

implementation and refinement.

3.6 vM3 Outline
Virtual machine migration for mobile devices (vM3 [7, §3.3]) is the ability of move virtual machines between

mobile devices or between a mobile device and a desktop. As virtual machine capability starts to emerge on

mobile devices, the user interface is a large part of the capability of the mobile device and therefore a large part

of any virtual machines on the mobile device. First this use case splits applications between front end (GUI)

processes and back-end processes and so allow mobility for the resources used for the back end processes,

thus creating a liquidity. However, this use case also addresses the challenge of moving the GUI and linkage

Page 24 of (72) c© TRILOGY2 Consortium 2014

to virtualised devices (network, camera, phone, etc) between heterogenous hardware environments and well

as achieve a minimal perceived delay between the VM being active on one device and then being active on

the second device.

3.7 vBRAS Outline
The virtualised broadband remote access server (vBRAS [7, §3.2]) is developing a new generation of BRAS

based on a full separation of the logic of the BRAS for the resources used to implement the BRAS thus

creating a liquidity. As the BRAS is the primary security gateway to the network for all broadband services,

content caches, for example storing video content, must architecturally sit on the network side of a BRAS

and therefore the advantages of caches can only be fully achieved if BRAS can be highly distributed in the

network. This use case is building highly efficient, small scale and highly parallelisable virtualised BRASs

running in very low overhead virtual machines, thus creating liquidity not just for the BRAS but also for many

other networked applications including content caching. A major part of this use case in the development of

the lightweight virtual machines with a lightweight host operating system within which the vBRAS is hosted.

The vBRAS is therefore itself a use case of these lightweight virtual machines and host operating system

which in the project is called ‘ClickOS’.

3.8 vCPE Outline
The virtualised customer premises equipment (vCPE [7, §3.3]) is creating liquidity in the way functionality

is provided which currently requires specialised network equipment at customer premises. This specialised

functionality is more efficiently provided in a datacentre where the allocation of resources to the implemen-

tation of these functions aggregated across many customers and therefore more efficiently optimised. This

use case provides not just a solution to the virtualisation of these CPE functions but also a solution to the

extension of the customers network for the customer’s premises to the datacentre which does not change the

logic of the customer’s overall network.

3.9 Mobile Kibbutz Outline
The Mobile Kibbutz [7, §2.1.3.2] is a way for a localised group of mobile devices to take turns in using each

other’s cellular connections, because periodic use of a radio consumes disproportionate battery energy. The

aim is to ensure fairness, accountability and privacy of participants. Participants use WiFi or BlueTooth for

connectivity with each other, and they maintain a multipath TCP connection over all these links to exploit

whichever one(s) open a path over the cellular medium that can reach the remote party. The scheme has been

designed, implemented and evaluated.

c© TRILOGY2 Consortium 2014 Page 25 of (72)

4 Problem Statement
In order to develop the architecture, we focus on particular use cases which illustrate some of the major issues

that the architecture needs to address. The purpose of this Chapter is to give a clear understanding of some of

the more important issues from a practical point of view.

4.1 Canonical Problems

4.1.1 IaaS Resource Control

“as a Service” has rapidly become the ’buzz-phase’ of public cloud computing. Within this, a number of

things have been identified as being “as a Service”:

• Infrastructure as a Service (IaaS) - essentially virtual machines within the cloud platform within which

the user can load any operating system and applications the choose;

• Platform as a Service (PaaS) - a virtual machine with a specific operating system and possibly a specific

platform application, for example a web server or database, which can be configured by the used for

their own requirements;

• Software as a Service - end user software applications which run on cloud platform, normally accessed

from a user’s web browser, and which gives the appearance of being a local application.

In each case, the services includes the necessary connectivity for the end user to access the infrastructure,

platform, or service. It is the first of these, IaaS, that is of particular interest. Here the liquid asset which is

traded is the virtual machine.

We start by considering the basic model of liquidity ’trading’ which is implicit in Trilogy 1 where the liquid

asset is bandwidth. The network supplies bandwidth and connections demand bandwidth. The connections

have an implicit price they are willing to pay for bandwidth while the different components of the network

have different costs for their bandwidth (in fact, primarily based on congestion pricing rather than equipment

cost). The liquidity pool matches the demand and supply and the MPTCP protocol is an efficient automated

and distribute solution to matching this demand and supply. This is illustrated in Figure 4.1 below.

Critical to the operation of this bandwidth liquidity market is the uniformity of bandwidth: 1Mbit/s of band-

width on one path is equivalent and tradable with 1Mbit/s of capacity on another path in the network. Band-

width is homogeneous and essentially tradable as a commodity and all connections will treat all bandwidth

equally. In economic terms, we can treat the liquid pool of bandwidth as a commodity market.

Even bandwidth is not quite as simple as this. Transmission errors and especially latency can differentiate

the utility of bandwidth on different paths. However, these two extra parameters, errors and latency, do have

some level of implicit trade off with bandwidth:

• errors can always be traded with bandwidth as error correction, for example as carried out by TCP, will

trade errors directly into additional bandwidth and latency;

Page 26 of (72) c© TRILOGY2 Consortium 2014

Liquid pool of homogeneous
bandwidth

bandwidth
demand

bandwidth
supply

Connection services

IP network

Figure 4.1: Liquidity with Homogeneous Bandwidth

• while latency cannot be fundamentally traded with bandwidth (although many buffer control algorithms

do create a trade off), latency cannot be less than the separation distance divided by the speed of light

which is often significant, and this can only be traded by the physical resiting of end points and, in

addition, this finite speed of light latency can effectively dilute any buffer latency.

While noting these, it is also the case that in the great majority of cases, bandwidth is regarded by both

connections and network as a homogeneous, uniform commodity.

This is not the case with virtual machines (VMs). A VM is a combination of several different resources which

fundamentally do not trade with each other. These include a virtual CPU (vCPU), virtual RAM (vRAM), and

one of more virtual disks (vDisk) 1. A virtual machine is always a combination of these resources.

On the demand side, different applications will place very different emphasis on the different resources. Some

applications may be CPU intensive, some may be RAM intensive, some may require very large disk storage

but not overly concerned by the access time to the disk, while others may be especially concerned with the

disk access time. And of course, there is a wide mixture between these. As a result there is no uniform VM

profile. On the supply side, different suppliers of IaaS construct their own range of VM package options - a

relatively small selection which cover broad classes of applications.

We see that the liquidity pool of VMs is not a homogeneous, uniform commodity. It is a set of differentiated

packages. It is possible to trade off between packages, but there is discontinuity which means that some

applications will have a certain stickiness to a certain package or small subset of packages. In economics
1There are other resources such as virtual NIC (vNIC), virtual DVD drive, virtual USB drive, and a virtual console but these are

not so relevant to the current discussion, but do go to further enhance the need to treat the liquidity assets as heterogeneous

c© TRILOGY2 Consortium 2014 Page 27 of (72)

terms, this is not a commodity market but a differentiated market. This differentiated market for IaaS is

illustrated in Figure 2.5 below.

“Viscous” pool of heterogeneous VM
“packages”

vCPU
supply

vRAM
supply

vDisk
supply

Virtual Machine
demand

vCPU
demand

vRAM
demand

vDisk
demand

Virtual Machine
supply

Figure 4.2: Liquidity with Heterogeneous Virtual Machines

Generally, assets in differentiated markets are not regarded as ’liquid’ as those in a commodity market, indeed,

we might describe them as ’viscous’.

Finally two further issues arise from this IaaS use case:

• why don’t the IaaS suppliers make it possible be purchase increments of vCPU, vRAM, and vDisk

separately and create individual commodity markets for each separately?

• vCPUs are only tradeable if they have the same instruction set 2, but this is not always the case.

The reason why IaaS suppliers create a limited number of packages is because its cheaper and more profitable

for them. It is frequently the case that there are significant common costs which can be recovered against any

or all of the components of the package, and there is normally no stable economic solution to determining

how these should be split. In addition, there are often significant costs in managing complex variants so

that one uniform package which roughly covers a range of applications is more profitable for the supplier

than creating a bespoke package for each application. Moreover, the users do not necessarily want bespoke

packages as these may increase the differentiation between their competitive alternative packages and increase

their ’stickiness’ to their bespoke package.

The fact that vCPUs are only tradeable if they have the same instruction set illustrates and introduces another

fundamental difference between the general case and the specific case of bandwidth. Bandwidth and storage
2or there is some minimal cost means of translating (like JIT compilers within a Java runtime environment (JRE) if we take the

JRE to be a form of vCPU)

Page 28 of (72) c© TRILOGY2 Consortium 2014

are both transparent functions; transparent in that for the transport and storage functions themselves, there

is no meaning (that is a behaviour dependency) to the values being transported or stored. This means that

it is possible to measure bandwidth and storage in bits with complete generality. This is not the case for

general functions as is evident from the vCPU example. In the general case of processing resources, or any

more general resource where any level of behaviour processing is exposed outside the resource, then the way

inputs affect the behaviour of the resource is fundamental to the tradability of the resource. Dealing with this

new and profound complexity is a fundamental problem for this architecture.

4.1.2 Consequences of Middleboxes

Contrary to the original conception and architecture 3 of the Internet, ’middleboxes’ are a widespread phe-

nomenon throughout the networks of Internet service providers (ISPs). It is no longer the case that they can

be dismissed as a “temporary aberration” or an “architectural violation to be opposed and resisted” and boxes

performing functions such as NAT, Firewall, Proxy server, load balancers, and other deep packet inspection

(DPI) are now effectively ubiquitous.

In general, these middleboxes are stateful and therefore quite different from IP routers and Ethernet switches

which maintain no session/flow state. The need to maintain state means that efficient implementations in-

creasingly rely on standard processing (such a x86 architecture) and now that virtualisation technology is

maturing this means that full machine virtualisation need not create a packet forwarding bottleneck, middle-

boxes are emerging as virtual appliances.

In addition, there are a range of more formal gateway boxes which share many characteristics of middleboxes

including BRAS in fixed networks and GGSN, SBC/G, etc in mobile networks. These also touch packets at a

session level (even if the session may be an underlying session rather than an application session) and again

these functions are starting to emerge as virtual appliances.

First, the very acknowledgement of middleboxes requires a multi-layer architecture. Second, if these middle-

boxes are virtual appliances, then there is considerably more flexibility in where they can be sited, and the

siting of the these middlebox functions becomes a parameter for optimisation by the network. In addition,

there is considerable flexibility in the choice of layers that the middlebox chooses to touch and this too can

become a parameter for optimisation by the network.

However, in some cases middleboxes are a ’cat and mouse’ game. The middlebox is trying to limit the

behaviour of the end user and so the end user has an incentive to avoid the behaviour of the middlebox. For

example a proxy server may wish to limit the range of applications that an end user can access, or at least limit

the bandwidth given to those applications. This gives the end user an incentive to tunnel their application and

masquerade their application as one that is allowed, for example tunneling the affected application through

http. This tunneling may have a processing and performance cost, but this may still give the end user a better

end result. A particular example protocol stack is shown in Figure 4.3 below.

3noting that the IETF has always preferred to work with a set of guiding principles rather than an explicit architecture, in this case
the guiding principle being the end to end principle

c© TRILOGY2 Consortium 2014 Page 29 of (72)

http content

http

tcp session

tcp/ip five tuple

IP

MAC
S

W

R
ou

te
r

R
ou

te
r

S
W

M
Id

dl
eb

ox
??

??
??

S
W

R
ou

te
r

R
ou

te
r

S
W

Figure 4.3: Liquidity with Virtual Middleboxes

This example use case illustrates three quite separate requirements:

• the need to include multiple layers and multiple siting options for functionality in the liquidity optimi-

sation problem;

• multiple middleboxes frequently need to be deployed in parallel in order to cope with the load placed

on them and therefore there must be some mechanism by which the load can be distributed amongst

the instances, however, frequently the box deployed to do this, a load balancer, is itself a middlebox;

• end user can and do optimise their transport taking account of middleboxes.

The inclusion of multiple protocol/functional layers has the effect of adding a third dimension to the two

dimensional optimisation on MPTCP which is itself an extension from the one dimensional optimisation of

TCP. While MPTCP can spread traffic across the two dimensional plane of the IP network, the reality of

middleboxes means that we cannot just consider the network to be a flat plane of IP.

The last requirement, to account for end user’s multi-layer optimisation, directly gives rise to the polyversal

TCP (PVTCP) development in the project which extend MPTCP to include tunneling at multiple different

layers as additional transport paths.

In addition, in the case of MPTCP, the optimisation problem is quite clearly the optimal placement of traffic

within the given and fixed topology of the IP network. MPTCP cannot change the topology of the network.

However virtual middleboxes do two things to change this:

• the ability choose a protocol layer implicitly creates options to bypass nodes or, more likely, force

routing through a node which substantially alters the way traffic flows on the network compared to a

flat IP network

• much more significantly, virtualisation enables dynamic placement of middleboxes and a network oper-

ator can modify the effective topology at any one layer, for example, under light load, middleboxes can

be centralised but under heavy load, more instances of middleboxes can be dynamically instantiated

Page 30 of (72) c© TRILOGY2 Consortium 2014

near the end user in a much more distributed topology4.

A further feature of multi-layer topology optimisation is the sensitivity and instability that can arise. Small

changes in the ’price’ of using a lower layer can sometimes cause dramatic changes in the optimal topology

at a higher layer. Often, for a higher layer, there can be a tipping point of lower layer link costs which cause

a radical change from a centralised network to a highly distributed network.

The need to distribute load across parallel instances of middlebox functions is really an extension of the

dynamic topology requirement. However, historically it has not always been treated as such. As a result

the fundamental and unavoidable tie between network addressing and network routing has frequently been

missed and the so the routing needed to do the distribution of load has been forced up the protocol stack to

a point where addressing can be sufficiently distinguished in order to identify the required end point for a

particular packet, hence the need to introduce middleboxes.

This problem of load balancing making middleboxes become necessary is demonstrated by a simple example.

Supposing a Web site for a domain name experiences load which requires more than one server, but the DNS

entry for the domain name returns one IP address. This means that all the servers meeting the load must

appear to be one IP address. But this violates the flat IP network as each server should have its own IP

address. Therefore the load balancing cannot be carried out by a basic IP router. In this case, a load balancer

can work using the five tuple of the destination IP address, the source IP address, the destination port number,

the source port number, and the protocol. However, supposing the web site owner wishes to dedicate some

server to delivery of large files which are all on a particular directory branch within the Web site URL, eg

http://domain.name/largefiles, then the load-balancer must now parse into the http layer to find this directory

branch in order to successfully route the packet. In this case, the packet forwarding is based on probing deep

into the application layer.

4.1.3 Lightweight Virtualisation

When virtualisation was introduced into data centres through the introduction of hypervisors and virtual ma-

chines, the primary motivation was simply to reduce the number of servers required to handle a datacentre’s

workload. As the processing power of a basic server increased, it regularly became the case that some applica-

tions designed to run on a dedicated server were not consuming the full resources of the server. Virtualisation

allows this spare server resource to be used by other applications and as a result many data centres saw a great

improvement in their server resource utilisation efficiency.

With this objective, there was never any direct motivation to reconsider the scale and design of the applica-

tions. Indeed, the critical winning feature of virtual machines, is that there is no need to change the application

software at all. To the software, the virtual machine behaves just like a physical server; it is prefect evolu-

tionary innovation.

The motivation of the design of hypervisors was to create virtual machines that look and behave as close to

4While not generally considered a middlebox, CDN is another example of a dynamic topology under differing load.

c© TRILOGY2 Consortium 2014 Page 31 of (72)

server

virtual machine

Linux container

process
`

th

Virtual application

? ?
?

?
?

Figure 4.4: Options available to implementing a virtual application

physical servers as possible and this has led to hypervisors and virtual machines with the following charac-

teristics:

• virtual machines are comparatively large and ’heavy weight’ with a significant overhead needed to

support each virtual machine;

• the number of virtual machines supported on any one server is comparatively small (units to tens);

• the boot time for virtual machines is similar to that of hardware servers.

However, virtual machines create a new dynamic flexibility, that is a liquidity, way beyond that of physical

servers. It is now possible to reconsider the question of what the optimal size and number of virtual machines

per server should be, and closely coupled to this, what scale of application should map to virtual machines.

The current hierarchy of execution environments (that is server, virtual machine, possibly a Linux container,

process, and thread) give different levels of performance and security isolation but also currently come with

different levels of performance and resource overheads.

However, it is apparent that some of the performance and resource overheads associated with virtual machines

are not fundamental and can be greatly reduced. The current level of overhead is as much a result of the history

background to virtual machines as just described. Assuming that the performance and resource overhead of

the virtual machine can be reduced, this opens an opportunity to find a different optimal scale of virtual

machine and mapping of application to virtual machine. This is illustrated in Figure 4.4 below. Both the

MirageOS and the ClickOS use cases with their associated software developments address this area within

the project.

4.2 Requirement for a layers of Abstraction in the Functional Architec-

ture

Based on the canonical problems, the following is a list of observations which emerge.

Page 32 of (72) c© TRILOGY2 Consortium 2014

(i) The resources of cloud liquidity are packaged and differentiated and this creates a certain increase

in trading ’viscosity’ which increases the complexity in managing the liquidity when compared to

bandwidth only liquidity.

(ii) General resources which include some level of processing are not transparent to their inputs in the

way bandwidth and storage are transparent. For general resources there is a meaning and behaviour

associated with each value of input and resources are only tradable if they have then same meaning

and behaviour for the same input. For example the tradabiity of CPU processing resource depends on

at least the different CPUs having the same instruction set or having some other common execution

environment. By contrast, for bandwidth and storage, a bit is always a bit.

(iii) The siting of functionality at different layers is now open to optimisation in a third dimension of pro-

tocol/functional layers (compared to the two dimensional network of MPTCP, which itself added a

second dimension to the one dimensional model of TCP).

(iv) Interactions between optimisation at different layers may lead to great sensitivity/instability to optimi-

sation, especially at higher layers. Optimal results at higher layers may flip from highly centralised to

highly distributed as a result of small changes at lower layers.

(v) Load balancing across multiple parallel instances of a function should not require arbitrarily deep

packet inspection in order to identify which of the parallel instances to forward a packet.

(vi) If users move around such that the network characteristics change during the course of a session, or if

middleboxes interfere with their applications, the user can choose to tunnel their application at different

layer in order to optimise their transport.

(vii) Resource optimisation needs to find an optimal mapping of application to virtual machine and from

virtual machine to server, and by implication find a new optimal size of virtual machine unrestricted by

an assumption that an application will be unchanged from that running on dedicated servers.

This list is not exhaustive, nor may it be possible to fully address all the relevant issues which emerge from the

canonical problems within the scope and timescale of the project. This list gives a broad target of requirements

and details the more precise areas where the project can move beyond the current state of the art.

When seeking to address these canonical problems, it is apparent that there is no general framework within

which solutions can be developed. In particular, the generic techniques of functional modelling and functional

specification does not have the means of describing the essential properties of liquidity. This means that there

is no readily available appropriate technical ‘language’ to even describe these observations arising from the

canonical problems. This observation was also apparent in the work of the ETSI ISG on Network Functions

Virtualisation (ETSI NFV ISG).

c© TRILOGY2 Consortium 2014 Page 33 of (72)

The first requirement of the architecture is therefore to develop this basic functional architecture which can

accurately describe and specify functionality, including processing and storage, in such a way that functional

uses can be decoupled from the resources that implement these uses. This basic functional architecture can

then give a technical framework and language within which the canonical problems can be addressed.

The overall Trilogy 2 architecture is therefore layered in different levels of functional abstraction. These level

of functional abstraction also mirror abstraction in the Trilogy 2 information model.

• At the bottom is the basic functional architecture which is gives the technical framework within which

the fundamental process of creating liquidity can be described.

• Above this and described in its terms, is the Trilogy 2 abstract functional architecture which is com-

mon to all the use cases and which can be used to develop solutions to the canonical problems. This

functional architecture is also the basis of a Trilogy 2 abstract information model.

• Above and described in its terms, are the architectural solutions to the canonical problems and which

also act a verification of the Trilogy 2 functional architecture.

• At the top are the functional architectures of each of the uses cases which are also each the basis of the

specific information models for each use case.

These layers and their relationship to the information modelling is shown in Figure 4.5 below.

Use Cases Use Cases

Functional Architectures Information Models

Canonical
Problems

Primary relationship

Trilogy 2 Abstract
Functional Architecture

Base Abstract
Functional Architecture

Base Ontology

Trilogy 2 Abstract
Information Model

Primary relationship

abstraction

abstraction

abstraction

abstraction

abstraction

Figure 4.5: Levels of Functional Abstraction and Relationship with Information Models

Page 34 of (72) c© TRILOGY2 Consortium 2014

5 Architecture
The Chapter defines the basic functional architecture and the Trilogy 2 abstract functional architecture and

addresses, at least to some significant degree, each of the requirements set out in Chapter 4. This deliverable

presents the current status of this work which is still on-going. Broadly, this current chapter presents the basic

framework and the future work will be concerned with using this framework for the more specific aspects of

the canonical problems and each of the use cases. It is therefore expected that the architecture presented here

will not change greatly; future work will apply and add to it, rather than modify it.

The first section in this chapter describes the basic functional architecture and deals with the fundamentals

which arise when uses are decoupled from the resources which implement the uses - the essence of creating

liquidity. This first section can be regarded as more mature. The second section takes these fundamentals

and applies them to the context of Trilogy 2 and develops a generic functional architecture for Trilogy 2.

This second section is an initial view and will be reviewed and updated as required as work on the functional

architecture of the individual use cases is developed in the next phase of the project.

5.1 Basic Functional Architecture

By way of introduction, we note that within most engineering disciplines, the language and general framework

within which problems are expressed and documented together with their design solutions is normally taken

for granted. However, Trilogy 2 is concerned with a strong convergence between the world of computing,

notably cloud computing, and the world of networks. While ’convergence’ has been on going for many years,

there has been a continuing difficulty in this converging relationship in that the descriptive techniques used

within networks and those use within at least some parts of computing do not align and people on one side

can have difficulty in understanding the intention of people on the other side. For the purposes of Trilogy 2,

there is not a readily available framework and all the standard toolkits do not have critical descriptive features.

The basic aim of this architecture task does not include devising a new unified framework, however, the

ambition of the Trilogy 2 objectives and the precision needed in specification does effectively require that one

exists. The architecture in this chapter is to some extent such a unified architecture, however, it is developed

as a ’means to an end’ and it ’as not the end in itself’. Its purpose is to enable the successful development of

solutions for creating and controlling cross-resource, cross-layer, and cross-provider liquidity.

The architecture is based on the well known technique of functional blocks which are common across many

engineering disciplines. With a very large simplification, we can contrast some broad characteristics of a

’computation model’ and a ’functional block model’ as shown in Table 5.1. This comparison is not intended

to imply that either model is right or wrong or used exclusively by one group of people1. The comparison

seeks to illustrate why, for the purposes of Trilogy 2, it is better to start with the functional block model rather

than a computation model, even though the objective is to include generic processing.

1for example, the architecture in this chapter draws strongly on automata theory which would normally be regarded as sitting on
the computational model side.

c© TRILOGY2 Consortium 2014 Page 35 of (72)

Table 5.1: Comparison of Computation Model and Functional Block Model
COMPUTATION MODEL FUNCTIONAL BLOCK MODEL

“does something in order to solve a
maths problem”

“solves a maths problem in order to do
something”

runs to completion runs continously
sequential

(time is a means of establishing
sequence)

temporal
(exists in real time)

measured by (information) size measured by (information) rate
fundamentally sequential fundamentally parallel

focussed on the internal specification
of the ’maths problem’

focussed on the external behaviour at
the interfaces

generally provides a universal
acceptance language

generally has minimal acceptance
language consistent with defined

behaviour
is generally concerned with the ability

to perform any task and to maintain
maximum flexibility to options

is generally concerned with closing
down options in order to keep

interfaces as simple as possible
consistent with high levels of reuse

The use cases of Trilogy 2 are interactive, real-world, real-time and so look very much like functional blocks.

Moreover, they are temporal in that, in most cases, time rather than just sequence matters, and the natural

units of capacity are rates not size (while it is part of the on-going work and not reported here, this is true

even for storage where access time matters in many uses cases).

5.1.1 Virtual Functional Blocks as the Architectural Building Blocks

The representation of functional blocks is part of the working methods of many industries as well as different

disciplines and perspectives within those industries. As a result, there is not a clear common representation

of functional blocks which is unambiguous across different industries, disciplines, and perspectives.

As tools that describe functional blocks are most often used by engineers for the design, development and

construction of functional blocks, quite naturally, many tools give considerable emphasis to these phases of

the functional block life cycle. For example, in the construction phase, the reuse of common design features

is especially important as reuse increases efficiency. Many tools therefore give considerable emphasis to the

reuse of such features. In this case classification of functional blocks according to common design features is

of considerable value and the natural starting point for describing functional blocks is the class. It is natural to

start by representing a class of functional blocks which can be built using the same design. The class diagram

can also contain hierarchy, for example an inheritance hierarchy, which can show increasing scope of design

reuse at higher levels of the class hierarchy.

However, when describing the operation of functional blocks, the individual instances of functional blocks

and the way individual functional blocks interact with each other are important. In this case the natural

starting point is not the class but the individual instances. Classification and hierarchy of classification is

much less relevant at the operations stage. More important is the way individual functional block instances

Page 36 of (72) c© TRILOGY2 Consortium 2014

are interconnected and interact.

There are of course many other aspects to functional blocks which may be important to represent. For

example the nature of what is passed between functional blocks may be important to differentiate and in

the case of Trilogy 2, we restrict ourself to functional blocks which pass information and only information

over interfaces. More general functional blocks may pass fluid (pressure and flow), electricity (voltage and

current), rotation (revs and torque), money, etc.

Here we are concerned with the basic characteristics of information functional blocks. We can assume that

all the parameters passed between functional blocks are information of one form or an other. This section

considers some of the basic properties of information functional blocks. It focuses on the case where a

functional block such as a server or a network acts as a host functional block, hosting virtual functional

blocks such as virtual machines and virtual networks.

In this case, it is important to highlight the properties of functional blocks in operation and so all the discussion

and diagrams in this document show functional block instances (and not classes of functional blocks) unless

otherwise stated.

The section gives brief overview of the application of functional blocks to virtualisation. As we are aware,

there are aspects of this architecture which break new ground and certainly some of the critical properties

are not present in any standard modelling toolkit such as UML, SysML, or BPMN. Indeed, none of the cur-

rently available toolkits have any adequate means of describing virtualisation and in this they are importantly

deficient. There are many consequences and conclusions which are not discussed in the deliverable, as they

are beyond its scope and might otherwise distract from the objective of the architecture which is to set a

framework for the rest of the project. The architecture has already been taken up the ETSI NFV ISG.

A functional block consists of:

• a set of input interfaces;

• state;

• a transfer function;

• a set of output interfaces.

When considering the functional block at its most fundamental level, the proper operation of a functional

block is causal and the flow of causality from input to output is central to the methodology. In this case it is

normally more convenient to consider all inputs as separate from all outputs. A basic view of a functional

block illustrated in Figure 5.1 below.

There a number of fundamental properties of functional blocks.

• the transfer function is fixed and defining of the functional block;

• the set of all possible values of state is fixed and is defining of the functional block;

c© TRILOGY2 Consortium 2014 Page 37 of (72)

Transfer function

State
Output

interfaces
Input

interfaces

Figure 5.1: A Functional Block

• the set of all possible input values is fixed and is defining of the functional block;

• the set of all possible output values is fixed and is defining of the functional block;

• the transfer function is the set of mappings from a specific value of the tuple of input value and current

state value to a specific value of the tuple of output value and updated state value;

• the state is the ability of the evolution of the functional block to be dependent on historic inputs and

not just on the current input;

• the process of acquiring the current input value, the current state value, calculating the transfer function

mapping, and setting the next state value and the next output value takes a finite amount of time;

• the exact amount of time may vary with each specific transfer function mapping.

A central property of functional blocks is the complete and formal separation of the static from the dynamic.

Using a more IT oriented terminology, the input, output, and internal (ie state) data structures and all the

methods (ie the transfer functions) are static. They must not change. Only the values of data within the data

structures can change; these values are the only things which are dynamic.

For standardised functional blocks, in order to ensure proper interoperability, the goal would normally be to

fully define all the static parameters of the functional block in the standard.

Having defined what a functional block is from the inside, the next fundamental property of a functional

block is the ability to interconnect functional blocks. This is achieved by connecting an output interface of

one functional block with the input interface of another functional block. For this to work the following must

be true:

• the data structure of the output interface of the functional block on one side of the interconnection must

be compatible with the data structure input interface of the functional block on the other;

• the output set of values must be a subset of the input set of values.

This interconnection of interfaces is called an interface binding. This arrangement is illustrated in Figure 5.2

below.

As illustrated in Figure 5.2, when a number of functional blocks are interconnected all together, the interface

bindings form a topology graph between the functional blocks.

Page 38 of (72) c© TRILOGY2 Consortium 2014

Functional
Block

Functional
Block

Functional
Block

Functional
Block

Interface Interface

Bound
Interfaces

Bound
Interfaces

Bound
Interfaces

Bound
Interfaces

Interconnection Graph

Figure 5.2: Binding of Functional Blocks and Interconnection Graph

When a number of functional blocks are interconnected in a topology graph, some input interfaces and some

output interfaces remain. A property of the functional block methodology is that the entity as viewed through

these remaining input and output interfaces is also a functional block and meets all the properties of a single

functional block. This is illustrated in Figure 5.3.

This means that functional blocks have a fundamental recursive property. A larger functional block can

be created by composing a number of a smaller functional blocks and interconnecting them with a specific

topology.

Another fundamental property of functional blocks which is immediately apparent from this recursive prop-

erty is that functional blocks are inherently parallel, concurrent, and asynchronous . Any sequential and

synchronous properties will arise only as a special case, normally by imposing explicit design constraints on

the static properties of all the constituent functional blocks.

Functional
Block

Functional
Block

Functional
Block

Functional
Block

Functional Block

Interface Interface

Figure 5.3: Recursive Composition of Functional Blocks

This section has restated well established properties of functional blocks. In the next section, we introduce

an extension to this functional block methodology.

5.1.2 Virtualisation and Abstraction

Functional block methodology does not anticipate or directly support virtualisation. However, the foun-

dations of the methodology are very general and mathematically robust and it is still possible therefore to

understand virtualisation in terms of functional blocks. This section develops the extension of the methodol-

ogy in terms which are still fully based on the same general, mathematical principles and so still retains the

c© TRILOGY2 Consortium 2014 Page 39 of (72)

formal robustness of the methodology.

The concept of virtualisation allows one functional block, a host functional block, to precisely emulate the

interfaces and transfer function behaviour of a different functional block. For example:

• a hypervisor allows a server, the host functional block, to emulate a different server, a ’virtual machine’

(VM) such that the virtual machine appears to have all the interfaces and behaviour properties of a

server;

• a virtual machine running a specific operating system and application software can be made to emulate

the interfaces and behaviour of network equipment such as a BRAS such that the virtual machine works

indistinguishably from ’conventional’ BRAS.

However, the conception of virtualisation can be more general that this. This new architecture addresses the

concept of virtualisation by considering what happens when creating a virtual function in terms of functional

blocks. We find that the essence of virtualisation is to revisit the boundary between the static and dynamic

parts of the functional block specification and we see that virtualisation uses a process with the following

steps:

• a host function has some dynamic state which can be set (configured) to a value and held constant for

a prescribed period of time (which will be the lifetime of the virtualised function);

• this configuration allows the host to appear to operate according to the specification of the virtualised

function – this configuration of the host implements the virtualised function.

If we consider a functional block which can host virtual functions, it is possible to regard a logical partitioning

of it state into:

• state which is private to the host;

• state which can be held invariant for the duration of the virtual function;

• state which is allocated to be the state of the virtual functional block (VFB).

This host functional block (HFB) illustrated in Figure 5.4 below.

Host transfer function

State
Output

interfaces
Input

interfaces Container Interface

Configured state = virtual function
Dynamic to host, static to VF

Virtual function dynamic state

Host
private
state

Figure 5.4: Partitioning of State to Create a Host Function

In addition to partitioning the state, we also partition the input interfaces according the state which is affected

by the input.

Page 40 of (72) c© TRILOGY2 Consortium 2014

• VFB operational interfaces which are the virtual interfaces to the VFBs;

• HFB configuration interfaces which allow the creation/deletion of VFBs;

• host private interfaces, which control aspects of the HFB which are neither part of the definition of the

VFB nor of the operational interfaces of the VFB, control aspects private to the HFB.

This partitioning of the HFB interfaces is illustrated in Figure 5.5.

Host transfer function

State
Output

interfaces
Input

interfaces Container Interface

Configured state = virtual function
Dynamic to host, static to VF

Virtual function dynamic state

Host
private
state

VFB operational input interfaces VFB operational output interfaces

VFB specification input interfaces VFB specification output interfaces

HFB private input interfaces HFB private output interfaces

Figure 5.5: Partitioning of Interfaces

The state which can be held invariant is of particular interest for virtualisation. This state defines a set of

possible configuration options for the HFB, which may be a small set or a very large set indeed.

Consider two examples, first consider a standard architecture computer being loaded with a programme, and

second consider the forwarding engine of a packet switch being configured with a forwarding entry. The

number of possible programmes that can be loaded into a standard architecture computer is extremely large,

roughly the exponential of the programme memory size. Most of these are unlikely to be useful and most

options for programmes will never be exercised, none the less there is still an enormous number of possible

useful programmes that can be loaded. In the second case, the forwarding table of the forwarding engine can

be configured with a limited number of entries and each forwarding entry is a configuration of the forwarding

engine. Also note that in this second case, unlike the first case, changing the order of the entries will not

create a different configuration. In this second case, the number of configuration options will be linear with

the forwarding table size and not exponential.

In this context, we can also see that the data structure for the VFB specification interface is, by definition, a

programming language.

It is now possible to treat this configuration, for the duration for which the configuration option is held

constant, as being coupled with the host transfer function. This combination of a specific configuration

with the underlying host’s transfer function defines a new transfer function. In the first example of the

standard architecture computer, to the outside, the computer is behaving according to the execution of the

programme; the observed transfer function is that of the executing programme. In the second case, to the

outside, the forwarding engine behaviour now is to forward packets within the forwarding table according to

the forwarding table entry. This creation of a virtual transfer function is illustrated in Figure 5.6 below.

Finally, as shown in Figure 5.7, when we take together the new virtual transfer function with the state allocated

to the VFB and the partition of the interfaces for the VFB, we have a complete virtual functional block. To the

c© TRILOGY2 Consortium 2014 Page 41 of (72)

Host transfer function

State
Output

interfaces
Input

interfaces Container Interface/State

Configured state = virtual function
Dynamic to host, static to VF

Virtual function dynamic state

Host
private
state Virtual function

transfer function

Figure 5.6: Creating a Virtual Transfer Function

outside, when accessed using the VFB partition of the interfaces, the HFB is the VFB. The configured HFB

is, by definition, an implementation of the VFB. This capability of an HFB to be configured/programmed to

be a VFB is also equivalent to a “container interface” and an “execution environment”.

Host transfer function

State
Output

interfaces
Input

interfaces Container Interface/State

Configured state = virtual function
Dynamic to host, static to VF

Virtual function dynamic state

Host
private
state Virtual function

transfer function

Virtual functionInput virtual interfaces Output virtual interfaces

Figure 5.7: Creating a Virtual Function

In fact, it is the case that all implementation is exactly this process2. It is indeed, this mechanism of virtuali-

sation that allows any implementor freedom to choose and optimise their own implementation of the virtual

function. Moreover, all implementation independent specification is a specification of a virtual function. This

means that the requirement to extend functional block methodology to virtualisation has also provided a com-

plete and robust solution to implementation independent specification. Or expressed the other way around,

all functional specification is an abstract specification given in a specification language and this specification

language must be translated into the specific implementation language for any given HFB (assuming the HFB

is capable of implementing the required function).

Having precisely defined the process of virtualisation, it can be seen that the existence of a VFB depends

precisely on the specific configuration of the HFB which is hosting the VFB. Given that the definition of

a functional block requires that the transfer function is static and is defining of the functional block, this

means that the configuration which creates the VFB must not change during the lifespan of the VFB. Indeed,

the lifespan of the VFB is defined by the period during which the configuration which defines it remains

unchanged.

This means that there is a profound and fundamental difference between input interfaces of the HFB that

determine the configuration state and the input interfaces that determine the dynamic state of the VFB.

Having set out this framework of virtualisation and taking a hypothesis that it is universal from a functional

point of view3, we can deduce a number of important conclusions from this hypothesis.
2While beyond the scope of the project, the concept of configuration of HFBs can equally apply to physical components. For

example, a circuit board is a spatial configuration of chips and copper tracks, and a network is spatial configuration of equipments,
fibre cables, and other interconnecting cables.

3We noted above that the purpose of the (informational) functional block is “to solve a maths problem in order to do something”,

Page 42 of (72) c© TRILOGY2 Consortium 2014

Compared to ’hardware’ implementation, virtualisation of functional blocks results in:

• division of a functional block between a HFB and a VFB;

• creation of a new container interface between a HFB and a VFB;

• division of the interface between an infrastructure interface to the HFB and a virtual interface to the

VFB;

• the VFB is not a functional block independent of it host function;

• the container interface is not an interface between functional blocks equivalent to other interfaces.

When considering the definition of “abstraction”, we note that

• The VFB is, by nature, abstract;

• every viable4 abstract function is a virtual function;

• Every (abstract) VFB can be implemented on a wide variety of hosts functions.

This is virtualisation shown in Figure 5.8 below.

virtualisation

���������	

�	���

���������	

�	���

���������	

�	���
��������
��������

���������	

	���

��
��

���������	�

	���

��
��

���������	�

	���

���������

�����
��������

���������

������	�
���

���������	

	���

������	�
���

���������	�

	���

������	�
��

���������

����������

���������

������	�
��

���������

�����
��������

���������

Figure 5.8: Virtualisation of Existing Functional Blocks

There is therefore a fundamental relationship between the abstract view of a functional block - viewed purely

from the point of view of what it does and not how it does it - and the implementation of a functional block

and the universality is in the context of the things to be done, not in the universality of maths problems.
4as opposed to “abstract” in the context of an incomplete specification of a function

c© TRILOGY2 Consortium 2014 Page 43 of (72)

which is concerned with how the functional block does its job. Importantly, there may be very considerably

simplification in the apparent behaviour. The behaviour specification of the abstract VFB may be very simple,

however, the behaviour of the configured HFB may be highly complex. Consider the example of a connection

across a network. The behaviour seen at the interface to the connection (ie its port) is extremely simple - pass

packet to far end port. The implementation, on the other hand, has a great complexity of functions including

flow control, loss detection and retransmission control, attachment of network address(es), address lookup,

forwarding according to address lookup entry, etc. However, these two are exactly equivalent.

Expressing this equivalence is an area where current modelling toolkits appear to be deficient. For example,

• it is not generally possible to show that a UML/SysML activity diagram of an HFB, when certain state

is configured5, is equivalent to a separately defined UML/SysML activity diagram of a VFB;

• the above is the case whether the equivalence is simply asserted or whether it is logically de-

duced/confirmed by the toolkit;

• abstraction is really only considered from an interface point of view and not a behavioural point of

view.

Figure 5.9 below illustrates the equivalence of an “abstract functional block”, a VFB, and a suitably config-

ured HFB.

Abstract/Virtual
functionInput (virtual)interfaces

Output (virtual)
interfaces

• Full functional equivalence
• Virtual function may be defined in its own terms

and with out reference to host function
• Equivalence established by

• Conformance testing
• Formal methods??

Host transfer function

State

Container Interface

Configured state = virtual function
Dynamic to host, static to VF

Virtual function dynamic state

Host
private
state

Input virtual
interfaces

Output virtual
interfaces

Figure 5.9: Equivalence of Abstract Function, Virtual Function, and Suitably Configured Host Function

We can return to the primary goal of the project, that is the creation and control of liquidity. We can see that

the virtualisation framework provides for the creation of a liquid infrastructure, that is a large heterogeneous

HFB which is an interconnected set of processing, storage, and network resources. It also provides for the

creation of useful services which can use the infrastructure resources, that is VFBs, together with the way in

which these are hosted on the infrastructure HFB.

In addition, we can see that the framework also provides the way for describing how the resources of an

HFB are assigned to a hosted VFB. Each VFB ’consumes’ resources in so far as a HFB is using its capacity
5Indeed, it is generally very hard to link state into an activity diagram

Page 44 of (72) c© TRILOGY2 Consortium 2014

to implement that VFB. This framework is a generalisation of the standard traffic capacity model used for

measuring the usage of bandwidth. This is illustrated in Figure 5.10 below and it is this application of the

architecture framework which is taken up in detail in the project.

Abstract/Virtual
functionInput (virtual) interfaces

Output (virtual)
interfaces

Resource usage

Host transfer function

State

Container Interface

Configured state = virtual function
Dynamic to host, static to VF

Virtual function dynamic state

Host
private
state

Input virtual
interfaces

Output virtual
interfaces

Figure 5.10: Definition of Resource Usage

Finally, when considering this resource usage in more detail, we note that both HFBs and VFBs are recur-

sively composable and decomposable and that the functional block methodology is fundamentally parallel

and concurrent. This means that VFBs and HFBs may be distributed with high degrees of concurrency.

and when decomposed, the mapping of VFBs to HFBs may be a complex many to many relationship. In

particular:

• one HFB may host more than one VFB;

• a single VFB may be hosted across many HFBs.

This complex mapping may be viewed in two ways:

• the mapping arises from the configuration of HFBs which created the VFBs and therefore the mapping

is simply an observation of what is in actual operation;

• HFBs will have certain properties based on their level of concurrency which will place constraints on

the time required for some specific states to evolve and this will place significant constraints on the

mapping if certain performance for the evolution of state is required.

The second of these is especially important where state must be common across geographically distributed

HFBs. Managing this constraint on the mapping between VFBs and geographically distributed HFBs is very

often a primary design consideration for the performance and/or stability of an end to end VFB.

This mapping is illustrated in Figure 5.11 below.

c© TRILOGY2 Consortium 2014 Page 45 of (72)

Figure 5.11: General Mapping of Virtual Functional Blocks to Host Functional Blocks

5.1.3 Recursive Virtualisation and A Middle Out Perspective

In section 5.1.1 we derived the well established recursive property of functional blocks, composi-

tion/decomposition. We can now develop a second new recursive property for functional blocks, virtuali-

sation.

The recursive property of virtualisation is immediately apparent form the observation that a virtual functional

block (VFB) is a functional block and therefore is itself capable of being a host functional block (HFB),

as illustrated in Figure 5.12 below. This enables a layering of configuration of an underlying HFB. As an

example, consider an IP network.

• There is a physical configuration which creates a network of interconnected routers which is the un-

derlying physical network HFB and is a large scale, distributed, parallel functional block. However,

at this low level of virtualisation, there is no specification of routing protocols, forwarding, or end to

end sessions. In principle it could be configured to a variety of different protocols and host a variety of

different logical networks.

• At the next level of virtualisation, each router is configured with IP addresses, to run an IP routing

protocol on each interface, and to have an IP forwarding function. Each router is now an executing

router functional block in the network. At this level of virtualisation, an IP network functional block

has been created but there is no specification of forwarding or end to end sessions.

• At this next level of virtualisation, the routing protocol configures forwarding tables in each route

which establish one or more flow trees to each destination address and the network actually becomes a

large number of flow tree functional blocks. The routers disappear and the network inputs simple see

access to destinations selected by destination address. However, there is no specification of end to end

sessions.

• TCP creates session functional blocks and at this higher level of virtualisation, the flow trees have also

disappeared and all this is visible is a large number of point to point session functional blocks. Each

Page 46 of (72) c© TRILOGY2 Consortium 2014

session connection is a complete and properly specified functional block and has abstracted the network

on which it is hosted. In fact, for most purposes, only a few point-to-point sessions are normally of any

relevance at any one time, and so there is never normally any need to consider the totality of sessions

on a network at any one time. In this way, the layered virtualisation automatically create context

appropriate abstraction and automatically handles scalability and ’scopability’ 6.

In essence, the HFB/VFB framework gives the language to describe the mechanisms that are actually used

in reality to handle scale and scope, including the ability to reuse resources in many different ways at many

different layers.

A particularly significant consequence of this recursive virtualisation architecture is that it gives a new per-

spective on “top-down” and “bottom-up” approaches to specification, design, and development.

The merits of ’top-down’ and ’bottom-up’ are much debated and in most cases, a practical conclusion is

that both are needed. A ’top-down’ perspective is effective at identifying overall requirements and context

as well as the overall architecture while a ’bottom-up’ perspective is effective at identifying reuseability of

component functions as well as scalability of the final solution. the ’top-down’ approach gives the end users

perspective while the ’bottom-up’ gives the atomic building block perspective.

However, two basic questions inevitably arise:

• who is the ultimate end user for the ’top-down’ perspective?

• what degree of smallness constitutes the atoms at ‘the bottom’?

In the above example, the user of the TCP session was the ultimate end user. However, as we extend to

include processing and storage, many ’end users’ of TCP sessions are actually now firmly within scope of the

project as the TCP sessions interconnect processing and storage functions within the architecture.

Similarly, the router equipments were regarded as atomic. While this may seem appropriate for the network

operator, from the perspective of the equipment vendor, the router equipment is the end product and not

the least atomic. From the equipment vendor’s perspective, component chips might be atomic as they set

about specifying a configuration of chips on plug-in boards and a configuration of plug-in boards in a chassis.

And again, as we consider the extension of Trilogy to include NFV, any hard boundary between ’equipment

design’ and ’network design’ is not as clear and robust as it was. Again, we see that the idea that atomicity is

absolute is simply not the case.

However, recursive virtualisation does not assert or require an absolute top layer or an absolute bottom layer;

indeed, the opposite is the case. Recursive virtualisation is always relative as one layer is defined relative to

other layers and any notion of ‘top’ or ‘bottom’ only defined as a practical reference which can always be

re-defined if necessary.

6that is the ability to handle a large and/or increasing scope

c© TRILOGY2 Consortium 2014 Page 47 of (72)

• There is always some predefined host functional block and so any identification of a ’bottom’ HFB is

always only a practical convenience and never fundamental. Someone or something built (ie config-

ured) that HFB out of something more elementary.

• Any VFB block that is capable of receiving inputs is, by definition, capable of further configuration and

hence further virtualisation and so any identification of a ’top’ is again only of practical convenience

and not fundamental. As long as the function can receive an input, it is not ultimately configured.

This framework therefore directly addresses the ’cross-layer’ requirement of Trilogy 2. We might call this

recursive virtualisation a ’middle out’ perspective, where the middle is simply defined as the layer of design

and operation of interest. The perspective can then extend up and down as far as in useful and need not assert

any absolute top or bottom. This is illustrated in Figure 5.12 below.

Host transfer function

State
Output

interfaces
Input

interfaces Container Interface

Configured state = virtual function
Dynamic to host, static to VF

Virtual function dynamic state

Host
private
state

Outward recursion as well as inward recursion

Figure 5.12: Recursive Abstraction Leading to “Middle Out” Architecture

An important final observation on recursive virtualisation is the link with what is static and what is dynamic

and the link with layering.

• A fundamental part of the definition of a functional block is that the transfer function is static and does

not change.

• Therefore all the configuration of the state which determined the transfer function of a VFB must not

change during the life of the VFB.

• At a technical level, therefore, the layer boundaries are directly tied to which state is static and which

state is dynamic.

A corollary is that if a process does change some state, it is, by definition, working within the layer which

sets that state. This becomes especially important when considering optimisation for two reasons:

• any optimisation, which is always a selection of a member solution from a set of possible solutions,

must assume some underlying infrastructure which is fixed to define the set of possible solutions from

which the optimal may be picked, and so it is important be clear what this fixed infrastructure is;

• with multi-layer optimisation, layers are formed as a necessary solution to scaling and scoping and

therefore any temptation to dynamically and simultaneously optimise across layers is unlikely to scale.

Page 48 of (72) c© TRILOGY2 Consortium 2014

In summary, in a scalable solution, upper layers will treat lower layers as fixed and optimise within their own

upper layer on the assumption that the lower operates within it fixed and declared parameters. If the lower

layer decides to make changes within its layer, then the upper layer must reoptimisation based on the new

parameters from the lower layer. A simple example is a routing protocol. A routing protocol optimises the

placement of traffic on a network topology, but it implicitly assumes that the topology is fixed and invari-

ant. Should a lower process building the topology change the topology, then the routing protocol needs to

reconverge based on the new topology.

5.2 Initial Trilogy 2 Abstract Functional Architecture
In this section we now use the framework of the basic functional architecture to develop an initial view of the

Trilogy 2 Abstract functional architecture. At this level of abstraction, the functional architecture needs to be:

• general enough to be a single functional architecture to be common across all the Trilogy 2 use cases;

• give reasonable expression to the canonical problems and to their solutions;

• develop a generic framework for creating, measuring, monitoring, and controlling liquidity across the

scope of Trilogy 2, that is across the resources of bandwidth, storage, and processing and across the

environments of mobile devices, operator infrastructure, and the wide area.

5.2.1 Create Liquidity (1) - Establish an Infrastructure of Resources

As was set out in section 5.1.3 above, there is always an underlying host functional block (HFB) which is the

underlying infrastructure. Importantly, the point at which this is determined to be fixed, invariant, and atomic

is defined pragmatically. The architecture fully understands that when this was defined, there was a lower

level process that designed and built this infrastructure. For the purposes of NFV, it is practical to choose

the fixed infrastructure to be a set of servers and end user devices (providing processing resources), storage

arrays (providing storage resources), interconnected with a carrier Ethernet infrastructure network (providing

bandwidth resources). This physical infrastructure is shown at the bottom of Figure 5.13 below.

At the next layer up, the servers and end user devices of this base infrastructure provide a processing and

storage container interface (equivalently, an execution environment) which can be configured and its resourcs

assigned by a hypervisor. The virtual Ethernet switch (vSwitch) of the hypervisor can be bound to the

infrastructure carrier Ethernet network to form and end to end carrier Ethernet network. The hypervisors on

the servers and the carrier Ethernet network can now be configured to produce:

• virtual machines (VMs) which embody the processing ans storage resources and are VFBs of the hy-

pervisor (and server below that) and are also HFBs for whatever function might be implemented by the

code running on the virtual machines.

• virtual networks (VNs), which embody the bandwidth resources and are VFBs of the carrier Ethernet

network and are also HFBs to specific end to end communications (in practice these are likely to be

c© TRILOGY2 Consortium 2014 Page 49 of (72)

Infrastructure Network

���������	
����
����

������
���

��

��
��
����
����

������
���

����
���������

����
����
������
��

Processing and storage

Processing Unit (server)

Figure 5.13: Liquidity Infrastructure

E-LANs, that is multipoint to multipoint virtual private LANs which interconnect vNICs of appropriate

VMs).

Finally, within this infrastructure, we compose an appropriate set of VMs and VNs as a single HFB for a full

scale, distributed, cross-resource application.

The layers above the physical infrastructure are shown as layers of container interfaces in Figure 5.13 and

the highest infrastructure container interface is shown implementing a distributed application which itself is

decomposed to match the VMs and VNs of the infrastructure.

One particular point worthy of note it that IP routing can be implemented within virtual machines, and hence

the Internet is included as a particular usage example of the infrastructure. It would be fully possible to

include IP routing with the infrastructure, however, this creates security complications as discussed in section

5.3. The decision to base the infrastructure on Ethernet rather than IP is a practical one and can be readily

revisited and does not alter the fundamental framework of virtual functional blocks.

This infrastructure is therefore the heterogeneous resource pool required for the extension of resource control

and optimisation to processing and storage as well as to bandwidth and can underpin development of all the

use cases.

• MPTCP - as the infrastructure can readily host Internet routing and conceptually include the Internet, it

supports the necessary resource and functional descriptions required for the development of extensions

to MPTCP.

• PVTCP - the infrastructure supports the layered fucntionality and description of resources needed for

Page 50 of (72) c© TRILOGY2 Consortium 2014

PVTCP. It can directly support everything from MAC layer inter-VM commnuication within a hyper-

visor to higher layer protocols. Moreover, as the framework is middle out, even though the VM is

taken as the base resource of processing and storage, this can be fully decomposed if need be to reveal

inter-process communication even inter-thread communication if so desired.

• Trevi - again Trevi is a network protocol and so is accommodated by the layered network framework.

• ConEx - the infrastructure framework not only provides a for ConEx in its current form, it also gives

insight as to how the principles of ConEx can be applied cross-layer within the network, and possibly

cross-resource as well.

• Irminsule - provides a framework for distributed storage and therefore allows for the optimisation of

storage resources. This is fully hosted by the VM/VN framework.

• vM3 - this is directly built using a VM/VN framework and allows for end user device resources to be

optimally exploited.

• vBRAS - this is directly based on a the VM/VN framework and allows processing resources to be

optimally exploited

• vCPE - this is directly based on a the VM/VN framework and allows processing resources to be opti-

mally exploited as well as defining the necessary network protocols needed to maintain security when

the vCPE are moved between hosting sites.

• Mobile Kibbutz - the VM/VN infrastructure includes wireless networking including the layering of

protocols and so the resource optimisation on this use case is also accommodated by the VM/VN

infrastructure framework.

More generally, this VM/VN infrastructure is a direct extension of the canonical problems. It directly includes

the basic building blocks of IaaS, that is hypervisors and virtual machines. It also addresses the canonical

problem of middleboxes as the framework is properly layered and so protocol layers are accurately described

both technically and their mapping to resources. Finally, as the treatment of virtualisation is very general, the

canonical problem of lightweight virtual machines is also addressed directly.

The aim of Trilogy 2 is to extend the techniques of Trilogy 1 so as not to have to carve off a fixed (solid)

partition of the host infrastructure for each VM and VN. Instead the resources of the host infrastructure

remain as a liquid pool available to all VMs an VNs, but separate control mechanisms are configured to limit

excessive usage and incentivise optimal balancing of load.

This infrastructure framework allows for the complete and accurate description of all the resources. The next

phase in the development of the Trilogy 2 architecture is to appropriately parameterise these resources so that

the dynamic control mechanisms and algorithms can be applied to their allocation.

c© TRILOGY2 Consortium 2014 Page 51 of (72)

5.2.2 Create Liquidity (2) - Definition of Abstract Specification of Desired Functions

With the liquidity infrastructure in place, the next step is to create configuration files for the infrastructure

which will implement a required application. This process starts with the abstract specification of the desired

functional block. This desired functional block is specified in abstract, implementation independent terms,

and in order to implement it, a configuration specification is needed for the intended HFB which will host the

implementation. This configuration specification is in the form of a file, that is, it is a piece of information,

which when loaded into the HFB causes it to behave according to the specification of the abstract functional

block.

Given the host infrastructure described in section 5.2.1 above, the implementation file will consist of three

basic information elements:

• a set of virtual machine specification files each of which will describe the necessary configuration of the

hypervisor to create an appropriate virtual machine together with a virtual machine disk image which

is the binary code of the complete running virtual machine for a VM-VFB component of the required

overall VFB;

• a set of VN specification files which specify the E-LAN services needed to interconnect the VMs (these

services are effectively a configuration of the infrastructure carrier Ethernet network);

• a set of additional constraints which restrict the possible mapping of VMs and or VNs to specific

hosting servers or networks.

This process is illustrated in Figure 5.14 below.

VFB Description

VM disk
image

Deployment
Constraints

Abstract/Virtual
functionInput (virtual) interfaces Output (virtual) interfaces

Create implementation file

VN spec
(inc vNIC list)

Figure 5.14: Creation of an Equivalent Implementation File from an Abstract Specification

For Trilogy 2, the aim is for the configuration file not to fix (solidify) the resources assigned to each VM and

VN, but instead to define the parameters of the control mechanisms that will enforce limits on the use of the

resource pool and that will provide the economic incentives for guest functions to balance load across the

Page 52 of (72) c© TRILOGY2 Consortium 2014

pool. Thus, the configuration of the behaviour of virtualised services is solidified at creation time, but the

configuration of the resources needed to serve that behaviour is left liquid. Then the function’s behaviour itself

fixes (solidifies) the amount of resources it needs at run-time, on much shorter, more dynamic, timescales.

It is possible and indeed likely that many such implementation files will be created for different abstract

functional block/HFB pairings ahead of time. This means that when a particular application functional block

is required, it can be created by selecting the appropriate implementation file from a library of implementation

files. This motivates the microkernel approach in which small functional blocks decomposed from larger ones

each carry minimal virtual machine overhead for rapid execution.

In summary, the creation of a host infrastructure together with the creation of a library of implementation

files enables the creation of liquidity.

However, we can also note that the creation of the VFB descriptions is itself a process with a strong analogy to

compiling of source code into binary code. With compiling there are several variants that compile at different

timescales, ranging from standard compilers, through just in time compilers to interpreters. There are a

similar range of options for the creation of VFB descriptions. This form of optimisation of VFB description

creation was not directly anticipated in the project objectives and so is only noted at this stage. If time,

resources, and opportunity allow, it may be possible to develop such optimisation within the project, but,

more likely, this will be work beyond the scope of Trilogy 2.

5.2.3 Control Liquidity (1) - Creation and Activation of Applications and Services

The creation of a host infrastructure together with a library of implementation files allows for a set of applica-

tions to be instantiated on the infrastructure. We can trace the basic process which results in the instantiation

of an application instance.

(i) An application VFB description (created as described in section 5.2.2 above) is registered and lodged

in a VFB description repository which is accessible by an application orchestration system.

(ii) A user request for an application instance is received.

(iii) An orchestration functional block identifies the application and finds and collects the correct VFB

description from the VFB description repository.

(iv) Using the VFB description for the application, the orchestration functional block works out the required

VM instances and VN instances and issues requests for their instantiation.

(v) An infrastructure mapping and resource optimisation functional block receives the requests and decides

to which hypervisors and which infrastructure network controllers to send the VM and VN instantiation

requests. This system also tracks the mapping of VFBs to HFBs. Note that Trilogy 2 aims for the

infrastructure mapping and resource optimisation functional block to be logically divided into host and

guest parts, so that the pool of resources can remain largely unassigned at activation time, and only

fixed (solidified) later at run-time.

c© TRILOGY2 Consortium 2014 Page 53 of (72)

(vi) The hypervisors and infrastructure network controllers create the required VM and VN instances.

(vii) A VFB may be able to request new VMs and/or VNs for itself within previously defined limits.

This process is shown in Figure 5.15 below.

VFB/service Implementation Design

Orchestration
of VFB

composition

Liquidity Infrastructure

Infrastructure
mapping

management and
optimisation

VFB Description

VM disk
image

Deployment
Constraints

VN spec
(inc vNIC list)

VFBD
repository

2 Request for VFB/service instance

4b Request VN
instances

4a Request VM
instances

VN VN VNVM VM

5 Instantiation
requests

1 Registration of
VFB/service in
repository

6 Instantiation

7 Instantiation
requests

Figure 5.15: Creation and Activation of a VFB Instance

At this point, we can also define the relationship between the concepts of ’application’ and ’service’7

• An application is a VFB and emphasises the static characteristics of a functional block that is created.

• A service is normally defined as a usage of a functional block and therefore emphasises the dynamic

characteristics of a functional block.

However, we can see that using the layered virtualisation architecture these are in fact different viewpoints

of the same thing. When the time scale is altered appropriately, we can see that a service is a VFB with a

shorter lifespan. This is readily apparent when we consider a session. A session is normally viewed as a

service instance and is a dynamic usage of the network supporting the session. However, from the point of

view of the session user, the session is a static functional block which provides connectivity (or whatever

functionality is associated with the particular type of session) for the duration of the session.

5.2.4 Control Liquidity (2) - Resource Optimisation

Finally, there is the process which is at the heart of the Trilogy 2 objectives; the optimisation of the resource

usage. There are three stages to this process:

7By service, we primarily mean service in a technical sense rather than a commercial sense. The full development of the spectrum
of service from technical to commercial is the subject of future work.

Page 54 of (72) c© TRILOGY2 Consortium 2014

• characterising pooled HFB resource capacity together with notifying current cost of usage of a particu-

lar HFB’s resource (which is directly analogous to and a generalisation of the resource plane in Trilogy

1);

• an optimal mapping of VFBs to HFBs (which is directly analogous to and a generalisation of the

reachability plane in Trilogy 1);

• a dynamic assignment of HFB resource (such as CPU clock cycles and different forms of storage such

as cache, RAM, and disk to different storage instances) to VFBs (which is directly analogous and a

generalisation of the use of the resource plane by transport services in Trilogy 1);

• enforcement of contracted limits on usage and settlement of costs incurred to incentivise the optimal

mapping and assignment of VFBs to HFBs.

Having now established the architectural framework as set out in this deliverable which can accommodate

the cross-resource, cross-layer, cross-provider context of Trilogy 2, detailed work on these three is the next

phase of work.

It is useful to note that at this stage, ETSI NFV ISG is generally assuming a centralised control model for

resource mapping and assignment which will inevitably have both scaling limits and have difficulties with

cross-provider interfaces. Trilogy 2 is seeking solutions without these limitations.

5.3 Trilogy 2 Security Architecture

This section organises discussion of the security of resource pooling into cross-resource (§5.3.1), cross-layer

(§5.3.2) and cross-provider (§5.3.3). §5.3.4 then brings together these three viewpoints by briefly summaris-

ing the security disciplines that all three draw on.

Trilogy 2 aims to build systems for pooling resources built on security that is intrinsic to the structure of the

architecture. Intrinsic or structural security techniques are often not even recognised as security techniques,

but they need to be the focus of security at the architectural stage. Examples of structural security are:

• Ensuring that resources are described using units that relate to the underlying economics, which gives

the system intrinsic security against gaming;

• Structuring the system to naturally exploit various forms of isolation;

• Designing protocols to exploit in-band signalling, which inextricably binds signals to the data they

relate to, thus avoiding the need to cryptographically bind control messages to the information objects

that they control.

Structural security techniques, including these examples, appear throughout the following three sections.

Then they are revisited in §5.3.4, which provides a taxonomy of the structural techniques employed. For

c© TRILOGY2 Consortium 2014 Page 55 of (72)

instance, isolation techniques are further categorised into information isolation, performance isolation and

failure isolation.

This survey of relevant security disciplines also highlights that, although sound foundations using intrinsic,

structural techniques are good, it is still necessary to explicitly engineer (non-structural) security techniques.

For instance, information security techniques such as authentication, encryption, integrity verification, etc.

still play an important role and the control protocols still need to be carefully designed to prevent abuse.

Finally, §5.3.5 offers general security guidance that is important but too general to fit elsewhere.

5.3.1 Security for Cross-Resource Liquidity

5.3.1.1 Narrowing the Security Problem Space

If processing, storage and bandwidth resources are each considered separately, there is already work in

progress on securing each of these areas separately. Although we have to be aware of these separate se-

curity areas, this is not the focus of Trilogy 2.

Figure 5.16: Change in the Threat Surface by Combining Networking with Compute Virtualisation

Combined virtualisation of computation, storage and network infrastructure requires defence against the

known threats in each area separately, as well as the new threats from combining them. Cloud technol-

ogy already virtualises applications that combine processing and storage, while NFV adds network functions

to the virtualisation mix. So the focus of our security attention should be the new vulnerabilities due to this

new combination—the intersection in Figure 5.16.

This intersection is the focus of the ETSI NFV industry specification group Security Problem Statement [6],

which is an output of Trilogy 2 (providing editorship and much of the technical material). In particular, this

problem statement identifies performance isolation as an area where solutions are lacking and where research

is required, particularly for the I/O (bandwidth) resource.

5.3.1.2 Economic Metrics for Performance Isolation

The main architectural focus of Trilogy 2 is to identify the metrics that capture the essence of the economics

of using each resource. Then, even if this metric is not directly used in commercial contracts, technical

mechanisms can be designed to control this metric, and the configuration of those mechanisms can be derived

from the applicable commercial contract governing its usage.

For bandwidth, the metric that expresses the economics is the congestion-bit-rate [b/s], which is the product

of bit-rate [b/s] and the probability of congestion [%]. The congestion-rate is measurable as the rate that

Page 56 of (72) c© TRILOGY2 Consortium 2014

bits are dropped due to packet discard or the rate that packets are marked by explicit congestion notification

(ECN [21]), both measured in b/s.

In the original Trilogy project, identification of this metric led to the development of congestion policing

mechanisms [10] so that a network operator could limit the level to which users/customers could impinge

on the service being provided to others. It also led to the realisation that the congestion-rate metric was

not visible to network operators in the Internet architecture, which in turn led to the development of the

congestion exposure protocol (ConEx), and the creation of an IETF working group to standardise ConEx

experimentally as an architectural change to IP and TCP, which is still in progress [11, 18].

This lesson from Trilogy 1 illustrates that it is important not only to identify the right economic metric, but

also to ensure that the system architecture makes it practical to use the metric to control resource usage. In

the case of packet traffic, the sender ultimately governs consumption of the bandwidth resource, so the metric

has to be usable where the sender’s traffic enters a network operator’s domain, not just at the receiver.

Applying this lesson to Trilogy 2, this means we still have work to do on controlling the bandwidth resource,

as well as extending the lessons to other resources. For instance, even in a case where the receiver nominally

controls the sending rate, as in the Trevi transport protocol [20] that uses multicast to write to storage, the

receiver is merely asking the sender to control its sending rate, and the sender is still ultimately in control.

The Trilogy 2 project has therefore been developing alternative ways to make the congestion-rate of traffic

streams accessible to network operators, without having to wait for adoption of an architectural protocol

change. The approaches fall into two categories:

• The network operator simply uses local congestion at a predominant bottleneck as an approximation of

the congestion along the paths through the network [9];

• the network operator creates tunnels across its network and generate its own congestion feedback from

each tunnel egress for a congestion policer to use at the ingress [13].

A specific aim of this architectural approach is to make it unnecessary to hard-partition I/O resources be-

tween storage and data networking, whether within internal server I/O lanes, internal vSwitches, top-of-rack

switches or switches and routers on the way to more remote storage. It will then be impossible for congestion

within the I/O system to exceed the sum of everyone’s congestion allowances, because whenever anyone

exceeds their own allowance, their congestion policer will focus congestion at their entry into the I/O sys-

tem, which will prevent further load entering the system by focusing discard solely on those exceeding their

allowance.

A congestion policer can be distributed so that it enforces a single logical allowance, even though it is dis-

tributed physically over a customer’s multiple entry-points into the I/O system. This approach is designed to

be agnostic to the transport being used, whether unipath like TCP & UDP, or multipath like MPTCP [14] or

Trevi [20].

c© TRILOGY2 Consortium 2014 Page 57 of (72)

It is more challenging to make the congestion metric in multicast reflect the underlying economics, because

multicast duplicates the economic metric that represents congestion (a loss is duplicated to every downstream

leg of the tree). This multicast metric problem is solvable in theory, at least for explicit congestion noti-

fication, by randomly picking only one copy of the packet on which to forward the ECN marking at each

multicast branch point. This preserves the economic meaning of a congestion signal and it can still signal

congestion to all the other multicast receivers using a different codepoint [12, §5], which allows a multi-

cast session to use either sender-driven or receiver-driven congestion control (eg. Trevi [20] writes to storage

using multicast with receiver-driven congestion control). However, this would require a change to existing

multicast forwarding hardware, and it’s not immediately apparent that even an SDN-controlled switch would

be able to do this.

rack, cable, power, cooling

network infrastructure

compute infrastructure

hypervisors

operating systems

applications

switching infrastructure
rack, cable, power, cooling

network functions

compute infrastructure

hypervisors

operating systems

applications

switching infrastructure

(Note: ‘compute infrastructure’ is taken to mean both processing and storage.)

Figure 5.17: Rearrangement of the Layers of Dependency in a System when Virtualising Network Functions

5.3.2 Security of Cross-Layer Liquidity

The layering of an architecture that combines compute and network infrastructure will include the OSI refer-

ence model used in networking, but go beyond it. Figure 5.17 shows a stack of systems that an application

relies on, ordered by dependency. Those nearer the top can treat the resources below them as more liquid,

and conversely solidity increases towards the bottom. The shift from the left stack to the right shows how

network functions sit higher in the dependency stack when they are virtualised (NFV), so they can exploit the

greater resource liquidity below them, much as virtualised applications can today.

However, this re-arrangement of the layers also inverts the security dependencies. Compute infrastructure

still depends on rudimentary network infrastructure (generic hardware switching, etc.). However, any net-

work functions that are virtualised become more dependent on the security of the compute infrastructure

that they sit on. This could open up new vulnerabilities, but it also offers better opportunities to secure the

infrastructure, e.g. the infrastructure operator can:

• use the introspection capabilities of hypervisors;

• spin-up virtualised ad hoc security monitoring processes;

• rapidly patch security bugs in network code once no longer implemented in hardware.

Page 58 of (72) c© TRILOGY2 Consortium 2014

Figure 5.18: Partitioning Boundaries Between Infrastructure Networks

Likewise, compute infrastructure now solely sits on top of an infrastructure network that is simpler and more

stable, therefore potentially more secure. But on the other hand compute can no longer depend on connectivity

through virtualised network functions (e.g. during boot).

The main security consequence of implementing part of a network’s connectivity in a higher layer is that the

lower layer has to consist of many disconnected network partitions that will only be connected together when

the higher layer software is executed. For instance, in Figure 5.18 the virtualised network function component

(The hypervisor that oversees
the life-cycle of the virtualised network functions is not shown.)

Figure 5.19: Example Cross-Layer Network

c© TRILOGY2 Consortium 2014 Page 59 of (72)

at upper centre offers a gateway function that forwards certain traffic between the physical access and core

networks shown at the lower layer. The essence of a gateway is to provide conditional connectivity, e.g. it

might pass all routing adverts from core to access, but only one-hop routes from access to core. It would

defeat this conditional function of the gateway if the core and access were also connected at the hardware

layer. The dashed line labelled ‘networking boundary’ represents the complete disconnectedness between the

two networks at the infrastructure layer.

Figure 5.19 illustrates this point with a security-related example. It shows a couple of server blades each

running a firewall, intrusion detection system and rate shaper as virtualised software, all connected via a

vSwitch to two of the network interfaces of each blade. The network interfaces are connected to red-side and

green-side networks configured as VLANs within the infrastructure layer (the hardware switch), shown as

different coloured connectivity within the switch.

Clearly, the operator intends that there should not be direct physical connectivity between the red-side and

green-side networks, without going through a firewall and a shaper, and without the oversight of an IDS.

Figure 5.20 illustrates this by showing the position before the firewall boots, or after it shuts down or crashes.

The no-entry signs emphasise the lack of connectivity between each little disconnected partition of the in-

frastructure network.

Figure 5.20: Example Partitioned Infrastructure Network

This has profound implications for how routing is controlled. All the partitioned infrastructure networks

have to be able to complete their connectivity while disconnected from each other. So, if they are centrally

configured on the SDN model by an open-flow controller, the controller has to be able to connect to each

partition (e.g. over a separate management network). Then the idea that an SDN controller understands the

Page 60 of (72) c© TRILOGY2 Consortium 2014

connectivity of its network can only be realised for each disconnected partition. It is not feasible for an open-

flow controller to describe, let alone understand, the conditional connectivity through a complex application

layer stateful firewall moderated by an IDS, and potentially being shaped to various rates conditional on

the firewall’s rules. Instead, one can envisage that the virtualised network functions would be instantiated

by an orchestration function that only understands each network function as an opaque blob of software.

All orchestration will know is that each blob has to be connected in a certain way to the interfaces of the

infrastructure network. Unlike an SDN controller it will not know the internal behaviour of the blob, which

would require machine understanding of arbitrary code.

The NFV Security Problem Statement [6, S6.1] highlights these issues, and further discusses the problem of

validating whether a topology satisfies an operator’s security policy.

5.3.3 Security of Cross-Provider Liquidity

There are two forms of cross-provider system, each covered in the following sub-sections:

Vertical: Different providers operate different layers of a stack of dependent services;

Horizontal: Different providers operate different domains of the service in one layer of the stack.

5.3.3.1 Vertical Cross-Provider

Figure 5.21 (which is a simplified version of Figure 5.17) illustrates the elements with potentially separate

security responsibility in different deployment scenarios: the building, the host compute hardware, the hy-

pervisors and the guest virtual network functions within their virtual machines.

Figure 5.21: Security Dependencies between Providers in Various Deployment Scenarios

Below some deployment scenarios are described that are likely in realistic contractual arrangements. These

include:

• Scenarios that have become common in cloud computing, as recorded in the NIST Definition of Cloud

Computing [19];

• Scenarios considered likely to be realistic for NFV; a Trilogy 2 output into the NFV security reference

framework provided in [6, S5];

• Scenarios used in Trilogy 2 use-cases but not already included in the above.

c© TRILOGY2 Consortium 2014 Page 61 of (72)

For convenience these scenarios are also summarised in Table 5.2. The right-most column also identifies

the NFV deployment scenarios that are similar to the common cloud deployment models identified by NIST.

All but the last row (currently purely a Trilogy 2 scenario) have been defined in the NFV Security Problem

Statement [6, S5] for the ETSI industry specification group (ISG) and wider industry to use as a reference

framework, so that everyone can be clear which security scenario they are discussing.

Deployment Scenario Build-
ing

Host
Hard-
ware

Hyp-
er-
visor

Guest VNF cf. NIST
Cloud
Model

Monolithic Operator N N N N Private
Cloud

Network Operator Hosting Virtual Network Operators N N N N, N1, N2 Hybrid
Cloud

Hosted Network Operator H H H N
Hosted Communications Providers H H H N1, N2, N3 Community

Cloud
Hosted Communications and Application Providers H H H N1, N2, N3,

P
Public
Cloud

Managed Network Service on Customer Premises C N N N
Managed Network Service on Customer Equipment C C N N
Network Service on Peer Customer Equipment C1 C1 C1 C2

The different letters are not meant to be overly significant. They are chosen to represent different traditional
industry players, e.g. H = hosting provider, N = network operator, P = public, C = customer, although it can
be seen that these ‘player’ names do not always reflect the bundles of roles adopted by the player.

Table 5.2: Some realistic deployment scenarios.

In general, in order to determine the security implications of a deployment scenario, the two main factors are:

(i) The different parties that operate each of the levels (building, host hardware, hypervisor, guest virtu-

alised network function).

(ii) Whether the party at any one layer has exclusive or non-exclusive use of the resources of the lower

layers and, if non-exclusive, are the resources available to all other parties or only to a restricted set

(e.g. only allied operators? competing operators? the general public?)

Monolithic Operator: The same organisation that operates the virtualised network functions deploys and

controls the hardware and hypervisors they run on and physically secures the premises in which they

are located.

Network Operator Hosting Virtual Network Operators: Based on the ’Monolithic Operator’ model, ex-

cept as well as hosting itself, the network operator (e.g. BT, Verizon) hosts other virtual network op-

erators (e.g. Virgin Mobile, Tescos, Walmart) within the same facility. It would probably isolate each

virtual operator on separate hardware. However, in theory, the virtual machines of different virtual

network operators could run alongside each other over the same hypervisor.

Page 62 of (72) c© TRILOGY2 Consortium 2014

Hosted Network Operator: An IT services organisation (e.g. HP, Fujitsu) operates the compute hardware,

infrastructure network and hypervisors on which a separate network operator (e.g. BT, Verizon) runs

virtualised network functions. The premises including cable chambers, patch panels etc. are physically

secured by the IT services organisation.

Hosted Communications Providers: Similar to ’Hosted Network Operator’, except the IT services organ-

isation hosts multiple communications providers. Alternatively, the IT services organisation may host

one (or many) wholesale network operators, which in turn host multiple virtual retail communications

providers. In this latter case the IT services organisation would give controlled rights to run virtualised

network functions to the wholesaler, which could in turn delegate rights to the virtualised retailers.

Hosted Communications and Application Providers: Similar to ’Hosted Communications Providers’ ex-

cept servers in a data centre facility are offered to the public for deploying virtualised applications

(Cloud) while in the same physical facility network operators and communications providers deploy

virtualised network functions on the same type of generic hardware platforms (probably not sharing

the same server hardware, but in blades and racks alongside and sharing the same data centre network).

Managed Network Service on Customer Premises: A network operator runs virtualised network functions

on its own generic server hardware located on a customer’s premises and physically secured by the

customer. This model could be in a residential or enterprise scenario, for example, respectively, a

remotely managed home gateway or remotely managed VPN gateways, firewalls, etc.

Managed Network Service on Customer Premises Equipment: Similar to ’Managed Network Service on

Customer Premises’, except the compute hardware is supplied and operated by the customer not the

network operator. The customer allocates a blade to the network operator, which runs a hypervisor

on this blade, and in turn runs all the necessary network functions within virtual machines over this

hypervisor. This model does not involve the customer running virtual machines on the same hypervisor

and hardware as the network operator, although this would be another valid scenario (similar to ’Hosted

Network Operator’ except the customer both hosts the virtual network functions of the network operator

and runs guest applications in virtual machines alongside them).

Network Service on Peer Customer Equipment: One customer operates a service on their compute hard-

ware (e.g. their mobile handset) on behalf of another peer customer, as in the Trilogy 2 ‘Mobile Kib-

butz’ [5].

5.3.3.2 Horizontal Cross-Provider

Horizontal federation applies particularly to networking, which is supplied as paths that can be comprised of

segments from different providers in order to achieve global coverage, as well as coverage between end-users

across a competitive local market.

c© TRILOGY2 Consortium 2014 Page 63 of (72)

The information exposure needed to control usage of the bandwidth resource across horizontal federations

was one of the outputs of the Trilogy 1 project, by exposing downstream congestion information at inter-

domain borders [8]. This then allowed translation between the metric used in:

• horizontal inter-provider and provider-customer contracts

• the congestion control algorithms used in transport protocols like TCP, whether unipath, multipath or

polyversal.

When expanding from bandwidth to also include compute and storage resources, the Trilogy 2 project has so

far focused solely on the vertical cross-provider model. Horizontal chains of provision of compute resources

(i.e. within a layer) are common where the result of one process depends on another. For instance cloud Web

services (application layer use of compute) or the working group in formation at the IETF on service function

chaining (SFC) (network layer use of compute).

For application layer use of compute resources, the mature web-services market already has well-established

interfaces that incorporate usage charging models that reflect local compute, storage and bandwidth us-

age. However, these interfaces are not translatable between different commercial models and therefore not

amenable to standardisation between cloud hosting providers. Therefore there is scope to introduce compute

and storage metrics based on the underlying resource economics that can be standardised as a lingua franca

for interworking between the different commercial models.

For networking layer use of compute resources (NFV), it seems unlikely that chains of network functions will

interact between operators, and more likely that each operator will introduce and control its own independent

service function chains.

5.3.4 Security Disciplines

Trilogy 2 draws on two main security disciplines: information security and system isolation boundaries,

mainly focusing on the latter for information isolation and performance isolation when using pooled re-

sources. A brief taxonomy of these disciplines is given below to help explain which areas of security are

applicable to the different parts of the architecture. Then further details are given on the categories central to

Trilogy 2:

(i) Isolation

Information isolation: Used for instance:

• During Forwarding, e.g. using virtual networks (see §5.3.4.1)

• In memory and registers (see §5.3.4.2 on virtualisation)

• To protect identity material (physical isolation in tamper-proof storage & processing)

Performance isolation: The main focus of Trilogy 2 for isolating performance between users of

pooled resources (see §5.3.4.3)

Page 64 of (72) c© TRILOGY2 Consortium 2014

Failure isolation: e.g. clean-up after crash as part of virtualisation technology

(ii) Information Security (Cryptography)

Identity verification: for access control, authorisation and message authentication

Configuration Integrity checking: for checking code integrity on execution

(iii) Secure Time: This embodies both isolation and infosec inseparably, so requires a category of its own.

Secure time will be addressed in future work.

(iv) Protocol Security: Hardening protocols for controlling and trading resources against abuse. See, for

example:

• the security analysis of the MPTCP protocol [7, §2.1.2]

• the support for information Integrity and Audit in the ConEx protocol [18, §5.5]

Similar security review will be required for Trevi [20], as a transport protocol for storage I/O.

Isolation is distinct from information security in that it uses physical or logical separation to divide up access

to information or to authorise access to a system, rather than relying on knowledge of cryptographic secrets.

Isolation may be used as a defence in depth to complement cryptographic protection. For instance a VPN may

prevent data being forwarded to sites that are not members of the VPN, but some or all of the data forwarded

over the VPN may also be encrypted, which prevents active eavesdropping and protects against accidental

mis-routing.

5.3.4.1 Information Isolation using Virtual Networking

Figure 5.22 uses the example scenario already introduced in §5.3.2 to illustrate how virtual networking can

be used to isolated a network for management and control from the networks for customer data. The man-

agement interfaces of machines are generally protected by cryptographic security (keys or passwords), but

isolating their connectivity onto a separate virtual network provides defence-in-depth, given support engineers

regularly move to new posts and access control procedures may not always have been followed correctly.

Isolation of a management network is useful for resilience as well as security. The management network is

the penultimate resort for recovering a system from a hard crash or from the operator accidentally locking

themselves out (the last resort being to physically visit the machine). Given that NFV makes networking

dependent on compute rather than the other way round (as shown in Figure 5.17 earlier), a useful principle

is to ensure that the management network is not dependent on compute virtualisation, at least only for stub

connectivity, not for interior connectivity within the management network. This principle has been articulated

in the ETSI NFV Security Problem Statement [6, S6.2].

c© TRILOGY2 Consortium 2014 Page 65 of (72)

Figure 5.22: Example Partitioned Management Network

5.3.4.2 Information Isolation using Virtualisation

Virtual networking only prevents data from leaking out of a network at unintended output interfaces. On its

own virtual networking only provides isolation between the different virtual networks when viewed at the

access interfaces; it doesn’t prevent snooping the information during transit and it doesn’t provide isolation

within the nodes of the network. For the former, encryption is required. For the latter, virtualisation is

the technology for isolating information so that the operator of one virtual machine (VM) cannot snoop on

information being processed by another VM.

In Trilogy 2, the microkernel approach being used for MirageOS [16] and for ClickOS [17] provides fun-

damentally the same separation as traditional virtualisation technology. However, by using a functional lan-

guage, the resulting image is inherently typesafe and also compiles down into solely those parts of the VM

needed for the virtualised application. This aggressive removal of unnecessary complexity is more important

than most other security advances.

In the extreme, it may be required to isolate the capabilities of one set of administrators from those of another,

e.g. to minimise the risk of internal fraud within a network operator or a hosting operator. This would require

trusted platform module hardware, which can ensure that keying information is isolated within a tamper-

resistant module. This will be an area of further work.

Page 66 of (72) c© TRILOGY2 Consortium 2014

5.3.4.3 Performance Isolation

Early virtualisation technology made performance suffer, but more recent advances have streamlined the

architecture, for instance by adding support for I/O virtualisation into network interface hardware (e.g. single

root I/O virtualisation defined by the PCI SIG [3]). Although the intention was to preserve the isolation

boundaries of virtualisation, this has required compromises and the additional complexity has led to more

bugs and security flaws.

The NFV security problem statement describes the state of the art in this space [6, S6.5] for sharing all the

following categories of infrastructure:

• cores

• memory

• network & I/O generally

• acceleration hardware

• virtualisation infrastructure (the hypervisor and its supporting software)

Network workload is particularly hard to isolate from that of other guests. The NFV Security Problem

Statement [6, §6.5] explains that this is because network load can range widely over different distributed

network resources and it can be highly variable at any point, making any static partitioning very inefficient,

and in data centres tenant churn even puts dynamic partitioning of each switch beyond feasibility.

In order to at least localise the problem, a network’s topology is often arranged so that the capacity at a

server’s interface will tend to be the bottleneck. The interior of a network can be made strictly non-blocking

using sufficient capacity and multipath routing. However, often competitive pressure drives providers to save

on core capacity and rely on the low probability of traffic all focusing on one core link. Any partitioning

between customers on high capacity core links would require too much per-packet processing and/or too

much per-guest state and churn, therefore they still rely solely on edge techniques.

Algorithms like weighted round-robin are sometimes used to divide the edge bandwidth resource only be-

tween active workloads. Participants in the Trilogy 2 project have been instrumental in implementing hierar-

chical QoS including WRR in the open-source data plane development kit (DPDK[1]). However, algorithms

such as WRR hold no memory of how often each guest has been active over time, so intermittent workloads

lose out considerably to persistent ones. In other words, by design, these algorithms favour flooding attacks,

even in the outgoing direction.

Isolating usage of local network resources is hard for another reason. Large numbers of remote users can send

incoming traffic that makes demands on the local resources, both bandwidth and interrupt processing. This

problem has as much to do with preventing identifier duplication/spoofing as with scheduling technology, but

even without any malicious intentions, isolation is hard for incoming workloads.

c© TRILOGY2 Consortium 2014 Page 67 of (72)

Network QoS (quality of service) differentiation can be used to ensure more critical tasks are less likely to

contend for network resources. However, QoS adds extra dimensions of complexity for network function

developers and network operators and it deliberately does not address the performance isolation problem for

the bulk of regular traffic.

Therefore, the Trilogy 2 project has been developing congestion policing algorithms. These use a congestion-

rate metric to reflect the underlying economics and they correctly take account of usage over time. §5.3.1

should be referred to for more details and references to IETF and other documentation.

5.3.5 General Good Security Practice

The weakest aspect of security is nearly always the procedures involving humans. Although it is down to the

ultimate operators of technology to get this right, the technology itself can help by automating as much as

possible, and minimising the complexity of the human parts of the processes.

Microkernel technology has already been discussed as a simplifying principle, and the Trilogy 2 focus on

using the right metrics within the mechanisms avoids additional system complexity having to be introduced

to correct for commercial use of metrics that do not reflect the economics of the underlying isolation problem.

The Trilogy 2 project has also contributed general warnings on safety vs. complexity; and altered norms and

procedures into the NFV Problem Statement [6, S7]. We also espouse the principle of using open-source

code and open security processes to ensure the widest possible validation.

Page 68 of (72) c© TRILOGY2 Consortium 2014

6 Evaluation and Future Work

6.1 Dissemination and Standards Already Achieved

The architecture described in this deliverable has already been presented and adopted by the ETSI NFV ISG.

This architecture has provided a number of critical concepts for the work of the ISG.

• The nature of hosting, that is the relationship between a VFB and an HFB had been a source of consider-

able confusion and many early diagrams showed them as distinct functional blocks with a conventional

interface between them. This architecture firmly established this is not the case and that the VFB is the

HFB and that there is an execution environment (or equivalently a container interface) between them.

This is now clearly described in the NFV Framework Architecture which is already published.

• The more detailed architecture of the liquidity infrastructure has been adopted by the Infrastructure

(INF) Working Group and a summary is described in the NFV Infrastructure Overview document. A

more complete and detailed description is given in the Interfaces and Abstraction document. Both of

these documents have been agreed by the INF working group and are at the final draft stage.

• The architecture has resulted in constructive dialogue on the relationship between functional block

architecture and information models and the nature of functional construction versus functional oper-

ation in preparation on developing the necessary information models of the northbound management

interfaces for NFV.

6.2 Future Architecture Work

The further work on Trilogy 2 architecture includes the following items.

• Building on mechanisms being developed WP1, development of capacity measures for storage and

processing resources.

• Building on mechanisms being developed WP1, development of resource mapping algorithms which

can support distributed, automated mapping of VFBs to HFB in a cross-resource, cross-layer, cross

provider environment.

• Building on mechanisms being developed WP1, development of resource assignment algorithms which

can support distributed, automated assignment of VFBs to HFB in a cross-resource, cross-layer, cross

provider environment.

• Further elaboration of the architecture, in particular as more specific detailed levels and worked exam-

ples, as required by WP3.

• A further iteration of the architecture together a linked iteration of the information models of task 2.1.

c© TRILOGY2 Consortium 2014 Page 69 of (72)

• Further dissemination of the architecture working through with WP4.

In addition there are some items which merit further which were not anticipated in the original project pro-

posal. While it may be possible to develop some work in these areas, it would anticipates that these are areas

for work beyond the scope of Trilogy 2.

• Development of toolkit methods for representing equivalence of a VFB to a suitably configured HFB

and dissemination to OMG and any other relevant bodies.

• Development of optimisation tools for the optimal creation of VFBDs.

Page 70 of (72) c© TRILOGY2 Consortium 2014

Bibliography
[1] Intel(R) DPDK: Data Plane Development Kit. Online: http://dpdk.org/.

[2] Trilogy Project. http://trilogy-project.org/.

[3] Single Root I/O Virtualization. Specification v1.1, PCI-SIG, 2009. (member-only access).

[4] Basic tools for liquidity control. Deliverable D2.2, Trilogy 2 EU 7th Framework Project ICT-317756,

December 2013.

[5] Initial Cross-Liquidity tools. Deliverable D1.2, Trilogy 2 EU 7th Framework Project ICT-317756,

December 2013.

[6] Network Functions Virtualisation; Security; Problem Statement. Group Specification ETSI GS NFV

SEC001 v0.0.8, ETSI NFV ISG, December 2013. (work in progress).

[7] Software Platforms. Deliverable D1.1, Trilogy 2 EU 7th Framework Project ICT-317756, December

2013.

[8] Bob Briscoe. Using Self-Interest to Prevent Malice; Fixing the Denial of Service Flaw of the Internet.

In Proc Workshop on the Economics of Securing the Information Infrastructure, October 2006.

[9] Bob Briscoe. Nice traffic management without new protocols. Presentation to ISOC bandwidth manage-

ment roundtable, Online: http://www.bobbriscoe.net/present.html#1210isoc, Octo-

ber 2012.

[10] Bob Briscoe. Network Performance Isolation using Congestion Policing. Internet Draft draft-briscoe-

conex-policing-00, Internet Engineering Task Force, February 2013. Work in progress.

[11] Bob Briscoe, Alissa Cooper, and Richard Woundy. ConEx Concepts and Use Cases. Request for

Comments 6789, Internet Engineering Task Force, July 2012. (Status: Informational).

[12] Bob Briscoe and Jon Crowcroft. An Open ECN service in the IP layer. Technical Report TR-DVA9-

2001-001, BT, February 2001.

[13] Bob Briscoe and Murari Sridharan. Network Performance Isolation in Data Centres using Congestion

Policing. Internet Draft draft-briscoe-conex-data-centre-01, Internet Engineering Task Force, February

2013. Work in progress.

[14] Alan Ford, Costin Raiciu, Mark Handley, Sebastien Barre, and Janardhan Iyengar. Architectural Guide-

lines for Multipath TCP Development. Request for Comments 6182, Internet Engineering Task Force,

March 2011.

c© TRILOGY2 Consortium 2014 Page 71 of (72)

http://dpdk.org/
http://trilogy-project.org/
http://www.bobbriscoe.net/present.html#1210isoc

[15] Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaventure. TCP Extensions for Multipath

Operation with Multiple Addresses. Request for Comments 6824, Internet Engineering Task Force,

January 2013.

[16] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Thomas Gazagnaire, Steven

Smith, Steven Hand, and Jon Crowcroft. Unikernels: Library operating systems for the cloud. In Proc.

Architectural Support for Programming Languages and Operating Systems (ASPLOS’13), 2013.

[17] Joao Martins, Mohamed Ahmed, Costin Raiciu, and Felipe Huici. Enabling Fast, Dynamic Network

Processing with ClickOS. In Proc ACM SIGCOMM Workshop on Hot Topics in Software Defined

Networking (HotSDN), 2013.

[18] Matt Mathis and Bob Briscoe. Congestion Exposure (ConEx) Concepts and Abstract Mechanism. In-

ternet Draft draft-ietf-conex-abstract-mech-08, Internet Engineering Task Force, October 2013. Work

in progress.

[19] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. Special Publication 800-

145, NIST Computer Security Division, September 2011.

[20] George Parisis, Toby Moncaster, Anil Madhavapeddy, and Jon Crowcroft. Trevi: Watering Down Stor-

age Hotspots with Cool Fountain Codes. In Proc ACM Hot Topics in Networking (HOTNETS-XII),

2013.

[21] K. K. Ramakrishnan, Sally Floyd, and David Black. The Addition of Explicit Congestion Notification

(ECN) to IP. Request for Comments 3168, Internet Engineering Task Force, September 2001.

Page 72 of (72) c© TRILOGY2 Consortium 2014

	Executive Summary
	List of Authors
	 List of Figures
	List of Tables
	Introduction
	Background to Trilogy 2
	Aims of the Architecture Task and This Deliverable Within Trilogy 2
	Additional Relationship of Trilogy 2 with the ETSI NFV ISG

	High Level Architecture Overview
	General Scope of Trilogy 2 Architecture
	Extension from Trilogy 1
	Basic Features of the Trilogy 2 Architecture

	Use Cases
	MPTCP Outline
	PVTCP Outline
	Trevi Outline
	ConEx Outline
	Irminsule Outline
	vM3 Outline
	vBRAS Outline
	vCPE Outline
	Mobile Kibbutz Outline

	Problem Statement
	Canonical Problems
	IaaS Resource Control
	Consequences of Middleboxes
	Lightweight Virtualisation

	Requirement for a layers of Abstraction in the Functional Architecture

	Architecture
	Basic Functional Architecture
	Virtual Functional Blocks as the Architectural Building Blocks
	Virtualisation and Abstraction
	Recursive Virtualisation and A Middle Out Perspective

	Initial Trilogy 2 Abstract Functional Architecture
	Create Liquidity (1) - Establish an Infrastructure of Resources
	Create Liquidity (2) - Definition of Abstract Specification of Desired Functions
	Control Liquidity (1) - Creation and Activation of Applications and Services
	Control Liquidity (2) - Resource Optimisation

	Trilogy 2 Security Architecture
	Security for Cross-Resource Liquidity
	Narrowing the Security Problem Space
	Economic Metrics for Performance Isolation

	Security of Cross-Layer Liquidity
	Security of Cross-Provider Liquidity
	Vertical Cross-Provider
	Horizontal Cross-Provider

	Security Disciplines
	Information Isolation using Virtual Networking
	Information Isolation using Virtualisation
	Performance Isolation

	General Good Security Practice

	Evaluation and Future Work
	Dissemination and Standards Already Achieved
	Future Architecture Work

	References

