
ICT-317756

TRILOGY2

Trilogy 2: Building the Liquid Net

Specific Targeted Research Project

FP7 ICT Objective 1.1 The Network of the Future

WP2 D2.3: Final Liquid Net Architecture

Due date of deliverable: 30 June 2014

Actual submission date: 15 January 2015

The consortium and PO agreed to postpone to 31 December 2014

Start date of project 1 January 2013

Duration 36 months

Lead contractor for this deliverable Telefónica, Investigacióy y Desarrollo, S.A.U.

Version v1.0 , 15 January 2015

Confidentiality status “Public”

c© TRILOGY2 Consortium 2015 Page 1 of (74)

Abstract

Trilogy 1 successfully defined a set of mechanisms to provide optimal fault tolerant transport across an

IP network by creating and exploiting multiple simultaneous path across the network. Trilogy 2 sets

out to extend the results of Trilogy 1 to be cross-resource, cross-layer, and cross-provider. Cross-

resource seeks a generalisation to all IT resources including processing and storage. Cross-layer seeks

to generalise beyond the simple two layers of Trilogy 1 and include intermediate layers. Cross-provider

seeks to provide solutions which can work across commercial boundaries. The architecture described

in this document gives a framework which directly addresses the requirements of cross-resource and

cross-layer and implicitly cross-provider. The architecture is based on an extension of functional block

methodology to incorporate virtualisation and as a result includes features beyond current state of the

art. It has been already been presented to and adopted by the ETSI NFV ISG for its work.

Target Audience

The ultimate target audience for this deliverable is the community of knowledge engineers who define

the structure of ICT systems, and those who define the standards and frameworks that are necessary for

these ICT systems to interwork across the industry. In addition, this deliverable is also targeted at a) the

project participants to ensure the whole is understood to be greater than the parts and b) the project’s

scientific advisory board and reviewers to articulate the approach being taken across the project in order

to elicit useful feedback and criticism.

Disclaimer

This document contains material, which is the copyright of certain TRILOGY2 consortium parties, and may

not be reproduced or copied without permission. All TRILOGY2 consortium parties have agreed to the full

publication of this document. The commercial use of any information contained in this document may require

a license from the proprietor of that information.

Neither the TRILOGY2 consortium as a whole, nor a certain party of the TRILOGY2 consortium warrant

that the information contained in this document is capable of use, or that use of the information is free from

risk, and accept no liability for loss or damage suffered by any person using this information.

This document does not represent the opinion of the European Community, and the European Community is

not responsible for any use that might be made of its content.

Impressum

Full project title TRILOGY2: Building the Liquid Net

Title of the workpackage WP2 Tussle over Liquidity

Editor Pedro A. Aranda, TID

Project Co-ordinator Marcelo Bagnulo Braun, UC3M

Copyright notice c© 2015 Participants in project TRILOGY2

Page 2 of (74) c© TRILOGY2 Consortium 2015

Executive Summary
The Trilogy 2 project follows on from the Framework 7 Trilogy project (2008-2011). The original Trilogy

project (Trilogy 1) developed mechanisms to create and control ‘liquidity’ of bandwidth in the Internet. The

aim of Trilogy 2 is to extend the results of Trilogy 1 to create and control liquidity of other resources, in

particular storage and processing. We also aim to extend the applicability of the Trilogy 2 results beyond the

Internet to mobile devices and more general operator infrastructure. This document describes the extended

Trilogy 2 architecture It builds on the initial architecture described in Deliverable D2.1 and collects the

insights we have gained during the second year of the project. We have corrected our initial approach of a

monolithic architecture and are instead approaching it as a cyclic, open ended development. This is the same

approach taken by the Internet Engineering Task Force (IETF), where a set of principles guide the design

of the specifications it produces. As these become available, the set of principles is revisited and some are

re-scoped in line the findings so far.

We have split our principles into three sets. The first are axiomatic principles that may appear to be self-

evident, but which we include because we wish to highlight some subtle aspects that apply to the Trilogy 2 ar-

chitecture. The second set is a more traditional list of guiding principles. The third set has been derived from

our work on the Reference Architecture of the ETSI Network Function Virtualisation Industry Study Group

(ETSI NFV ISG).

Axiomatic Principles

• Portable Applications Create Liquidity

• We Must Have Metrics for All Resource Types

• Transport, Processing and Storage are all Strongly Inter-Dependant

• The Starting Default is a Real-Time Parallel Concurrent System

• Everything has its Own Defined Lifecycle

• The Starting Default is a Decompositional Model

Guiding Principles

• Name Resolution as a Network Function

• Biderectional Application Interfaces

Our work on the ETSI NFV ISG Reference Architecture has resulted in the following NFV-specific guiding

principles:

• Network Function Virtualisation (NFV) Usage and Capacity Parameters Will Be Included in Commer-

cial Boundaries

• NFV Usage and Capacity Parameters Must Be Consistent Across Heterogeneous Resources

• NFV Orchestration Should Have a Version of the End to End Principle

• NFV Orchestration Should Be Co-recursively Decomposable

c© TRILOGY2 Consortium 2015 Page 3 of (74)

From the beginning of the project, we have observed that there is no general framework within which so-

lutions covering all three liquidity dimensions can be developed. In particular, the general techniques of

functional modelling and functional specification cannot describe the essential properties of liquidity. This

observation was also apparent in the work of the ETSI NFV ISG.

This deliverable documents our advances towards a simple architecture which can accurately describe and

specify functionality, including processing and storage. We endeavour to decouple functional uses from the

resources that implement those functions, as we believe this is the right way to allow for liquidity in the

implementation.

Our basic functional architecture builds on the architecture of the ETSI NFV ISG which served as a basis

for Deliverable D2.1. They are complemented in several fundamental aspects. Firstly, we believe that the

Internet will evolve to a federation of liquidity based domains, which will need high level orchestration

mechanisms, in the same way as today’s cloud infrastructures are interconnected and provide means to the

users to use resources across different domains. Secondly, we have also worked on mechanisms that allow the

end-point to communicate and cooperate constructively to build end-to-end communication paths. Thirdly,

we have investigated the aspects of Virtual Network Functions (VNFs) not covered in the ETSI NFV ISG like

ways to combine (chain) them to implement more complex functionality and ways to pool VNFs to increase

reliability. We recognise that there are research questions regarding them that are out of the scope of the ETSI

NFV ISG and are in the process of creating a new research group (RG) in the Internet Research Task Force

(IRTF) devoted to NFVs.

Page 4 of (74) c© TRILOGY2 Consortium 2015

List of Authors
Authors Pedro A. Aranda, Diego López, Andy Reid, John Thomson, Bob Briscoe, Costin Raiciu, Olivier

Bonaventure, Giacomo Bernini, Gino Carrozzo, Jon Crowcroft, Anil Madhavapeddy, Toby Moncaster,

Marcelo Bagnulo

Participants TID, BT, OnApp, UPB, UCL-BE, NXW, UCam, UC3M

Work-package WP2 : Tussle over Liquidity

Security PUBLIC (PU)

Nature R

Version v1.0

Total number of pages 74

c© TRILOGY2 Consortium 2015 Page 5 of (74)

Contents

Executive Summary 3

List of Authors 5

List of Figures 9

List of Tables 10

1 Introduction 11

1.1 General . 11

1.2 Network Function Virtualisation . 12

1.3 Objectives . 13

1.4 Document structure . 14

2 Principles 15

2.1 Axiomatic Architectural Principles . 15

2.2 Guiding Principles . 20

3 High level orchestration of domains 24

3.1 Introduction . 24

3.2 What is Orchestration . 24

3.3 How orchestration is used in Trilogy 2 . 28

3.4 Orchestration Scope . 28

3.4.1 Orchestration in the local domain . 29

3.4.2 Orchestration between multiple domains . 29

3.5 Efforts from other groups . 30

3.5.1 Network management and orchestration . 30

3.5.2 IEEE Intercloud Project . 34

4 Bringing control back to the endpoints 36

4.1 A Broken Contract . 37

4.1.1 Steps towards a solution . 38

4.2 Ninja tunnels: efficiently hiding network traffic . 38

4.3 A constructive approach: an explicit interface to allow endpoints and the network to commu-

nicate . 40

4.3.1 Implementing the API . 41

4.3.2 Use cases . 42

Page 6 of (74) c© TRILOGY2 Consortium 2015

4.4 Ubiquitous encryption to regain control of data . 42

4.4.1 TCPINC and Upper layers . 43

4.4.2 TCPINC and other security protocols . 43

4.4.2.1 TCPINC and TLS/SSL . 43

4.4.2.2 TCPINC and TCP-AO . 44

4.4.3 Compatibility with TCP . 44

4.4.3.1 Simultaneous open . 45

4.4.4 TCPINC and middleboxes . 45

4.4.4.1 TCPINC and NATs . 45

4.4.4.2 TCPINC and other middleboxes . 45

4.4.5 TCP header protection . 46

4.4.6 Use of option space . 46

4.4.7 Disabling encryption . 47

4.4.8 Crypto Agility . 48

4.4.9 TCPINC and MPTCP . 48

4.4.10 TCPINC and TFO . 49

4.4.11 Key exchange . 49

4.4.12 Privacy considerations . 50

4.4.13 Reusing cypto material . 50

4.5 A thought about the future . 51

5 NFV as a particularisation of the Trilogy 2 infrastructure 53

5.1 Introduction . 53

5.2 A generalised representation for resources in the liquid network 53

5.2.1 Measuring Transport Resource . 55

5.2.2 Measuring Network Resource . 58

5.2.3 Initial Suggestion on Measuring Trilogy 2 or NFVI Resource 63

5.3 Evolution of the standardisation landscape . 65

5.3.1 IETF: Service Function Chaining . 65

5.3.1.1 Intent and scope of Service Function Chaining (SFC) Operations, Admin-

istration, and Maintenance (OAM) . 66

5.3.1.2 Relationship with other Trilogy 2 activities 66

5.3.2 IETF: VNFPOOL . 66

5.3.2.1 VNFPool Requirements and Use Cases 67

5.3.2.2 VNFPool Architecture . 68

5.3.2.3 VNFPool in the Trilogy 2 /NFV architecture 70

c© TRILOGY2 Consortium 2015 Page 7 of (74)

5.3.3 IRTF: NVFRG . 71

5.4 Conclusion . 71

6 Conclusion and Next steps 72

6.1 Standardisation . 72

6.2 Further work . 72

References 73

Page 8 of (74) c© TRILOGY2 Consortium 2015

List of Figures
1.1 Comparison of One-Off Project with On-Going Project . 12

3.1 Services exist that are to be migrated and set up using an orchestration engine 26

3.2 Use the Information model to describe the resources and the requirements 26

3.3 Orchestration system selects the resources based on the requirements and capabilities 26

3.4 The Orchestration system configures the network and physical infrastructure first 27

3.5 The relevant services are migrated. The Orchestration engine handles the ordering and timing 27

3.6 Once all the services have reached a set point, the Orchestration system can then continue

with the plan . 27

3.7 The Orchestration system then handles the reconfiguration of external sites to use the modi-

fied resources and handles the cleanup of the original system 27

3.8 Conceptual TOSCA diagram . 28

3.9 InterCloud Protocols . 35

4.1 Runnning MPTCP over a UDP and an HTTP tunnel sharing a 10Mbps link 40

5.1 Many to many hosting relationship of the D2.1 virtualisation framework 54

5.2 A transport channel . 55

5.3 Shannon’s reference architecture . 56

5.4 Encoding and decoding from a virtual channel to a host channel 58

5.5 Multiplexing . 59

5.6 Resource allocation . 61

5.7 A general network . 61

5.8 Using a general network to support virtual channels . 62

5.9 General hosting of a virtual function . 64

5.10 Interfaces of a host functional block . 64

5.11 VNFPool reference architecture . 69

5.12 VNFPOOL-enabled European Technical Standards Institute (ETSI) NFV reference architecture 70

c© TRILOGY2 Consortium 2015 Page 9 of (74)

List of Tables
3.1 Orchestration efforts by different groups . 31

Page 10 of (74) c© TRILOGY2 Consortium 2015

1 Introduction
Trilogy 2 sets out with an objective which can be stated in relatively simple terms. The objective is the

creation of a framework for the flexible and optimal assignment of general ICT applications to the phyiscal

resources which support them (that is processing, storage, and network resources). This framework includes

the overall architecture, key algorithms for the optimal assignment, and key mechanisms for making applica-

tions portable between different possible resources.

However, this apparent simplicity belies the complexity of this objective. So the realistic aim is for Tril-

ogy 2 to make a significant contribution towards this objective, acknowledging that there are elements re-

quired to fully meet the objective which are beyond the scope and timescale of this project.

1.1 General

The conventional method of managing a project, even a large project, is to start by scoping the project, cap-

turing the external user requirements (normally through use cases) and then to break down the problem into

a number of separate problems with a minimal but well defined interactions between the component parts,

normally called the end-to-end architecture. This allows each component problem to be tackled as in inde-

pendent problem and the challenge associated with each component problem tends to be a great deal simpler

than the challenge of the overall objective. On the basis of the end-to-end architecture, all the conponents,

once developed, can then be integrated together. The completed end-to-end system can then be tested against

the external user requirements established in the frst stage. This is the essence of systems engineering.

However, developing a completed solution to meet the full scope of the Trilogy 2 objective is well beyond

what can be realised addressed by such a ‘closed-form’ project. As is illustrated in Figure 1.1, we have

adopted a more open-ended processes which is more analogous to the process adopted by the IETF in its

early days when faced with the challenges of developing the Internet. Rather than scoping the problem by a

requirements capture process, the scope can be established by stating objectives. In this open-ended approach,

the architecture also becomes quite different. As there is no expectation that the project will complete and

deliver a closed system, a traditional box and line diagram is not needed in the same way. Indeed, the problem

may well be sufficiently poorly understood as to make any attempt at such an end-to-end architecture wrong,

misleading, and unhelpful.

The first step in the Trilogy 2 architecture is to define a set of principles. The principles capture what is

reliably known for the project. In the example of the IETF, these included the famous principles like the

end-to-end principle and the liberal receive, conservative transmit principle. These capture important conse-

quences of the basic observation that the network would be unreliable and implementations may be inexact

and may vary over time. The project then identifies any gaps which mean that a closed project is not realistic.

Solutions to gaps need only demonstrate how how a gap can be resolved rather than provide a finished compo-

nent of an end-to-end solution. In effect this provides the start point for a future project which might develop

c© TRILOGY2 Consortium 2015 Page 11 of (74)

Conventional Closed Project Process

Scoping
Requirements

Architecture
End-to-end

block

Component
Development

Integration Testing

Large-Scale Open-Ended Project Process

Scoping
Objectives

Architecture
Principles

Gaps
Solutions to

Gaps
Appraisal

Figure 1.1: Comparison of One-Off Project with On-Going Project

such a component. For example, a solution to a gap might be an algorithm (rather than code implementing

the algorithm in the context an end-to-end system), or is may be a development toolkit, or a domain specific

language (rather than a specific solution using the toolkit or domain specific language).

1.2 Network Function Virtualisation

At the time of preparing this deliverable, the ETSI NFV ISG is finalising its first phase documentation and

outlining a work programme for a second phase of activity. Broadly, the objective of the first phase was to

establish and document the broad concept and architecture of NFV and also to demonstrate the key concepts

with a series of Proof-of-concept (PoC) demonstrations. The scope of the first phase was explicitly defined

as not specifying standards and the documents are formally classed as ‘informative’. It is not intended that

any implementation can be shown to be conformant to these documents.

This is addressed in the scope of the second phase where the primary objective is to achieve interoperability

within the architecture. This means that the documentation of the second phase needs to be sufficient to decide

the level of conformance needed for interoperability. However, the second phase is not limited to achieving

interoperability within the architecture set out in the first phase. The scope will also include architectural

aspects which were either not addressed in the first phase or unresolved in the first phase.

Indeed, the work of the first phase has revealed a number of significant gaps where the is currently no suitable

technology available, standard or otherwise. It has become clear that the NFV standardisation project is a

hybrid of the two development paths shown in Figure 1.1.

Where there is suitable technology and associated standards the project can proceed down the first path (the

intention is that even within the second phase, the ETSI NFV ISG will only reference standards from other

standards bodies and will not develop its own new specifications). The plan envisages that the ETSI NFV

Page 12 of (74) c© TRILOGY2 Consortium 2015

ISG will further develop the archictecture such that components are specified to an interoperable level, and a

new open source organisation, OpenNFV, will develop, integrate, and test these.

However, there are many aspects of NFV where this would be highly premature. These can follow the second

path of establishing architectural principles, gap analysis, and development of solutions to the gaps.

Of particular note here is that one of the primary gaps is a suitable specification language to cover virtuali-

sation which can allow a traditional ‘box-and-line’ architectural specification to be defined. Without this, a

hybrid is approach is not practical this ‘gap’ is a fundamental requirement to progressing on the top path of

Figure 1.1.

However, the methodology already set out in the interim architecture deliverable of Trilogy 2 is a solution to

this critical gap and has already been taken up by the ETSI NFV ISG in the first phase. This methodology

of unifying virtualisation and abstraction with functional block methodology is a key part of the architectural

specification which will progress into the second phase.

The development of the methodology may be still at an early stage (see the gaps identified below) and their use

within the ETSI NFV ISG may be even more rudimentary, but from this has come the key undertanding that

the relationship between a VNF and its host NFV Infrastructure (NFVI) is that of an execution environment

and it is emphatically not a functional interface of a functional block architecture.

This understanding, at least for the present, is allowing the second phase to include progress along the top

path. However, the development of the methodology and it linkage to a converged ontology are a critical gap

for NFV1 and a major topic for continuing research.

1.3 Objectives

We have already noted that the overall objective can be simply stated—the creation of a framework for the

flexible and optimal assignment of general ICT applications to the phyiscal resources which support them.

However, we can also break down this single objective into a number of underlying objectives.

• Creating Liquidity

– Architecture: to create a framework that allows the decoupling of applications from the resources

used to implement along with mechanisms which create liquity of processing, storage, and net-

work.

– Standardisation: contribute to and seek agreement from appropriate standardisation bodies in-

cluding IETF and ETSI NFV ISG.

– Demonstrations of Concepts: to develop and be able to demonstrate solutions to particular areas in

the liquidity architecture where existing solutions either do not exist or have performance issues.

• Controlling Liquidity

1This was also very evident from the discussions on NFV and Software Defined Network (SDN) at the stakeholder workshop for
the future EU networks research programme (Sept 2014).

c© TRILOGY2 Consortium 2015 Page 13 of (74)

– Architecture:

– Standardisation

– Demonstrations of Concepts

This requires a specification language(s) which can allow the aplications to be defined independent of their

implementing resource but can be precisely executed on whichever resource is assigned to the application.

1.4 Document structure
The rest of this document is structured as follows:

• Chapter 2 describes the principles on which the Trilogy 2 architecture is founded,

• Chapter 3 describes the high level orchestration mechanisms that allow different domains in a network

built using the Trilogy 2 architecture to communicate and cooperate

• Chapter 4 defines the new UNIs defined in the Trilogy 2 architecture,

• Chapter 5 describes the latest updates of the ETSI-NFV architecture and additional components that

complement it and make the initial Trilogy 2 architecture the core of the final Trilogy 2 architecture,

and

• Chapter 6 provides the conclusion and an outlook of the evolution of the project based on the presented

architecture.

Page 14 of (74) c© TRILOGY2 Consortium 2015

2 Principles
In this chapter, we introduce the principles that have guided the work of the project and identify gaps that will

need to be covered in the final phase of the project and beyond. We split the principles between those that set

out the foundations of the project, ‘axiomatic principles’, and the more conventional ‘guiding principles’.

The set of axiomatic principles might be regarded as implicit. However, in the broad and challenging scope

of Trilogy 2 we find it useful to set them out. In each case, the principle addresses an aspect of a scope

or fundamental constraint which is not necessarily obvious. As an illustration, one of the axiomatic prin-

ciples is that Trilogy 2 involves all of transport, processing and storage in a symmetric and tightly bound

architecture. However, each of these have different architectural methodologies and information ontologies

with subtle incompatibilities. By stating the axiomatic principle, we acknowledge the need to resolve the

incompatibilities.

The set of guiding principles give architectural guidance to the project. Each guiding principle gives a clear

direction for the form of solution the project is developing. This enables the different developments within

the project to proceed with a basic understanding of the form of solutions being developed elsewhere.

In the sections below, we list the principles of our architectural work and document the reasoning behind

them. Each principle is highlighted in a grey box.

2.1 Axiomatic Architectural Principles

Portable Applications Create Liquidity

This principle follows the observation that liquidity of processing loads between processing resources is con-

siderably more complex than shifting the transport of a bit stream between different routes across a network.

The key objective of Trilogy 2 is the creation of liquidity between ICT applications and the resources needed

to realise the applications. While it is undoubtedly useful to have flexibility between a given application and a

specific resource, the general benefits will only arise when a wide variety of applications can be supported on

a wide variety of resources. This general benefit requires that applications be portable across many different

resources.

Portability is therefore a central principle of liquidity. This can also be seen by analogy to markets. A

commodity is normally said to be liquid if it can be readily sold at the prevailing market price without

needing to be concerned about who the buyer might be. The liquid commodity is portable between buyers.

Portability is also an implicit feature of the Trilogy 1 architecture even if the portability is so well developed

that it is hidden. We take for granted that data transport is portable between different routes across the

network. This portability is achieved because the data requiring transport is reduced to a sequence of binary

bits and the capacity of the resources is reduced to a capacity in binary bits per sec. The liquidity of transport

c© TRILOGY2 Consortium 2015 Page 15 of (74)

fundamentally depends on this reduction of data to bits and resource to bits per sec. However, portability of

general ICT applications is much more complex because it isn’t always so easy to define such clear parameters

to measure liquidity (see the Principle on Metrics).

The portability of processing is a key principle for Trilogy 2. There are already many practical solutions to

processing portability based on virtualisation with important examples being the Java run-time environment

and the virtual machines of cloud computing. While these examples are directly usable in Trilogy 2 , they all

tend to be tailored to particular types of applications - it is liquidity with a lot of viscosity. The principle for

Trilogy 2 is an environment where the portability of processing is as liquid as the portability of transport and

storage.

We Must Have Metrics for All Resource Types

Resource control is a fundamental requirement for resource liquidity. In turn this means resources must be

able to be measured in such a fashion as to allow for accurate control. Transport capacity is measured in bits

and bits per sec. These parameters are both profound and precise, arising from the mathematical foundations

of information theory from which the ‘bit’ is derived. Traffic control mechanisms such as those that were

fundamental to Trilogy 1 generally rely on measuring and controlling bit-rate. There may be secondary

requirements needing control such as latency1 but often these are related to bit-rate (latency is a combination

of the fundamental time to send a given amount of data over a given distance coupled with the time to process

it at any network elements and any time it spends in a queue).

On the face of it the number of bits should also be the necessary and sufficient parameter for storage. At a

basic level this is true—the quantity of information to be stored and the capacity of a given storage medium

are both measured in bits. However, latency is normally much more of a consideration as there is not the

same fundamental minimum set by the laws of physics as there is with transport, and the variation in latency

is affected by complex factors such as where the data actually resides on the physical medium. By storing

information sufficiently close to where it is needed, latency can be made arbitrarily small. This is seen

directly in the design of storage in data processing systems: registers, L1 cache, L2 cache, L3 cache, RAM

(now often in a NUMA architecture), SSD and spinning disks form a clear hierarchy showing the trade-off

between latency and storage capacity.

Processing however has no such fundamental parameter equivalent to the bit by which load and capacity can

be measured. Typically for measurements of processing we can observe that:

• parameters tend to be informal and inaccurate, for example, processor clock speed and clock cycles are

1Other parameters include ‘shared risk groups’ susceptible to common mode failure. Historically, error rate would be naturally
included as a parameter of the resource and this was indeed the focus of Shannon’s seminal work. However, the direct result of that
work is that errors can be and generally are removed from any meaningful consideration, for example, by management of optical
power budgets and forward error correction schemes on optical transmission systems. The capacity of the system is effectively given
as the error free capacity.

Page 16 of (74) c© TRILOGY2 Consortium 2015

often used. However this is only a very loose indicator of the capacity required by different applications.

• parameters tend to be application specific, for example, there are numerous performance benchmarks

but many different benchmark are needed in order to cover the diversity of applications.

• parameters depend on the processor architecture, for example, all of the above parameters will depend

on the instruction set architecture of the processor.

Clearly one of the key things we need to consider in Trilogy 2 is this difficulty in measuring processing

capacity.

Transport, Processing and Storage are all Strongly Inter-Dependent

When looking at any of the three fundamental resource types (transport, processing and storage), the focus is

generally on that function and the other two are ignored. In Trilogy 2 we take as a starting point that all three

are actually strongly linked.

As an example, storage requires a means of requesting writes to storage and requesting reads from the storage.

Managing these read and write requests requires processing. Moreover, the location of the entity making these

requests will be separated from the storage itself (by whatever distance) and therefore they require transport.

So we can see that while storage is the primary function, strictly it also contains elements of processing and

transport.

In fact, the same is true for the other elements of processing and transport. Processing is not really possible

without storage and transport and transport is not really possible without processing and storage. From this it

follows that it is sensible to consider each of the three elements as a combination of all three.

The Starting Default is a Real-Time Parallel Concurrent System

If Trilogy 2 applications are to be able to exploit parallel concurrent resources, then applications need to be

specified in a way that exposes as much concurrency as possible. In addition, we observe that for real-time

systems, speed of execution matters.

Instead of starting with sequential and regarding ‘real time’ as an extension of sequential, we regard temporal

as the fundamental mode and sequential as a special case of temporal where time can be used to define

sequence. This ensures the that starting point is universal (at least in the context of ICT systems) which is the

objective of Trilogy 2. If cases do arise which are essentially offline and for which real time is not relevant,

for example running simulation models, offline calculation of optimisation parameters, etc., then these can

easily be regarded as special cases of a temporal system. In essence, we regard sequential and/or non real

time systems as a subset of real systems.

c© TRILOGY2 Consortium 2015 Page 17 of (74)

Likewise we regard parallel as the fundamental construct and again sequential is a special redundant case of

parallel.

Finally, we consider all systems as continuously executing. This is in contrast to a ‘run to completion’

model. This principle reflects the fact that Trilogy 2 is about operational real time systems and there are

some possible ‘hang-overs’ from a computational model of processing based on solving maths problems.

A summary might be that while the origins of computing was ‘to do something in order to solve a maths

problem’, in Trilogy 2 we ‘solve a maths problem in order to do something’.

Two important points arise from this recognition:

• Maths problems are not temporal in that the the time taken to solve the problem has no bearing on the

truth of the answer, by contrast Trilogy 2 systems fundamentally exist in real time;

• One of the principle results of automata theory—that any parallel system has an equivalent sequential

system—is important only in a non-spatial, non-temporal context. But when spatial distribution and

time are included, systems may not be equivalent and the distributed system may well not be able to

perform an operation in the same time that a non-distributed system can.

Everything has Its Own Defined Lifecycle

This principle reflects a more subtle observation but one which is central to Trilogy 2. We observe that a

basic axiom of systems theory is that some things are static to the system and some things are dynamic. The

things that are static are assumed to have always existed, but this is clearly not the case and they must have

been created at some point in time. In the context of Trilogy 2, this becomes important as liquidity requires

processes which automate the creation of things which are normally regarded as static. In other words, we

observe that things that are static from the perspective of the operational system are also dynamic from the

view of the liquidity control processes. We observe that whether something is static or dynamic is a matter of

perspective.

The distinction between ‘static’ and ‘dynamic’ is especially important in the context of formal systems. In

this context, the distinction is, at least in principle, mathematically defined and is precise. ‘Dynamic’ is

expressed in the changing value of state variables while ‘static’ is expressed in the fixed and invariant transfer

function of the system.

While this appears simple and clean, it does not account for the configuration of a system and in Tril-

ogy 2 there is a considerable amount of configuration. Is the configuration static or dynamic? Or equivalently,

is configuration a configuration of state or a configuration of a transfer function?

The principle we apply to resolve this question is that configuration is both, but over different timeshares. In a

configuration time-frame, configuration is dynamic and is setting and changing state variables. However, once

the configuration is made (and in a timeframe for which the configuration is held constant), the configuration

Page 18 of (74) c© TRILOGY2 Consortium 2015

is static and hence the configuration state which is invariant in this timeframe is regarded as part of the transfer

function. This model is fully recursive and so configuration may be layered.

This principle that everything is dynamic in its own time is a central concept in the unifying functional

Trilogy 2 architecture.

The Starting Default is a Decompositional Model

This principle follows from the observation that there are dangers with following a systems architecture which

relies on building complex systems from atomic components.

The ability to compose larger systems by treating smaller elements as components is a basic principle of large

scale system design. While there are methodologies which encourage ‘top-down’ decomposition of systems,

this tends to be more form the perspective of requirements capture rather than formal system specification.

While it is a generalisation and far from universally true, the formal specification and design of systems is

often compositional and constructional rather than decompositional and deconstructional. This follows from

a ‘Lego brick’ approach where there is an assumption that there a number of basic building blocks - the Lego

bricks - from which any required systems can be constructed.

There is a side affect of this type of approach in that components are regarded as being atomic, that is they

are regarded as being fundamental and essential unchangeable and indivisible. This is a necessary part of

the compositional and constructional approach; it must start from the construction with some fundamental

components.

However, whatever these ‘Lego bricks’ are deemed to be, they are not fundamental or indivisible or unchange-

able. These components are inevitably the product of some design process and they are only fundamental

from the subjective perspective of the design process that was treating them as fundamental. For example, as

highlighted in the ‘everything is dynamic in its own timeframe’ principle, the notion of unchangeable should

always be regarded as relative and not absolute.

The Trilogy 2 principle is treat systems as decomposable and capable of deconstruction. The decompositive

model does not require an atomic start point and so inherently includes the relative rather than the absolute

nature of system components. This principle has its counterpart in mathematical specification which would

now be called ‘co-recursive’ rather than ‘recursive’. This also potentially follows through to methods of

formal conformance verification which use mathematical co-inductive proof techniques rather than inductive

proof.

c© TRILOGY2 Consortium 2015 Page 19 of (74)

2.2 Guiding Principles

Name Resolution as a Network Function

One of the legacies of the early design of the Internet is the use of addresses as both end-point identifiers

and location pointers. This ambiguity leads to real issues with multi-homed end-points (one name, many

addresses), multipath networks (one name, multiple viable paths) and workload/VM migration (one name,

changing addresses).

For the liquid network we need clear separation between these, with names used as the primary mechanism

to establish a communication flow between two endpoints, and the network (via NFV or middle-boxes)

responsible to mediating the establishment of specific flows.

The separation on the naming scheme from the specifics of address resolution also informs how applications

are architected. The exact capacity of a specific resource may not be known at the time an application is

developed and the capacity may change over time. Therefore there is a basic requirement that applications

are designed in such a way that they are free to utilise any available application and resource units. This

means that applications should be designed in such a way that any one logical (name) component can be

implemented across many parallel units of resource (addresses). This can also make the logical component

tolerant to failures in the resource units.

This approach to the design of applications becomes a basic principle of their design and hence of all appli-

cations supported by Trilogy 2 liquidity.

Bidirectional Application Interfaces

The network needs bidirectional Application Programming Interface (API) coupled with improved informa-

tion visibility. This allows the network to apply back-pressure to applications using more subtle mechanisms

than the packet drop mechanism adopted by TCP.

Trilogy 1 came up with principle of Information Exposure [1]. That principle was about end points exposing

congestion information to the network. We now build on that principle to suggest that in the liquid network

this can be coupled with explicit API mechanisms to allow the network to apply direct back-pressure to

applications. A similar trend has been observed with Backward Congestion Notification for Ethernet.

A key implication of this is that the network can now build in a notion of explicit scheduling, since it has a

means to communicate with applications that have already established a flow. It is essential for the network

to support such scheduling across all the layers that Trilogy 2 is concerned with, including compute resources

(virtual machines), network bandwidth and storage.

However, it is important to note that the scope of Trilogy 2 is sufficiently big and there are sufficient existing,

Page 20 of (74) c© TRILOGY2 Consortium 2015

non-liquid solutions to the same problems, that creating a solution which requires completely new application

development to exploit Trilogy 2 is unlikely to commercially viable. This general principle is that the way

Trilogy 2 supports applications should be evolutionary. Wherever possible existing applications should be

able to exploit Trilogy 2 with minimal redevelopment and, more generally, it should be possible to introduce

Trilogy 2 in incremental steps where every step is independently commercial viable but where the incremental

benefits are cumulative2.

As a result of out work on the NFV architecture proposed by the ETSI NFV ISG, we have also observed that

there may be a commercial boundary between NFV Infrastructure and Virtual Network Function hosted on

the Infrastructure, which needs to be taken care of. This observation has led to the following principles for

Trilogy 2 .

NFV Usage and Capacity Parameters Will Be Included in Commercial Boundaries

One of the defining characteristics of NFV is the separation of the software which defines the network func-

tions from the hardware which implements the network functions. This separation allows for the creation of

liquidity and its control inherent in NFV.

While in the context of a single operator there considerable benefit of decoupling the supply and operations

of the hardware and the software, there is much greater scope for benefit if the hardware and the software can

be owned and operated by different operators. In this case the NFVI can be offered as a service - NFVIaaS -

and this is a model being actively developed by the ETSI NFV ISG.

As and when the NFVI is offered as a service, this means that on the supply side the resources of the the

NFVI and their capacity will need to be parameterised as part of the service. On the demand side, the usage

requirements of the VNFs will also need to be parameterised in a way that matches the resource capacity

parameterisation. Moreover, these parameterisations need to be sufficiently open, accurate, and robust to

work in the context of the open commercial interface.

NFV Usage and Capacity Parameters Must Be Consistent Across Heterogeneous Resources

In its fundamental conception, the NFVI is based on generic hardware, specifically, generic servers, generic

storage, and generic switches (for example SDN controlled switches). However, in practice ’generic’ is

more of a commercial definition than a technical specification and there are important technical differences

between resources which are ’generic’ from a commercial point of view. There are also some apparently

minor technical details which can have significant consequences for the capacity of the resources in the

context of NFV (an example is the CPU cache architecture which can significantly impact the achievable

2An example of a major development where this principle was not applied and the introduction has been extremely problematic
is IPv6.

c© TRILOGY2 Consortium 2015 Page 21 of (74)

packet throughput of a CPU core).

ETSI NFV ISG early on decided that to tie down and specify these details would be counter to its primary

objective as the hardware would no longer be ’generic’ but specifically tailored to the needs of NFV. Instead,

there has been a clear decision that these details of the NFVI resources must be capable of be abstracted away

and hidden from the software VNFs using the NFVI resources. It therefore follows that parameterisation

of the resource capacity and the VNF usage is also capable of abstraction and independent of the details of

the heterogeneous resources. In effect, there is consequential requirement from this principle that different

detailed versions of the same generic type of resource, for example a server, can have a different values of

capacity, but the capacity parameterisation must be the same.

NFV Orchestration Should Have a Version of the End to End Principle

In the end to end principle, certainly as articulated by the IETF, the ends do not presume to know about the

internal state of the middle or to control the state of the middle. The middle is treated as an independent,

unreliable black box. The result is a huge reduction in complexity as their is no coupling of the state of

the ends with the state in the middle. This principle is also critical to the independent evolution of the ends

and the middle such that when the end to end principle is maintained, new solutions can be developed in

the middle without affecting existing solutions at he ends at vice versa. In addition, the end to end principle

means that it is inherent and simple to have many different ends independently using the middle concurrently.

In the Internet, the end to end principle is applied in the resource allocation of the network capacity. The

network in the middle is regarded as a independent unreliable black box. The end systems control the rate at

which they load use age onto the network resources based solely on the externally observable reliability (or

unreliability) of the black box network.

With NFV, the NFVI provides the resources and is the middle in the end to end principle. The NFV Orches-

trator (NFVO) is the end system which places usages upon the resources. Following an end to end principle,

the NFVO should not have knowledge of the resource state of the NFVI and vice versa: the NFVI should be

an unreliable black box. A requirement on the NFVO which follows from this principle is that the NFVO

needs to ’discover and request’ resources, it must not ’know and assign’ resources. The adoption of this

principle makes possible the extension of TCP and MPTCP liquidity control algorithms to NFV. A further

most important consequence for NFV of this principle is that an NFVI can be concurrently manage usage

requests from multiple NFVOs. In should be noted that many early approaches to NFVO have not followed

this principle.

However, under a heading of ’horizontal equality’ of orchestration, this principle have been contributed to

and accepted by ETSI NFV ISG [21].

Page 22 of (74) c© TRILOGY2 Consortium 2015

NFV Orchestration Should Be Co-recursively Decomposable

The final guiding principle relating to NFV concerns the decomposition of orchestration. ETSI NFV ISG has

already agreed that orchestration should comprise four independent layers of orchestration.

• orchestration of VNFs into network services (by the NFVO service layer)

• orchestration of VNF Components (VNFCs) into VNFs (by the VNF manager)

• orchestration of distributed, heterogeneous NFVI resources needed for VNFC instantiation and their

interconnection (by the VNF Orchestration (VNFO) resource layer)

• orchestration of local NFVI resources (by the Virtual Infrastructure Manager (VIM))

This principle reinforces this layering and that the layering should create independence and autonomy of

operations at each layer. However, this principle also asserts that the general lifecycle management and

operations at each layers should be broadly the same. They should be corecursively similar. Note this is

strictly co-recursion rather than recursion as it is decompositional rather than compostional. When a higher

layer decomposes an overall operation and one component at that higher layer requires an operation of the

layer beneath it, the overall operational at this lower layer has that same abstract form as the overall operation

at the higher layer. As this is decomposition, there is no predefined bottom layer, and the decomposition

process halts as a matter of practical convenience.

This principle has been presented to and accepted by ETSI NFV ISG as ’vertical equality’ of orchestra-

tion [21].

c© TRILOGY2 Consortium 2015 Page 23 of (74)

3 High level orchestration of domains

3.1 Introduction
Orchestration is used to control and manage the workflows of complex computing systems and the associated

services. In literature such as Erl [8] it is defined as a part of service orientated architectures (as WS-BPEL)

and is used in conjunction with choreography (through WS-CDL).

With orchestration, different processes can be connected without having to redevelop the solutions

that originally automated the processes individually. Orchestration bridges this gap by introducing

new workflow logic. Further, the use of orchestration can significantly reduce the complexity of so-

lution environments. Workflow logic is abstracted and more easily maintained than when embedded

within individual solution components. – [8, Ch. 2]

3.2 What is Orchestration
Orchestration is about coordination of a complex set of resources so that they can provide a given service

or services without the need to introduce complex new logic. In order to effectively orchestrate a system

the orchestration system has to have full observability of the domain it is managing and have sufficient

information and control of the system in order to fulfil the specified changes.

• Events are points at which significant changes to the workflow occur. Events usually have a location

and a time at which they occur as well as a duration.

• Time is an important axis on which events may occur in a workflow. Although it may be sufficient to

have an ordering of events that list the detail of how operations are executed relative to each other, in

other cases it may be used to synchronise with external events.

• User-actions are changes made to the system by users that affect the work-flow

• Deterministic behaviour of events means that the model is sufficiently detailed that given the same set

of inputs the output would always be as expected.

• Non-deterministic behaviour cannot be repeated and occurs due to events out of control of the system.

• Functional approaches are needed for orchestration as they describe the intention and purpose of the

process that will be performed. How this is achieved is implementation specific and may vary in

different contexts.

• Service composition describes how the services are related to each other and how they interact.

• Provenance defines the history and ownership of the entity. How an entity came to be in its current

state is due to its provenance.

Page 24 of (74) c© TRILOGY2 Consortium 2015

• Roles and accountability are important aspects of orchestration as it may be necessary to delegate

certain tasks to other services when performing orchestration. In order to log and trace the history of

events the changes made by differet users and parts of the system should be captured.

• Service Orientated Architectures normally deal with the orchestration and in particular communication

and protocols when multiple services are linked together.

Probably the best way to show the concept of orchestratin is with the use of a trivial example.

An e-commerce service exists on provider site IA. If the resources provided by Infrastructure provider IB

are cheaper or there are other business requirements that entail migrating resources then to migrate the e-

commerce service requires the migration of the underlying components and reconfiguration on the remote

provider. The e-commerce service comprises a web-server and a database. If the web-server and database

are contained in a single VM then the service is fully comprised in one container that can be shifted as a

logical unit. In the case of large enterprise applications and more complex examples, these will likely be

separated as individual services that are then connected via APIs and established protocols. To migrate the

e-commerce service, firstly the web-service has to be shut down (there may be cases where the web-service

cannot be unavailable that would extend this scenario using load-balancers). Once the web-service has been

shut down, the database would need to be synchronised to ensure that all the data is in a synchronised state.

The Virtual Machines containing the web-service and the database service would then be migrated (the order

is not important in this example). Once on the remote provider, IB, the database service would need to be

started before the web-service. There will be changes to the configuration, given that the public IP addresses

and certain other properties of the system will be different after the migration. After the services have been

reconfigured there may need to be further actions such as the set up of associated logging tools, acquiring a

new DNS entry and interacting with a remote service provider to notify of the change of global IP address.

Orchestration should take the steps to ensure that the configuration of the services is well established and also

provide a set of steps to follow in the case of any failure.

Already in this example there are the notions of a context environment (where the service resides when exe-

cuting), ordering of services, dependency graphs and state configurations. More complicated examples will

extend this to take into consideration more specific timing constraints, failure handling, context-environment

mismatch resolution and other properties to make the orchestration more robust.

The idea of provisioning, deploying and configuring resources to make them interoperate on different cloud

infrastructures is not new and has been investigated by many groups as highlighted later in Table 3.1. In

2012, Dr. Angel Diaz summarised these ideas that were being worked on in TOSCA into a set of conceptual

diagrams in a blog post1. One conceptual diagram that highlights these phases, the actors involved and

services running over physical resources in Orchestration can be seen in Figure 3.8.

1http://thoughtsoncloud.com/2012/01/tosca-and-cloud-services-orchestration-compose-
once-play-on-any-cloud/

c© TRILOGY2 Consortium 2015 Page 25 of (74)

http://thoughtsoncloud.com/2012/01/tosca-and-cloud-services-orchestration-compose-once-play-on-any-cloud/
http://thoughtsoncloud.com/2012/01/tosca-and-cloud-services-orchestration-compose-once-play-on-any-cloud/

Phy2Phy1

VM2VM1

N/W

Various Cloud Providers

Figure 3.1: Services exist that are to be migrated and set up using an orchestration engine

Phy2Phy1

VM2VM1

N/W

Various Cloud Providers

Description of resources

Planning

Figure 3.2: Use the Information model to describe the resources and the requirements

Madrid Cloud

Selection of resources
And configuration
based on request

Provisioning

Figure 3.3: Orchestration system selects the resources based on the requirements and capabilities

Page 26 of (74) c© TRILOGY2 Consortium 2015

Madrid Cloud

Configure Physical
resources to be able to
run the VMs / services

Provisioning/Configuration

VLAN 8 / Ports 32, 38

Figure 3.4: The Orchestration system configures the network and physical infrastructure first

Madrid
Cloud

Pause Web service
Sync DB
Migrate DB

Migration

Cambridge
Cloud

Figure 3.5: The relevant services are migrated. The Orchestration engine handles the ordering and timing

Madrid
Cloud

Migrate Web service

Migration

Cambridge
Cloud

Figure 3.6: Once all the services have reached a set point, the Orchestration system can then continue with
the plan

Madrid
Cloud

Configure DB VM
Configure Web VM
Configure end-points
Start DB service
Start Web service

Configuration

Cambridge
Cloud

Figure 3.7: The Orchestration system then handles the reconfiguration of external sites to use the modified
resources and handles the cleanup of the original system

c© TRILOGY2 Consortium 2015 Page 27 of (74)

Figure 3.8: Conceptual diagram showing the phases, actors and services involved in Orchestration

3.3 How orchestration is used in Trilogy 2

In the context of Trilogy 2 we use orchestration as described by the combination of SOA orchestration and

choreography terms, also known as Cloud Orchestration. We use orchestration to describe how resources

should be provisioned to meet the requirements of the various use-cases described in WP3.

The way in which resources are provisioned is an important part of the workflow for making resources

available and has to be addressed to enable resource liquidity across platforms. As such it is an important part

of the architecture that has to be well defined.

Current best of breed orchestration systems are starting to use monitoring tools but for Trilogy 2 we will

take this as being a more general testing and monitoring system that will need to interact throughout the

orchestration process for the entire life-cycle of the services.

A generic orchestration system will use the available APIs to control different Cloud platforms but will also

need to analyse the features of the API to reason and understand whether certain processes are available given

the API implementations available. For instance if orchestration of an OpenStack implementation did not

report when the web-service had been shut down, then it requires non-deterministic behaviour to arbitrarily

decide when and whether to power down the database service.

3.4 Orchestration Scope

In order to effectively orchestrate the elements in the platform it is important that the entire state transition of

the workflow is known and that the system behaves in a deterministic manner. What makes the process more

complicated is that the hardware and configuration that the workloads are run on may not be known prior to

the migration of resources and this is definitely the case when multiple operators are used (see Section 3.4.2).

Page 28 of (74) c© TRILOGY2 Consortium 2015

3.4.1 Orchestration in the local domain

Orchestration in the local domain refers to orchestration within the control of a single enterprise. There

may be multiple independent sub-entities within the enterprise that restrict or enforce certain policies on the

use of resources but with sufficient effort, changes can be incorporated into an enterprise. There may be

many layers of business processes and operational workflows that are automated or in some cases require

manual intervention or decisions. Orchestration should reconfigure and modify the resources in such a way

to maintain the attributes specified in any contractual obligations and/or SLAs. This might for example mean

that an online service must ensure thar a user can perform any of a set of defined operations, such as read

web-pages, perform purchases or modify databases within certain acceptable latency time-frames for at least

99.99% of the time. An overall orchestration framework may have to balance the business requirements from

many areas and make trade-offs between incompatible service operations and then this becomes a form of

optimisation problem with variables that may take ranges of values. To continue the web-service example, it

may be that maintaining 99.99% availability is important but that the cost to meet this is too expensive, or the

resources are out of control of the operator in which case the constraints may have to be relaxed.

A model of the local resources and process capabilities has to be generated to answer the queries that the

orchestration reasoning system will use to determine whether operations are possible and in what way they

should be performed. The orchestration reasoner will then have to determine the mapping of resources and

how to perform the operations. Some queries can be run as background tasks for workloads that do not

need fast responses but for a set of user operations the responsiveness of the system will also provide a

constraint for determining whether a solution can be found in an acceptable time. The more queries that are

generated and the greater the complexity of the problems, the more compute, storage and memory resources

the orchestration system will be needed and this can be viewed as an overhead that moves resources away

from other potential uses.

3.4.2 Orchestration between multiple domains

Orchestration that works across domains requires a knowledge of what can be performed on the other system.

In SOA models it is known as choreography as it is the cross boundary form of managing services. It has

the same constraints as the separate logical units in a local domain but additionaly has certain contractual

obligations that need to be met and cross domain business constraints. Users that may be authorised in

the local domain have to gain trust and access to key functionality in the other domain. Typically locally

authorised representatives will communicate with someone of the right area in the other domain and then

once communication is established ask for remote procedures to be run on their behalf. A Federated system

allows for each system to be owned and managed by different entities but have some higher level goals and

objectives that are mutually beneficial that can be met through the same or different processes run by the

independent enterprises.

c© TRILOGY2 Consortium 2015 Page 29 of (74)

3.5 Efforts from other groups
There are many efforts from different organisations and research groups that have investigated orchestration

from many different perspectives. Service Orientated Architecture (SOA) type of approaches define the way

in which business services should interact with each other.

For SOA there are a set of protocols and approaches that describe services and how they shoud interact.

Normally these approaches look at detailing a single protocol or communication channel and do not describe

how services should interact at a higher level. Some examples of these types of approaches include: Web

services orchestration [5], SOAP, WSDL, UDDI and WS-Security. There are also a number of efforts that

have been discontinued that include: WSFL, BPML, WSCL and WSCI, BPEL4WS and WS-CDL.

3.5.1 Network management and orchestration

Trilogy 2 attempts to work with resources at multiple different levels and across different domains. As such

there is a requirement to have an orchestration system that is flexible and extensible to work with the different

resource types and services available. To indicate the variety and breadth of the different efforts within IaaS

and PaaS platforms an attempt has been made to collate a non-exhaustive set into Table 3.1.

Page 30 of (74) c© TRILOGY2 Consortium 2015

Table 3.1: Orchestration efforts by different groups

Entity/group Orchestration

System

Site / more information

IEEE2 P2302 - Intercloud http://standards.ieee.org/develop/project/2302.html

ETSI NFV-MANO http://network-functions-virtualization.com/mano.html

Amazon AWS CloudForma-

tion

http://aws.amazon.com/cloudformation/details/

Google Kubernetes https://cloud.google.com/compute/docs/containers

OASIS TOSCA https : / / www.oasis - open.org / committees / tc _ home.php ? wg _

abbrev=tosca

ISO JTC 1/SC 38 WG3 http://www.iso.org/iso/jtc1_sc38_home

OpenStack HEAT https://wiki.openstack.org/wiki/Heat

Amazon AWS CloudForma-

tion

http://aws.amazon.com/cloudformation/

Rackspace Cloud Orchestration http : / / docs.rackspace.com / orchestration / api / v1 /

orchestration-devguide/content/overview.html

HP Operations Orches-

tration (HP OO)

http://www8.hp.com/uk/en/software- solutions/operations-

orchestration-it-process-automation/

ServiceNow ServiceNow Orches-

tration

http://www.servicenow.com/products/orchestration.html

Continued on next page

2http://grouper.ieee.org/groups/2302/

c©
T

R
IL

O
G

Y
2

C
onsortium

2015
Page

31
of(74)

http://standards.ieee.org/develop/project/2302.html
http://network-functions-virtualization.com/mano.html
http://aws.amazon.com/cloudformation/details/
https://cloud.google.com/compute/docs/containers
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://www.iso.org/iso/jtc1_sc38_home
https://wiki.openstack.org/wiki/Heat
http://aws.amazon.com/cloudformation/
http://docs.rackspace.com/orchestration/api/v1/orchestration-devguide/content/overview.html
http://docs.rackspace.com/orchestration/api/v1/orchestration-devguide/content/overview.html
http://www8.hp.com/uk/en/software-solutions/operations-orchestration-it-process-automation/
http://www8.hp.com/uk/en/software-solutions/operations-orchestration-it-process-automation/
http://www.servicenow.com/products/orchestration.html
http://grouper.ieee.org/groups/2302/

Table 3.1 – Continued from previous page

Entity/group Orchestration

System

Site / more information

Ubuntu Juju http://www.ubuntu.com/cloud/tools/juju

Cloudify Cloudify 3.0 http : / / getcloudify.org / cloud _ orchestration _ cloud _

automation.html

VMWare vRealize Orchestra-

tor

http://www.vmware.com/products/vrealize-orchestrator

SAP SAP Process Orches-

tration

http : / / scn.sap.com / community / developer - center / process -

orchestration

Docker Machine / Swarm /

Compose (Fig)

http : / / blog.docker.com / 2014 / 12 / docker - announces -

orchestration-for-multi-container-distributed-apps/

Citrix (/CloudStack) CloudPlatform http://www.citrix.com/products/cloudplatform/overview.html

Ansible Playbooks + Inven-

tory

http://docs.ansible.com/playbooks.html

SaltStack Salt https://www.saltstack.com/community/

GoGrid OpenOrchestration www.openorchestration.org

Cisco Director / Intelli-

gent Automation

for Cloud / Process

Orchestrator

http : / / www.cisco.com / c / en / us / products / cloud - systems -

management/intelligent-automation-cloud/index.html

Dell CloudManager http://software.dell.com/products/cloud-manager/

Continued on next page

Page
32

of(74)
c©

T
R

IL
O

G
Y

2
C

onsortium
2015

http://www.ubuntu.com/cloud/tools/juju
http://getcloudify.org/cloud_orchestration_cloud_automation.html
http://getcloudify.org/cloud_orchestration_cloud_automation.html
http://www.vmware.com/products/vrealize-orchestrator
http://scn.sap.com/community/developer-center/process-orchestration
http://scn.sap.com/community/developer-center/process-orchestration
http://blog.docker.com/2014/12/docker-announces-orchestration-for-multi-container-distributed-apps/
http://blog.docker.com/2014/12/docker-announces-orchestration-for-multi-container-distributed-apps/
http://www.citrix.com/products/cloudplatform/overview.html
http://docs.ansible.com/playbooks.html
https://www.saltstack.com/community/
www.openorchestration.org
http://www.cisco.com/c/en/us/products/cloud-systems-management/intelligent-automation-cloud/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/intelligent-automation-cloud/index.html
http://software.dell.com/products/cloud-manager/

Table 3.1 – Continued from previous page

Entity/group Orchestration

System

Site / more information

Puppet Marionette Collective http://puppetlabs.com/mcollective

OpsCode Chef Cluster Orches-

tration

https : / / wiki.opscode.com / display / chef / Cluster +

Orchestration

CFEngine CFEngine https://auth.cfengine.com/archive/manuals/st-orchestrate#

How-does-CFEngine-deal-with-modularity-and-orchestration_

003f

IBM Cloud Orchestrator http : / / www - 03.ibm.com / software / products / en / ibm - cloud -

orchestrator

Abiquo anyCloud Cloud Or-

chestration

http://www.abiquo.com/anycloud/

c©
T

R
IL

O
G

Y
2

C
onsortium

2015
Page

33
of(74)

http://puppetlabs.com/mcollective
https://wiki.opscode.com/display/chef/Cluster+Orchestration
https://wiki.opscode.com/display/chef/Cluster+Orchestration
https://auth.cfengine.com/archive/manuals/st-orchestrate#How-does-CFEngine-deal-with-modularity-and-orchestration_003f
https://auth.cfengine.com/archive/manuals/st-orchestrate#How-does-CFEngine-deal-with-modularity-and-orchestration_003f
https://auth.cfengine.com/archive/manuals/st-orchestrate#How-does-CFEngine-deal-with-modularity-and-orchestration_003f
http://www-03.ibm.com/software/products/en/ibm-cloud-orchestrator
http://www-03.ibm.com/software/products/en/ibm-cloud-orchestrator
http://www.abiquo.com/anycloud/

3.5.2 IEEE Intercloud Project

One standardisation effort that is of particular interest for the Trilogy 2 architecture is that of the InterCloud

Project. There have been a set of efforts that have consolidated a number of outputs from different EC

Projects and have matured into a set of IEEE Working Groups and an associated umbrella project, the IEEE

Intercloud Project. It originates from several collaborative efforts that have seen the need for a converged

system and have predicted the growth in inter-cloud communications. Of particular notes are the standards

group, IEEE P2302 Standards Work and the draft standard IEEE P2302/D0.2, Draft Standard for Intercloud

Interoperability and Federation (SIIF). InterCloud has the backing of a mixture of industry, service providers

and operators including Orange, 6fusion, Cloudscaling, Telxx Group, Juniper Networks and DOCOMO In-

novations and also had 21 founding members of the interoperability testbed3. The IEEE Intercloud Testbed

Project benefits from resource description as worked on within the mOSAIC4 EC-FP7 Project. The working

groups from InterCloud have also been cited as being possible standards for Cloud Standardisation[17]. One

industry analyst, John Messina, a senior member with the National Institute of Standards and Technology’s

cloud computing program, speaking at a conference in May 20135, predicted that five years from now a suite

of international interoperability standards will lead to a cloud of clouds, or “intercloud,” where there will be

tight integration between multiple clouds. Efforts like that of Intercloud are becoming more dominant and it

will take large industrial collaboration, standardisation or a movement away from the de-facto Amazon cloud

services to cause shifts in alignments to a set of universally adopted approaches. What is not clear is if like

in the case of other standards battles such as HD-DVD and Blu-ray whether the groups involved will seek to

find a common solution or if there will be a continuation of multiple, incompatible standards.

The InterCloud project suggests using a set of communication protocols that already exist for communicating

between various elements in the architecture. As can be seen in Figure 3.9 they have suggestions for the

communications protocols. These include:

• XMPP for control plane and sending messages between clouds. In particular they suggest that XMPP

is useful for lightweight services that require asynchronous behaviour. In particular they use a set of

XMPP extensions - XEP-0244 IO Data6.

• For the services framework they suggest using Simple Object Access Protocol (SOAP) and REpresen-

tational State Transfer (REST)

• Security services will be encapsulated using TLS then SASL

• Service invocation using xws4j - XEP, XMPP Web Services for Java

• SAML for identity and authentication
3http : / / www.businesscloudnews.com / 2013 / 10 / 11 / ieee - forms - cloud - interoperability -

testbed/
4http://www.mosaic-cloud.eu/
5http://gcn.com/articles/2013/05/31/cloud-of-clouds-5-years-in-future.aspx
6http://xmpp.org/extensions/xep-0244.html

Page 34 of (74) c© TRILOGY2 Consortium 2015

http://www.businesscloudnews.com/2013/10/11/ieee-forms-cloud-interoperability-testbed/
http://www.businesscloudnews.com/2013/10/11/ieee-forms-cloud-interoperability-testbed/
http://www.mosaic-cloud.eu/
http://gcn.com/articles/2013/05/31/cloud-of-clouds-5-years-in-future.aspx
http://xmpp.org/extensions/xep-0244.html

Figure 3.9: InterCloud suggested protocols for communication beteween the different elements.

There are also other promising services including WS- (Web Service) -Federation and Liberty ID-FF that is

now part of Kantara Initiative [14]. XMPP using a federated model has also been investigated.

The elements that have been identified as being important for Trilogy 2 architecture are the inter-

communications language, the Information Model and also the orchestration of multiple services. In Tril-

ogy 2 the Orchestration elements therefore focus on the InterCloud ‘Exchange Service Discovery and Com-

munication’ architectural blocks.

c© TRILOGY2 Consortium 2015 Page 35 of (74)

4 Bringing control back to the endpoints
A key aim of the Trilogy 2 project is to ensure that existing in-network functionality, currently set in hardware

and difficult to upgrade or scale, can be run as software on commodity platforms with a view to accomodating

the stringent scaling requirements of in-network processing. The strong push towards NFV will thus make it

possible to run more scalable middleboxes, able to start up when they are needed, empowering operators to

quickly adapt and optimize their networks in response to changing customer traffic requirements.

This will lead to a proliferation of middlebox deployments that is very appealing to network operators and

downright scary to some of the purists of the Internet, which view the end-to-end principle as set in stone.

A read over the recent mailing list discussions in the TCP Maintenance and Minor Modifications Working

Group at the IETF regarding the extension of the TCP option space will quickly show the diverging attitudes

towards middleboxes ranging from resignation to dismay.

Clearly, there is a tussle [7] between the endpoints requirements for unlimited, un-mediated connectivity and

the need of network operators to manage their network properly. The job of the Trilogy 2 architecture is not

to decide the potential winners of this tussle, but to provide the right mechanism such that the different parties

can collaborate efficiently.

To this end, in this section we analyze the Internet from the point of view of the end-clients: mobile phones,

desktops and servers. To what extent is the Internet liquid from this viewpoint: is it possible to utilize

resources where they exist? Middleboxes such as NATs restrict inbound connectivity, firewalls limit allowed

traffic to a few ports, and app-specific optimizations by operators might not be wanted by the applications in

the first place. In fact, end systems have little control over the service they get from the network and tend to

be conservative when choosing transport protocols: an app that prefers UDP will typically just use TCP for

fear of getting blocked by the network, losing out in efficiency. This results in a rigid Internet where resources

are underutilized, and end-system liquidity is rather limited. By optimizing their network to suit what they

think apps want, network operators are effectively pushing many novel apps to utilize inneficient transports,

which require even more optimization, leading to a vicious circle.

We begin our discussion by looking in detail at the root problem affecting endpoints, the contract offered by

the network, and then outline a few approaches pursued in Trilogy 2 in which endpoints can wrestle back

some control over the service they’re receiving:

• Ninja tunneling offers an efficient way to choose the best protocol for getting through the network,

nullifying the effect of app-optimizers.

• We discuss a constructive approach in which this tussle between endpoints and the network can be

solved.

• Opportunistic Encryption forces middleboxes to act as an active man-in-the-middle if they want to

snoop on and modify the TCP payload.

Page 36 of (74) c© TRILOGY2 Consortium 2015

4.1 A Broken Contract

The original Internet architecture offered a clean contract to endpoints: packets sent will be delivered unmod-

ified 1 or dropped when there is congestion. The proliferation of middleboxes has broken this simple contract

to the point where the service the Internet provides to endpoints is entirely unpredictable:

• Reachability depends on fields in the packet header and even the payload, as firewalls strive to contain

increasing levels of malicious traffic targeted at vulnerable endpoint software.

• Packets can be modified en-route by boxes that understand the higher level protocol (either TCP or

app-level) and optimize it. For instance, NATs support FTP by rewriting the IP address of the sender

inside the TCP payload to match the address of the NAT. As the NAT’s IP address will likely have

a different length, this forces NATs to also modify sequence and acknowledgment numbers. Other

performance enhancing middleboxes are discussed in [6].

Firewalls not only drop all unknown protocols or extensions (e.g. SCTP [22], ECN [20]), but they also

constrain reachability for traditional protocols: there is no guarantee that UDP or TCP outside ports 80/443

will get through many networks including office, cellular or hotspots [13].

This pushes most apps to rely on tunneling to reliably get through networks. HTTP is a favourite amongst

mobile apps, and it has even been touted as the new hourglass of the Internet [19]. However, tunneling adds

framing overhead and the effect is quite pronounced when the tunneled traffic is UDP-like (e.g. VoIP): in

such cases (useless) retransmissions and head-of-line blocking increase jitter and degrade app-performance.

A minority of apps use adaptive tunneling to ensure reachability and the smallest possible overhead: for

instance, Skype tries UDP, then TCP and finally HTTP or HTTPS. This approach is also suboptimal: certain

middleboxes rate limit UDP tunnels to a level where Skype can check reachability but can’t make calls 2.

Content-modifying middleboxes are more problematic: they optimize for known apps (e.g. FTP/HTTP) but

can break apps that utilize the same port numbers as the known apps. For instance, HTTP parsers can reply

with cached content instead of forwarding the request to the server which can break end-to-end semantics of

apps tunneling over HTTP. Because of this, apps are forced to tunnel over HTTPS, thus hiding their traffic

from the operator. This outcome is suboptimal for all parties: mobiles spend more energy to encrypt and

decrypt traffic (15% in our tests on a Galaxy Nexus) and the operator can’t see the traffic anymore and can’t

protect its customers and network against attacks.

Content modifying middleboxes also increase complexity in new protocols. Multipath TCP [9], a TCP exten-

sion that allows using multiple paths in a single TCP connection, includes a redundant checksum in the DSS

option to ensure it can function correctly with content-changing middleboxes: when a change in payload is

detected MPTCP either closes the affected subflow or reverts to plain TCP if the affected subflow is the only

available one.
1With the exception of the TTL and checksum fields.
2Discussion with Romanian cellular operators.

c© TRILOGY2 Consortium 2015 Page 37 of (74)

To summarize, creating new apps is a difficult proposal because one has no idea what the network will do

to one’s packets. Consider an online gaming app: it can be conservative and use HTTPS to avoid packet

modifications by the network and ensure reachability but this results in a highly inneficient use of network

resources and poor user experience. The gaming app can be bold and use UDP targetting efficiency but this

can lead to a lack of connectivity.

4.1.1 Steps towards a solution

What are the tools available to endpoints that can be used to gain control over the service they receive from

the network? Encryption stands out, but even simple checksums will detect changes as long as in network

boxes do not modify them (e.g. the MPTCP approach). Using HTTPS for encryption works but negotiation

of a new protocol over HTTPS takes many RTTs and one still needs to add functionality over HTTPS to

implement a demultiplexing layer that diverts traffic to the different apps—the equivalent of port numbers in

transport protocols such as UDP or TCP.

It would be better if encryption was available at the transport layer so that all apps can use it naturally, without

any changes: in Trilogy 2 we are pursuing the standardization of mechanisms for encryption of TCP streams,

through the creation of the TCPINC IETF Working Group. The architectural design of such a solution is

described in the next section.

Ubiquitous traffic encryption prevents packet modifications by making it very expensive for operators to

modify or snoop on traffic: operators must perform an active man in the middle attack on every connection.

Encryption does not guarantee efficiency, though: operators can still degrade performance by detecting and

shaping encrypted traffic. This might be the case in the early stages of deployment, and it may push endpoints

away from opportunistic encryption.

To liquidize the usage of the network, we propose: a) ninja tunneling, a solution where endpoints use a

series of tunnels in parallel and stripe traffic over all of them; the trick is to not send too much traffic over

inneficient tunnels, and we show this can be achieved by leveraging MPTCP congestion control, and b) show

how Multipath TCP can be used to avoid IDS detection by ISPs.

4.2 Ninja tunnels: efficiently hiding network traffic
If network operators are unwilling to cooperate with endpoint apps, we propose that endpoints should simply

force the network to allow reachability and avoid packet changes by using a technique we call ninja tunneling.

With ninja tunneling, every endpoint always uses a set of tunnels to get through their first hop network

operator, such as cellular, DSL or hotspot. The set of tunnels can dynamically change over time, and it

can include any from the following non-exhaustive list: native IP, UDP, TCP, HTTP, HTTPS, DNS, covert

channels, etc. The set of tunnels is forever changing, perhaps in response to network behaviour.

The key to ensure ninja tunneling’s success is that tunnels are invisible to applications: unmodified apps

should benefit from it. The ninja tunnels will be deployed as software in the (mobile) operating system and

at content/cloud providers that terminate the tunnels initiated by the clients. Should all tunnels originating

Page 38 of (74) c© TRILOGY2 Consortium 2015

from a mobile user be terminated by the same cloud machine, or can we use tunnels terminated by different

machines spread through the Internet? The latter is more attractive because it would make detection and

filtering of ninja tunnels much more difficult.

The answer to the question above is closely tied with another issue: how should application traffic be spread

over this dynamic collection of tunnels? In this document, we only consider the case when both the endpoint

and its remote endpoint (e.g. the server it is receiving a service from) have upgraded to Multipath TCP.

Spreading traffic over multiple tunnels is trivial with MPTCP: each tunnel will be treated as a different path

and MPTCP will create a corresponding subflow. If certain tunnels do not work, MPTCP will simply move

traffic onto tunnels that do work.

It is plain to see that, as long as there is some sort of connectivity allowed, ninja tunnels will provide reach-

ability to any application. As the set of tunnels can be constantly evolved and personalized per endpoint,

network operators will have a difficult time identifying groups of tunnels that are related and an even harder

time deciding which ones to drop. We do not claim it is impossible for operators to block such tunnels, it will

just be much more expensive for them to do so. Rate-limiting certain tunnels, as done with Skype today, will

also not work, as MPTCP will push more traffic through the other tunnels. Finally, the Multipath TCP check-

sum will also detect payload changes on the different subflows, and MPTCP will terminate the corresponding

subflows when changes are detected, therefore ensuring the integrity of the payload.

Efficiency. A natural concern regarding ninja tunneling is efficiency: many of these tunnels (e.g. covert

channels) have a high framing overhead and have a poor ratio of useful traffic to total traffic. As the bottleneck

in most networks is the user’s access link (e.g. cellular connection or DSL line), using a mix of inefficient

tunnels will simply decrease the total goodput of the user. Ideally, we would like the endpoint to utilize the

most efficient tunnel at all times. Determining this in advance is not possible because network operators could

throttle certain traffic after a period of time (e.g. after DPI makes a decision to classify the traffic).

The Multipath TCP congestion controller actively moves traffic away from congested paths onto uncongested

paths, as determined by the congestion window of each subflow [25]. Is this mechanism enough to push traffic

through the most efficient tunnels? We ran experiments downloading a large file (with wget over MPTCP)

over a mixture of the following tunnels, all sharing the same 10Mbps access link connecting our client to the

server: UDP, TCP, HTTP, DNS. We found that MPTCP behaved correctly when UDP and DNS tunnels were

used, pushing most of the traffic over the more efficient UDP tunnel and achieving a throughput of around

9.5Mbps; in contrast, the DNS tunnel only achieves 7Mbps.

However, when using TCP-based tunnels (e.g. TCP or HTTP) in conjunction with DNS, MPTCP pushed a lot

of traffic over the less efficient TCP tunnel, as shown in the figure 4.1.a. The problem is that the TCP tunnel

hides the losses to the MPTCP congestion controller and increases delay in the process. The effect is that the

MPTCP congestion controller does not move traffic away from the TCP tunnel. To avoid this problem, we

implemented a technique that sets an ECN mark in the MPTCP subflow whenever the tunnel experiences a

c© TRILOGY2 Consortium 2015 Page 39 of (74)

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(a) Standard behaviour

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

Time (s)

(b) Tunnel losses exposed with ECN

HTTP tunnel
UDP

Figure 4.1: Runnning MPTCP over a UDP and an HTTP tunnel sharing a 10Mbps link

loss. This technique achieves its purpose, allowing MPTCP to balance traffic to the most efficient tunnel, as

shown in Fig. 4.1.b.

4.3 A constructive approach: an explicit interface to allow endpoints and

the network to communicate
In this section, we present an alternative constructive approach that assumes the cooperation of endpoints and

operators. The work described below has been performed as part of the CHANGE FP7 project (2010-2013)

by Trilogy 2 partners UPB and NEC, and we present it briefly here to give an overview of the whole solution

space, and to show the synergies with solutions such as ninja tunneling that are born in Trilogy 2.

Assume the network operator and the endpoint (apps) want to collaborate. What is an appropriate API that

would solve the problems we’ve outlined so far? The API must offer primitives that allow endpoints query

about reachability and packet modifications, while at the same time allowing the operator to maintain its

internal network topology and configuration privacy. To alleviate privacy concerns, our approach aims to

allow queries whose answer the clients can find out anyway by using active probing. The usefulness of the

API is that it gives definite answers quickly, rather than having to wait for an arbitrarily long probing process

to finish. Our API allows endpoints to ask their network operator questions using the following syntax:

reach <node> [flow] -> <node> [flow] [const fields]

In the syntax above, node describes the source or destination of traffic and can be: an IP address or a subnet,

the keyword client to denote subnets of the operator’s residential clients, or the keyword internet to refer to

arbitrary traffic originating from outside the operator’s network.

The flow specification uses tcpdump format and constrains the flow that departs from the corresponding

node. By altering the flow definition between the source and destination nodes we can specify how the flow

Page 40 of (74) c© TRILOGY2 Consortium 2015

should be changed between those nodes.

Using this syntax clients can express how they would like the network to behave without actually knowing

the network topology or the operator’s own policy. For instance, the client below expects that Internet UDP

traffic can reach its private IP address on port 1500:

reach internet udp -> client dst port 1500

The const construct allows users to specify invariants: packet header fields that remain constant on a hop

between two nodes. For this, the user adds const and the header fields, in tcpdump format, that should be

invariant. In the example below, the client specifies that the payload should not be modified in the operator’s

network:

reach internet tcp->client src port 80 const payload

The operator’s reply to these client questions is binary, indicating whether the property holds for the client’s

traffic as it passes through the operator’s network. Note that there is no guarantee the traffic will not be

modified outside the network operator’s domain; however, most transparent middleboxes today are deployed

at the “first-hop” operator while the backbone is mostly middlebox free: by asking their first hop operator the

clients can be reasonably sure their requirements hold on the whole end-to-end path.

4.3.1 Implementing the API

We can implement the API by deploying a controller in the operator’s network that accepts requests from

authenticated clients. The controller knows the topology of the operator, including a snapshot of router

forwarding tables and the deployed middleboxes. In our implementation, the middleboxes are implemented

as Click modular router [16] configurations. A configuration is a directed graph of Click elements which

are processing units performing a simple task such as decreasing TTL or filtering certain packets. We have

manually modeled the behaviour of individual Click elements. To answer client requests we use Symnet, a

static analysis tool that applies symbolic execution to networks [23].

The controller runs client reachability checks as follows. It first creates a symbolic packet using the initial

flow definition or an unconstrained packet, if no definition is given, and injects it at the initial node provided.

The controller uses SymNet to track the flow through the network. The output of SymNet is the flow reachable

at every node in the network, together with a history of modifications and constraints applied to each packet

field. The controller then checks reachability constraints by verifying that the flow spec provided in a given

node matches the one resulting from symbolic execution. The requirement is satisfied if there exists at least

one flow (symbolic) that conforms to the verified constraints. To check invariants, the controller simply

checks whether the field value was not modified on any possible path between the source and the destination

nodes.

SymNet helps find a yes/no answer for every client question, but the operator can go further: if the answer

is negative, it can reconfigure its middleboxes dynamically to honour the client’s request, and then give a

c© TRILOGY2 Consortium 2015 Page 41 of (74)

positive answer. The API effectively tells the operator what the client wants, an information that is not

available today.

4.3.2 Use cases

Client apps can use the API to quickly decide what protocol to use, including port numbers, as well as

deciding whether checksumming is needed. Below we discuss two use cases we have implemented that we

believe showcase the usefulness of the API.

Protocol Tunneling Say we wish to run SCTP (or any other new protocol) over the Internet. Deploying it

natively is impossible because middleboxes block all traffic that is not TCP or UDP. Thus SCTP must be

tunneled, but which tunnel should we use? UDP is the best choice, but it may not work because of firewalls

that drop non-DNS UDP packets. In such cases, TCP should be used, but we expect poorer performance

because of bad interactions between SCTP’s congestion control loop and TCP’s.

SCTP has to be adaptive about the tunnel it uses: first try UDP and fall back to TCP if UDP does not work,

but to make the decision we need at least one timeout to elapse at the sender—three seconds according to the

spec. Instead, the sender can use the API to send a UDP reachability requirement to the operator network.

This request takes around 200ms to answer in our implementation, allowing the client to make the optimal

tunnel choice much faster.

HTTP vs. HTTPS Mobile apps often tunnel their data over HTTP to communicate with their servers because

it just works, but application optimizers may alter HTTP headers (e.g. accepted-encoding) or the payload it-

self (compression), breaking the application’s own protocol. Should the applications use HTTPS instead to

bypass such optimizers? We have measured the energy consumption of a Galaxy Nexus phone while down-

loading a file over WiFi at 8Mbps. The download times are almost identical, while the energy consumption

over HTTP was 570mW and 650mW over HTTPS, 15% higher. The added cost of HTTPS comes from the

CPU cycles needed to decrypt the traffic.

Smaller energy consumption is a strong incentive for mobiles to use HTTP, but this may break apps, so we

are stuck with the suboptimal solution of using HTTPS. Instead, the client should send an invariant request

to the operator asking that its TCP payload not be modified.

4.4 Ubiquitous encryption to regain control of data

Another way that endpoints can regain control over their traffic and protect their packet against middleboxes

is to simply encrypt all traffic.

The motivation is to achieve by default encryption and integrity protection of Internet traffic, so that most of

the traffic that flows over the Internet benefits from these capabilities.

As a large fraction of Internet traffic today is TCP traffic, the scope of this work is to produce the required

mechanisms and protocol extensions to provide unauthenticated encryption and integrity protection of TCP

streams, including the mechanisms for unauthenticated key exchange. While we acknowledge that there is

Page 42 of (74) c© TRILOGY2 Consortium 2015

a significant amount of traffic that uses UDP and other transport protocols, these are out of the scope of this

discussion.

Unauthenticated encryption and integrity protection provides less security than authenticated encryption and

integrity protection but still provides better protection than clear text communication. The motivation for

aiming for unauthenticated encryption and integrity protection is that it has a much more powerful deployment

model, as it is possible to make it transparent to upper layers and users.

Unauthenticated encryption and integrity protection is also a building block for more secure communication

schemes. In order to enable those, the solution for unauthenticated encryption and integrity protection must

provide the hooks for external authentication. However, authentication mechanisms are out of the scope for

this discussion. TCPINC is a generic approach to provide unauthenticated encryption and integrity protec-

tion to TCP streams. tcpcrypt is a specific instance of TCPINC, but in this section, where we analyze the

architectural implication and broad design choices, we will analyze the general concept, hence we refer to it

as TCPINC. We analyze how a TCPINC approach would interact with different components of the Internet,

in other words, how would such a solution fit in the overall Internet architecture.

4.4.1 TCPINC and Upper layers

The goal is that TCPINC will be usable by unmodified applications. From the perspective of the application,

it must look like they are using a regular TCP socket while in fact they are using TCPINC. This creates a

powerful deployment model as applications need not be modified to use the new protocol, making TCPINC

naturally compatible with existing applications.

There is however the possibility of creating an extended API that would allow TCPINC aware applications

to have a richer interaction with TCPINC. There are several notable aspects to this interaction that deserve

more discussion:

First, to allow an application to express that it doesn’t want to use TCPINC and that it woild rather use regular

TCP instead for this connection. Second, to allow an application to provide the means for authentication.

Third, to allow an application to avoid reusing crypto material to avoid fingerprinting from the server. These

aspects are discussed in detail in later sections.

Once all the aforementioned open issues are cleared, we will be able to properly define the capabilities of the

extended API.

4.4.2 TCPINC and other security protocols

As it is a generic approach for unauthenticated encryption, TCPINC will need to co-exist with other security

protocols.

4.4.2.1 TCPINC and TLS/SSL

TCPINC and TLS complement each other. TLS provides higher security as it provides authentication, en-

cryption and integrity protection. Applications that want security usually use TLS (or other security protocols

they choose). The main challenge is that its adoption requires changes in the applications i.e. they need to

c© TRILOGY2 Consortium 2015 Page 43 of (74)

explicitly use TLS. In addition, it requires some form of configuration of the authentication means e.g. cer-

tificates. TCPINC on the other hand, provides less security than TLS, but it is completely transparent to the

applications. The application continues to use a regular TCP socket for its communication and it is unaware

that TCPINC is running underneath instead of regular TCP. It is then targeted to those applications that for

whatever reason have not been updated to use TLS or other security protocol. This provides a powerful

deployment model that significantly contributes to the goal of having pervasive encryption. As TCPINC

does not provide authentication, it does not require any form of credential/password/certificate configuration,

simplifying its adoption.

4.4.2.2 TCPINC and TCP-AO

TCP-AO is a TCP extension to provide authentication and integrity protection to TCP segments. TCP-

AO does not provide encryption or a key exchange protocol and hence it relies in other protocols to do

that. The key differences then are that TCPINC provides encryption and integrity protection but does not

provides authentication and that in order to be fully automatic TCPINC is fully integrated with a key exchange

mechanism. This key exchange mechanism supports unauthenticated key exchange.

That being said, it may be possible for TCPINC to use TCP-AO as a building block to provide the integrity

protection. In other words, further analysis is required to understand if it is possible to use TCP-AO with

unauthenticated keys to provide the integrity protection and add the encryption capability and the unauthen-

ticated key exchange.

However TCP-AO has made a set of design choices that appear to make it incompatible with the goals of

TCPINC. In particular, TCP-AO cannot interoperate natively across NATs as it protects the IP addresses and

the TCP ports. This seems at odds with the pervasive encryption goal of TCPINC.

4.4.3 Compatibility with TCP

Backward compatibility of TCPINC with TCP is achieved by falling back to regular TCP when one of the

endpoints does not support (or is unwilling to use) TCPINC. Basically, the desire to use TCPINC in a given

connection is signaled by including a new option in the SYN message. If the option is not supported, then it

won’t be included in the SYN/ACK, and the initiator will fall back to regular TCP and continue the commu-

nication.

The main concern with this approach is that it is vulnerable to downgrading attacks. That is, if an on path

attacker removes the aforementioned option, the initiator will fall back to plain TCP even though both end-

points support TCPINC. It is not obvious how to deal with this attack other than policy i.e. to configure the

node to only support TCPINC connections. This would be impractical during early deployment, but it may

be reasonable once the protocol is widely adopted. One intermediate step would be to allow TCPINC hosts

to remember which other endpoints support TCPINC and for those only accept TCPINC connections. This

of course may be challenging in the presence of NATs (especially with Carrier Grade NATs).

Page 44 of (74) c© TRILOGY2 Consortium 2015

4.4.3.1 Simultaneous open

An additional issue to consider is the case of simultaneous open, and whether this can be supported by

TCPINC. If not, it is possible to fall back to TCP in this case. It is likely that this also depends whether

crypto material is cached in both endpoints from a previous TCPINC connection or not. Further discussion

and thoughts are needed in this space.

4.4.4 TCPINC and middleboxes

TCPINC is part of the ongoing efforts to harden the Internet and in particular to obtain a widespread adoption

of encryption. One of the main drivers is to limit the impact of middleboxes on network traffic.

4.4.4.1 TCPINC and NATs

TCPINC aims to allow encryption of TCP streams by default. Considering the widespread of NATs in multi-

ple flavours (NATs, NAPTs, PATs, CGNATs and probably others), it is mandatory that TCPINC is compatible

with NATs (at least with a large part of the installed base of NATs). Since there is a large variety of NAT

implementations out there, it is a hard task to define exactly what NAT compatibility means. However, the

BEHAVE WG has defined a set of requirements for NATs (RFC4787, RFC5382 and RFC5508) and therefore

at least TCPINC must be compatible with those.

NAT compatibility can be achieved natively (i.e. TCPINC wouldn’t protect the affected fields) or using some

NAT traversal add-on (like a UDP encapsulation). Having a native NAT compatibility is more efficient (i.e.

no double headers) but results in less protection as the IP address and TCP ports are not protected. In addition,

in the case that neither the IP addresses nor the TCP ports are protected, then less information is available at

both ends to generate keys, which may have a negative impact in the quality of the keys if an alternative source

of information for key generation is not available. This is basically a design choice between optimizing for

the more common case or supporting additional security for a less common case. This is an open discussion

at this point.

In any case, it seems clear that to provide native NAT traversal support, TCPINC cannot protect the destination

IP address fields of the IP header nor the destination Port field of the TCP header. If both endpoints of the

communication are behind their respective NATs, then it is not possible to protect the source and destination

IP addresses or the source and the destination TCP ports.

A special case that seems worth mentioning is the case of NAT64. NAT64 translates the IPv6 header into an

IPv4 header and vice-versa. If compatibility with NAT64 is desired, then neither the source nor the destination

IP address can be protected. The destination port could still be protected. Translation of other fields in the

TCP and IP header may be compatible with protection except for a few corner cases where the translation

doesn’t copy the value as is.

4.4.4.2 TCPINC and other middleboxes

TCPINC and TCP proxies: It seems that TCPINC could be compatible with TCP proxies that terminate

the TCP connection, since TCPINC uses unauthenticated encryption. This would allow the TCP proxy to

c© TRILOGY2 Consortium 2015 Page 45 of (74)

terminate the TCPINC connection by using its own keys. As a side note, the unauthenticated nature of the

solution makes it simple to provide proxies that perform TCPINC on behalf of legacy hosts.

TCPINC and middle boxes that perform segment coalescing: There are two considerations to take into

account. First, if the TCP header is protected, since these middle boxes alter the header by merging two

segments, the resulting header will not pass the integrity check. Second, the middlebox will merge the two

payloads of the two segments. There is no well defined way to coalesce TCP options though. It depends then

whether the MAC is carried in an option or in the payload. If it is carried in the payload, then it is likely that

it is possible to carry enough information so that each part of the new segments can be verified with its own

MAC information. If it is carried in the header, it will depend on how the middle box merge the options of the

initial segments and whether there is enough space in the final segment option to include both initial options.

It is less likely TCPINC will be compatible with these middle boxes if the TCP header is protected and if the

MAC is carried in TCP options.

4.4.5 TCP header protection

TCPINC must provide encryption and integrity protection to the TCP segment’s payload as it is the main

feature it provides. It is open for discussion whether it should also provide integrity protection to (some of)

the fields of the TCP (pseudo) header. First, we note that as discussed in Section 4.4.4.1, integrity protection

of IP address and TCP ports would prevent native compatibility with NATs and would impose some form

of NAT traversal technique such as UDP encapsulation, which would result in additional overhead. It would

be possible to protect the other fields of the TCP header and this would indeed provide enhanced security

for TCP. [10] performs a systematic TCP security assessment and identifies different attacks resulting from

faking the different TCP fields. Note that the aforementioned analysis also includes attacks against the TCP

options, so it should also be considered as part of this discussion if it would be worthwhile protecting the

options as well. In any case, there seems to be potential gain in securing the TCP header fields. The concerns

expressed so far about securing the TCP header are: first, how this would interact with some middleboxes

(like boxes that coalesce segments) and second that this is related to where to include the MAC information in

the TCP segment. If the MAC is included in the payload, then pure ACKs must include payload information,

which would consume SEQ number space and we would need to eventually retransmit pure ACKs, which

seems to be heading in the wrong path. If the header is not protected, this particular problem about including

the the MAC in the payload goes away. On the other hand, if the MAC information is included in a TCP

option, then this particular argument against securing the TCP header goes away.

4.4.6 Use of option space

TCP option space is a scarce resource as there are several widely used TCP options. TCPINC will likely need

to use TCP option both in the SYN and SYN/ACK for initial negotiation and also in the data segments.

Options in the SYN and SYN/ACK. The definition of options to be carried in the SYN and SYN/ACK are the

most trouble some for two reasons, namely, first because there are already many of them defined and that are

Page 46 of (74) c© TRILOGY2 Consortium 2015

widely used, so there is not too much space left and second, because it is challenging to define a mechanism

to extend the option space in the SYN and SYN/ACK that is backward compatible. TCPINC will need to

carry at least one option in the SYN and SYN/ACK to indicate that TCPINC is supported and willingness to

use it. If in-band key exchange is used, then the initial packets need also to carry the crypto negotiation and

material. However, the crypto material is likely to be too big to carry it in the TCP options, so it is likely that

an in-band approach will need to carry the crypto material in the TCP payload and second, the material not

necessarily need to be carried in the SYN and SYN/ACK messages, it can be carried in the third and fourth

messages for example. So, overall, it seems that TCPINC will need to carry at least an option indicating the

support to TCPINC and it seems that this would be possible given the current usage of TCP options.

Options in the rest of the segments. TCPINC will need to carry a MAC for every segment to provide integrity

protection. This MAC can be carried in the payload or as an option. Carrying it as an option would require

every packet to carry the MAC option. The length of the option is conditioned by its crypto properties, but

TCP AUTH uses a 16 byte option and this is compatible with current option usage (see [24] for more details).

Besides, it seems more feasible to extend the option space for subsequent segments than for SYN and SYN/

ACK so if needed this can be done. It is then an issue open for discussion if the MAC is carried in the payload

or in a TCP option as both seem feasible.

4.4.7 Disabling encryption

As we mentioned earlier, TCPINC will be susceptible to be used by unmodified applications, by presenting

a regular TCP socket interface. This begs the question whether it should be possible for an application to use

regular TCP i.e. to avoid encryption and integrity protection. There are two options to allow an application

to avoid encryption: to allow an application to select for each connection whether to use TCPINC or regular

TCP or to allow to disable encryption during the lifetime of a TCPINC connection. Let’s consider each of

these possibilities.

Selecting TCPINC or TCP on a per connection basis. This basically means that it is possible for an

application through an extended API to select whether to use TCP or TCPINC. Another way to achieve a

similar result would be that implementations implement some form of policy similar to IPSec where is is

possible to tell that a given set of connections should use TCPINC while another set of connections should

use TCP. The motivation for doing this include:

Initial deployment and trials It is unlikely that the deployment of TCPINC will require that once TCPINC

is installed in a host then all connections will be using TCPINC, especially during the early days when

the implementation and specification are still evolving. It is reasonable to expect that during the initial

phase at least, it will be possible to configure when to use TCPINC and when to use TCP.

Avoiding redundant encryption and integrity protection For example, some people may consider that running

TCPINC below TLS is redundant and should be avoided for performance reasons. If that is the case,

c© TRILOGY2 Consortium 2015 Page 47 of (74)

then it should be possible for TLS to express that TLS connections will use TCP. Similarly, some

people may consider that in certain environments (like the local network) encryption is not worthwhile

and would like to use TCP for their local communications.

Disabling encryption during the lifetime of a TCPINC connection. Another possibility is to allow

TCPINC to disable encryption during an ongoing TCPINC connection. It is much less clear what would

be the motivation for this option. It would provide more flexibility (e.g. it would allow to use TCPINC

protection while doing the TLS handshake and then disable TCPINC encryption and use TLS encryption

once enabled). One possible way to implement this would be to renegotiate the keying parameters during

the connection lifetime (which is probably needed anyway to allow rekeying for long lived connections) and

use the NULL parameters to effectively disable encryption. The potential issue with this approach is that

it may be used by an attacker to launch a downgrading attack (i.e. an attacker may be able to use this to

disable encryption). Building in the features needed for protection from downgrading attacks may include

additional complexity to the rekeying mechanism and to the the TCPINC protocol overall. A related issue

is the possibility to upgrade the connection i.e. to start a TCPINC connection with encryption disabled and

them enable encryption during the lifetime of the connection. However we are uncertain what would be a use

case for this.

4.4.8 Crypto Agility

Support for agility in the cryptographic algorithms is recommended in order to be able to change the cryp-

tographic algorithms in the case that a vulnerability is discovered for the ones currently used. In particular

RFC4270 recommends: “Any new protocol must have the ability to change all of its cryptographic algo-

rithms, not just its hash algorithm.” Related to this is the number of cryptographic algorithms that need to be

initially supported. One option is that from the beginning more than one algorithm is supported, one working

as the default algorithm and the other(s) working as a pre-deployed backup, so that in case a vulnerability is

detected in the currently used one, it is possible to switch to the another one without deploying new code.

The counter argument is that cryptographic agility introduces complexity and complexity usually increases

the possibilities of errors in the implementations, resulting in exploitable vulnerabilities. Moreover, the ar-

gument is that over the last few years, vulnerabilities related to faulty implementations have appeared much

more frequently than vulnerabilities in cryptographic algorithms.

4.4.9 TCPINC and MPTCP

MPTCP as currently defined secures its signaling by including an HMAC in the relevant messages. The key

used in the HMAC is exchanged in clear text during the initial MPTCP connection exchange. This implies

that eavesdroppers present in the path of the initial handshake are able to see the key and then generate

messages with valid HMAC that would appear legitimate to the endpoints, allowing, among other things, for

an attacker to hijack ongoing communications.

Page 48 of (74) c© TRILOGY2 Consortium 2015

The residual threats of the MPTCP protocol and potential countermeasures are described in [4]. The refer-

enced document recommends that in order to provide additional protection to MPTCP, the payload should be

protected rather than trying to secure the MPTCP signaling. This is because of NAT compatibility (i.e. secur-

ing the signaling would require securing the additional IP address and port included in the MPTCP connection

and such an approach would break current MPTCP NAT compatibility). Using MPTCP in conjunction with

TCPINC would allow to provide additional security to MPTCP. In particular a passive eavesdropper wouldn’t

be able to hijack a MPTCP/TCPINC connection. In order to succeed the attacker should be active and remain

in the path during the whole duration of the attack (as he will need to change the key of one of the endpoints

by its own key and needs to do the conversion from one key to the other in order to relay the messages).

4.4.10 TCPINC and TFO

After a client has established a TCP connection with a given server using the regular 3-way handshake, TCP

Fast Open (TFO) allows a client to send data in the SYN for subsequent connections by presenting a cookie

generated by the server and conveyed to the client in the previous connection.

In case TCPINC supports the reuse of cryptographic material, it would the naturally support TFO, since

whatever material is presented to identify the cached cryptographic material can be also used as proof of a

prior TCP 3-way handshake, which would then enable TFO i.e. sending data in the SYN of the subsequent

connection. It seems to follow that if cryptographic material can be reused then TFO would be supported

without difficulty. It should be noted that the fingerprinting concerns that emerge when reusing the crypto

material are also present when using TFO, so wouldn’t be a valid reason to support one and not the other one.

4.4.11 Key exchange

The goal of TCPINC is to contribute to universal encryption and integrity protection. It does so by not relying

on authentication to provide either of these two features. This is because authentication usually requires more

configuration from the user (i.e. getting certificates or other forms of identity proof). The expectation is

that TCPINC will work automatically without requiring user intervention by default. In order to achieve this

goal TCPINC must provide a form of automatic key exchange i.e. the keys used for encryption and integrity

protection are exchanged without requiring any involvement of the user.

That being said, there seems to be two possible approaches to key exchange, namely in-band and out-of-

band. In-band key exchange is when the key exchange is done as part of the TCP/TCPINC connection. For

example, the key exchange is done in the SYN, SYN/ACK and maybe later TCP segments. Out-of-band key

exchange is when the key exchange is done by a different protocol and then the generated key is passed to

TCPINC for its use in a connection (similar approach as the one used in IKE and IPSec). Some arguments

for the different options include:

With an in-band approach, it is not possible to secure the initial SYN and probably not the SYN/ACK either.

This is certainly true as TCPINC is unauthenticated but while it is true that with an out- of-band approach it

would be possible to secure the SYN and SYN/ ACK (because the key has already been exchanged), it seems

c© TRILOGY2 Consortium 2015 Page 49 of (74)

clear that it would not be possible to secure the initial messages of whatever protocol is used for key exchange

(because it is unauthenticated). An analysis is needed to understand whether the lack of protection of the SYN

is worse than the lack of protection of the initial message of the key exchange protocol. This is also closely

related to two other undefined aspects of TCPINC: i) whether the TCP header is protected or not (if it is

not protected, it is not a problem not protecting the SYN) and ii) whether crypto material is reused across

multiple TCPINC sessions (if it is reused, then the initial TCPINC connection where the key is exchanged

can be seen as the “out-of-band” and future connections simply rely on the existing crypto material)

With an out-of-band approach, in order for TCPINC to work, both the TCPINC stream and the key exchange

stream must flow through the network. In other words, it may be possible that there are middleboxes and/or

firewalls along the path that filter the key exchange protocol making TCPINC to fail even if it is not filtered.

Using an in-band approach, fate sharing is achieved between the key exchange and the data stream. Related

to this, it is important to understand if middleboxes and/or firewalls will allow keying material inserted in the

TCPINC payload to pass.

Another argument that has been put forward in the in-band approach is that SYN processing would be in-

creased and this may increase the possibility of DoS attacks. However, it seems that the out-of-band protocol

would suffer from the same issue and it is possible to find means to limit these types of attacks (see for

instance the HIP protocol).

4.4.12 Privacy considerations

Extensions to TCP to support unauthenticated encryption may have privacy implications. The first type of

privacy considerations are about fingerprinting, in the sense that a responder may be able to use the TCPINC

information to identify the same initiator that connects multiple times. One notable case is the one when

cryptographic material is reused across multiple connections because of performance considerations. But

depending on the actual design of the TCP extensions, it may be possible to use other information for fin-

gerprinting. The second type of privacy considerations are related to a third party observer being able to

identify multiple connections as involving the same two endpoints by using information conveyed in the TCP

extensions. Again, one notable case is the information used when reusing cryptographic material, but there

may be other type of information that an observer can use to link multiple connections. (These considerations

are of course relevant for the cases where the fingerprinting nor the linkage can be done using regular TCP

IP fields, like IP address and ports, notably when one of the endpoints is behind a NAT or it is changing its

attachment point to the network). Additional discussion about the specific case of cryptographic material

reuse are covered in the next section.

4.4.13 Reusing cypto material

Key exchange operations are costly. They are costly in terms of latency since they are performed before

starting the encrypted communication. They are costly in terms of processing and bandwidth. It is natural

then to try to avoid repeating the key exchange by reusing cryptographic material available between two

Page 50 of (74) c© TRILOGY2 Consortium 2015

endpoints throughout connections. This however, has not only impact in the performance of the protocol but

it also has both security and privacy implications.

In terms of security, the implications are the following. In the case of the protocol without cryptographic

material reuse, the protocol is vulnerable to Man in the Middle attacks during the cryptographic material

exchange. If cryptographic material is reused, this means that the vulnerability window is reduced, as the

number of key exchanges is reduced drastically between two endpoints (note that in any case the endpoint

should allow for changing the key material from time to time for several reasons, including privacy consid-

erations as discussed below or re-keying). However, reusing crypto material also has the implication that

if there was a Man in the Middle attacker during the initial key exchange, then the effect of the attack will

not be limited to a single connection, but it will last for as long as the cryptographic material is reused. An

important additional consideration to take into account is directionality. It is not clear that the security im-

pact of reusing cryptographic material is the same when reusing the keys for multiple connection initiated by

the same endpoint than when reusing the same material for multiple connections where the initiator role is

changed. For example, an attacker could launch a DoS attack by initiating connections using a spoofed ad-

dress and port from a well know server (e.g. it could use the IP address of a well know web server and port 80

as initiator). It then installs cryptographic material in the victim. When the victim then tries to connect to the

well know web server, it will try to reuse the crypto material of the attacker, which will fail, as the server has

a different key. At minimum this attack results in consuming more resources in the victim (increased latency

and bandwidth). If the policy of the victim is to reject connections with different crypto material than the one

cached for a given period, then the attack prevents future communications. The implications of these type

of attacks are even greater when used in conjunction with MPTCP, as it is discussed in the MPTCP section.

It may be worthwhile exploring the possibility of reusing cryptographic material only for connections in the

same direction.

Reusing cryptographic material also has privacy implications. In terms of fingerprinting, if an initiator tries to

reuse cached crypto material, the responder will be able to tell that it is the same endpoint that is reconnecting.

In terms of traceability from an external third party, reusing cached crypto material is likely to require the

initiator to convey in the wire some information that will allow the responder to identify the existing crypto

material. This information may be used by a third party to link multiple connections between two endpoints

even if the IP address and/or port has changed. (this of course depends on the details of the protocol). As

the tradeoff between performance and privacy is likely to depend on the utility function of the endpoints, it is

possible that a good solution is to allow the endpoints to determine if they rather reuse cached material or not

for each new connection.

4.5 A thought about the future

We have outlined a number of tools that endpoints can use to regain control over the service they receive

from the network. These aim to counterbalance the power network operators exercise over customer traffic

c© TRILOGY2 Consortium 2015 Page 51 of (74)

by deploying middleboxes without customer consent. Opportunistic encryption raises the cost for networks

to snoop on and modify traffic.

We have further proposed two alternative approaches to liquidise access networks and allow endpoints to

make the best use of their links.

Our more pragmatic solution, ninja tunneling picks a contract that seems reasonable for endpoints, ubiqui-

tous reachability and immutable payload, and enforces it by using MPTCP to spread the data over a mix of

different tunnels. The only thing an operator can now do is make it cheaper or more expensive to achieve

this contract: the app does not have to worry about the details, as ninja tunneling will dynamically find the

most efficient tunnel and send most data through it. Eventually, operators that force endpoints to use ineffi-

cient tunnels will lose their customers, so this may well act as a driving force towards removing unwanted

middleboxes.

We have also outlined a constructive approach (proposed in the CHANGE FP7 project by the same partners)

where the endpoints can use an API to query the network about the service it offers. This offers more

information to both operators and endpoints, and in the long run we believe this approach is preferable for

operators: they still get to run their app optimizers for traffic that allows it explicitly, but they will have to

honour the requests of users asking middleboxes to not mess with their traffic.

The API and ninja tunneling complement each other: ninja tunneling is a short term fix and a stick to beat

operators into being nice. The API is the proper way of implementing cooperation, but it is doomed without

something like ninja tunnels that forces operators to adopt it.

Page 52 of (74) c© TRILOGY2 Consortium 2015

5 NFV as a particularisation of the

Trilogy 2 infrastructure

5.1 Introduction

Deliverable D2.1 set out the basic Trilogy 2 architecture, which we developed and contributed to the work

of the ETSI NFV ISG. During this year, we have gone beyond the ETSI in terms of standardisation and

have started addressing other Standards Defining Organisations (SDOs) like the IETF. In addition, we have

continued a more fundamental work on the representation of resources, which is finally impacting our work

on the information models for the Trilogy 2 architecture.

5.2 A generalised representation for resources in the liquid network

Within Deliverable D2.1 we set out a more formal framework which brings together the approaches of sys-

tems engineering with that of configuration and programming. This approach has played an important role in

the development of NFV as it provides a formal framework for defining the relationship between VNFs and

the NFVI which is hosting the VNF.

The significant point is that this relationship is not a normal functional interface of systems engineering and

cannot be described as such. Indeed, in functional terms, the VNF is the infrastructure: the VNF is only

a configuration of the hosting infrastructure function and has no separate existence apart from the hosting

infrastructure.

In this section we do not repeat what is already set out in Deliverable D2.1. Figure 5.1 below reproduces the

basic many to many hosting relationship between virtual functional blocks and host functional blocks from

the Deliverable D2.1 framework.

This framework immediately addresses a number of axiomatic principles of the Trilogy 2 architecture includ-

ing

• Portable Applications Create Liquidity

• Transport, Processing and Storage are all Strongly Inter-Dependent

• The Starting Default is Real-Time Parallel Concurrent System Specification

• Everything has Its Own Defined Lifecycle

• The Starting Default is a Decompositional Model

The axiomatic principle which is not immediately addressed by this framework is “We Must Have Measures

for the Capacity of All Types of Resources”.

However, the functional block framework does provide insight into how Trilogy 2 resources can be specified

by comparison and extrapolation from transport.

c© TRILOGY2 Consortium 2015 Page 53 of (74)

Figure 5.1: Many to many hosting relationship of the D2.1 virtualisation framework

This starts by equating a transport channel to a functional block. The transport channel has input, outputs, a

static transfer function and holds dynamic state.

Trilogy 1 made implicit use of this framework and of the bit as the measure of resource capacity and ap-

plication load. In order to extend this to the more general needs of Trilogy 2 , we present two stages of

generalisation.

In order to explain the generalisations, the next section presents a summary of the the way we measure

transport resource highlighting the features which are important to the generalisation, in particular revisiting

some of the fundamental derivation of the bit as a unit of transport resource by Shannon. Following this, the

first generalisation is then then presented which is to extend from a transport channel to a network. Finally,

the second generalisation is discussed which is to extend from a network to a general host functional block

of a hosting infrastructure of which the NFVI is an important example.

While the objective is measures of generic Trilogy 2 host functional blocks, the intermediate analysis of the

network plays three useful roles. First, there is strong linkage with Trilogy 1. One of the key successes of Tril-

ogy 1 was the generalisation of transport control to a network wide context and to optimise the total network

resources across all the end to end transport sessions using the network. Second, the network context requires

the introduction of processing required for routing and resource allocation. Indeed, one of the essential roles

of the transport layer is to completely abstract these processing functions of the network from the user and

present a simple point to point channel to the user. As such, the network is a hybrid example. Thirdly, there

is already developed in ITU-T a powerful framework of abstract functional blocks which describe networks.

These are already the basis for most transport network management systems and are also the basis of the

recently agreed Open Networking Foundation (ONF) architecture for SDN.

Page 54 of (74) c© TRILOGY2 Consortium 2015

!"#$"%

&'()*+,-

'"./"#0"1

234##",

&'()*+,-%",4(1

5"0"67"%

&'()*+,-

'"./"#0"1

Figure 5.2: A transport channel

5.2.1 Measuring Transport Resource

In a digital world, we tend to take for granted the ease with which we measure the a) capacity of the transport

channel and b) the size of the information load presented for transport: everything is measured in bits. The bit

is now a ubiquitous and universal measure and essentially defines digital technology. However, the original

definition of the bit developed by Shannon was not primarily intended to define any technology, and it was

defined in the era of analogue telecommunications channels, telegraph text messages, and analogue voice

calls. In order to present the way in which the capacity of general hosting resource can be measured, it is

helpful to give a short prcis of Shannon’s original work. The channel as defined by Shannon is illustrated in

Figure 5.2.

There are a number of important features of the transport channel which are implied in Figure 5.2:

• the sender, channel and receiver are in continuous and open ended operation and do not “run to com-

pletion”;

• the sender produces a sequence of symbols in real time;

• the channel relays symbols in real time;

• the definition of a symbol is central to the definition of a channel.

On this last point, Shannon precisely defines information as a selection from a set and each particular symbol

represents a member of the set of possible selections. There is therefore no absolute meaning to any symbol

and the selection of any one symbol is essentially arbitrary. Shannon essentially defines information in the

context of a single operation type “select” and all information is in the form of “select symbol”.

Importantly, we note that the channel only supports one basic operation - “relay symbol” (or maybe more

correctly “relay select symbol”) - and there is no possible choice of different operations. As we look at

generalisations, we will note that general host functional blocks support many possible operations. However,

for the channel, the total number of specific operations that are supported by the channel on each input event

is therefore simply the number of possible symbols. With this basic model, Shannon defines separately the

capacity of the channel and the information load of the sender with a view to giving an answer to the question

of whether the channel capacity can support the sender’s information load.

c© TRILOGY2 Consortium 2015 Page 55 of (74)

!"#$%&

'()*+",-

(&.#&/%&0

123//&,

'(45/3,-6$3/(*4((4"/0

7&(64/364"/

'()*+",-

(&.#&/%&0

8$3/(*466&$ 9&%&4:&$

;"4(&

!"#$%&

Figure 5.3: Shannon’s reference architecture

• Capacity: Shannon defines the capacity of the channel as the logarithm of the total number of possible

sequences of symbols that can be sent over a long period of time divided by that time. This takes

account of the situation where not all sequences of symbols are possible. By choosing logarithms to

base 2, the capacity is defined to be “bits” per unit time. The “bit” is simply the scaling defined by

the base of the logarithms and is no more fundamental than any other base. The linkage with binary

encoding is a matter of convenience, not fundamentals.

• Load: Shannon defines the information rate load of the sender as a form of entropy, based effectively

on the probability of the next symbol which may depend on the history of symbols in the sequence. In

order to calculate this, Shannon’s model of the source is a state machine. Again by using logarithms to

base 2 in the entropy calculation, the information rate is defined to be “bits” per unit time. Again, the

“bit” is simply the scaling defined by the base of the logarithms and the linkage with binary encoding

is a matter of convenience, not fundamentals.

Shannon’s actual basic reference architecture diagram is shown in Figure 5.3. Included in this diagram are

two extra functions (other that the noise source), the transmitter and the receiver. In Shannon’s model, these

functions are to encode the sender’s symbols to the symbols of the channel and back again. Shannon does not

assume that the sender and the channel have the same symbol set. The as with the sender, Shannon formally

models the encoder and decoder as state machines.

A critical point which is easily forgotten in today’s digital telecommunications is that Shannon does not

assume the channel is a homogeneous selection of uniform symbols so that the capacity of the channel is

available to any load. The available capacity is only available if the rate at which a particular channel symbol

is chosen is inversely proportional to the time taken by that symbol in the channel.

Shannon’s basic thesis is that it is possible to devise a encoding such that a sender’s message can be carried

if the sender’s information rate is less than the channel capacity. The exploitation of the channel capacity

depends on encoding but optimal encoding is possible.

• The use of binary encoding for both the sender and the channel (as is effectively the universal solution

today) is a simple and practical way of ensuring that the full channel capacity is always available to

every sender without any encoding mismatch.

Page 56 of (74) c© TRILOGY2 Consortium 2015

• Shannon assumes that the encoder can construct sequences of “select symbol” for different symbol sets

which are operationally equivalent. For example, the sequence “select 1” “select 1” “select 0” “select

1” using the binary symbol set he assumes can be made equivalent to “select D” from the hexadecimal

symbol set. Importantly, if they are equivalent, then the encoding is reversible and so decoding is

possible.

When we now identify the channel as a functional block, we see that the input of the transport channel is

driven by a sender and the output is connected to a receiver. The transfer function is effectively an operation:

“relay input symbol to output after transport delay”. The functional block state holds the symbols in flight

between the input and output.

There are a number of points which make the representation of Shannon’s model in functional block form

especially significant.

• The sender, the transmitter encoder, and receiver decoder are explicitly identified as state machines.

• By implication, the channel and receiver as also state machines.

• Every state machine defines a functional block and vice versa therefore we can be directly equate

Shannon’s state machines with functional blocks

We can redraw Shannon’s diagram with this understanding and go further. We can note that the process

of encoding and decoding enables the hosting of a virtual channel which is logically relaying the sender

symbols. this virtual channel is hosted on the actual channel which is a host functional block. This is shown

in Figure 5.4.

From this we can see that Shannon’s basic model on which he developed his measures of capacity and load

have much more in common with generic processing that might be assumed from the modern perspective

of digital telecommunications. There are number of observations that can be made at this point on how

Shannon’s model relates to the more general model required for Trilogy 2 .

• The encoder and decoder state machines are potentially very generic and it is therefore possible to say

that any functional block is essentially an encoder: essentially for any functional block, the outputs are

an encoding of the inputs.

• The information on the input of a state machine/functional block can be either lost by the functional

block, held in the state of the functional block, or passed to the output. If the functional block does

not lose information and it has finite state, then over time the output information will equal the input

information. A functional block cannot “create” information on its output.

• Time is a principle measure of cost. For a channel of a given capacity, the cost of any one usage of

the channel is simply the time the channel is occupied by the usage. This directly compatible with the

congestion based control mechanisms developed in Trilogy 1.

c© TRILOGY2 Consortium 2015 Page 57 of (74)

!"#$%#&

'(#)*%+#

!"#"$%

&#'()*$

),-##".

"#)+$"/

!"#"$%

&#'()*$

,+!*0),-##".

1!"/2"/0!345+.0/".-367

!"#"$%&#'()*$

/")"%2%#&

'(#)*%+#

!"#"$%

&#'()*$

),-##".

$")+$"/

!"#"$%

&#'()*$

2%/*(-.%!"$0-5!*/-)*0),-##".

+),"-#.)!$/%#0!",#'"%!"#"$%&#'()*$

Figure 5.4: Encoding and decoding from a virtual channel to a host channel

• The measure of capacity is the number of different ways the resource can be used over a given period

of time.

• Things which are predictable require little or no cost.

There are also observations which highlight the difference between the channel and the more general case.

• Encoding and decoding are a functional pair whose net effect is a null function. Ultimately, Shannon

does not consider one separate from the context of the other.

• Sequences of symbols from one symbol set can be arbitrarily mapped to sequences of symbols from

a different symbol and have complete functional equivalence. This is not true of general functional

operations.

• A corollary of the above is that assuming compatible decoding, changing the encoding has no impact

other than to change the capacity of the virtual channel. Clearly in the more general case, changing the

encoding fundamentally changes the functional block.

5.2.2 Measuring Network Resource

The first extension of the basic channel as defined and modelled by Shannon is to generalise the channel to

a network. This section is largely based on the transport functional architecture of the ITU-T G.800 series

of Recommendations. In the case of the channel, the operation was simply “relay symbol”. In this case, the

basic operation is “relay to destination symbol”. There are five immediate aspects to this extension:

Page 58 of (74) c© TRILOGY2 Consortium 2015

!"#$%#&

'(#)*%+#

),-##".

"#)+$"/

/")"%0%#&

'(#)*%+#

),-##".

$")+$"/

!"#$%#&

'(#)*%+#

),-##".

"#)+$"/

/")"%0%#&

'(#)*%+#

),-##".

$")+$"/

!"#$%#&

'(#)*%+#

!"/0"/

"#)+$"/

,+!*1!"#$$%&

2!"/0"/1!345+.16

'%&#(7

/")"%0%#&

'(#)*%+#

!"/0"/

$")+$"/1

0%/*(-.%!"$1-5!*/-)*1),-##".

2).%"#*1!345+.1/".-37

!"#$$%&

.-5".."/8

4(.*%9.":"/

!"#$$%&

$"4(.*%9.":"/81

$".-5".."/

Figure 5.5: Multiplexing

• the number of possible operations for the network is now the three way product of the the number of

symbols, the number of sources, and the number of destinations;

• there may be many senders’ symbol sequences all using a particular host channel simultaneously and

this requires a resource allocation function;

• any one sender’s symbol sequence may be routed across many host channels and this requires a filtering

by destination function;

• at the receiver there may be symbols from different sources all merged together and this requires a

filtering by source function;

• unlike to the encoding function and decoding function of symbols, the filtering functions and the re-

source allocation functions stand alone and do not have a “neutralising” partner function.

An initial step in considering this extension is to consider first multiplexing many virtualised channels on the

same host channel as illustrated in Figure 5.5. In order to multiplex, labelling is needed in addition on the

encoding and decoding.

If encoded symbols from different senders were simply buffered in to the host channel, the receiving end

would have no way of knowing which symbols belong to which sender. In order that the receiver knows

to which sender’s virtual channel each symbol belongs, each symbol must be labelled. This labelling is an

information requirement and may be calculated as an information rate load. We can say:

c© TRILOGY2 Consortium 2015 Page 59 of (74)

• some labelling schemes, notably TDM, are fully deterministic and therefore there is no information

rate and so no labelling information is required (in practice, the label is implicit in the deterministic

multiplexing sequence);

• some labelling schemes are maximal entropy in that all channels are treated as equally likely for all

symbols and so every possibility takes the same labelling resource;

• it is possible, and theoretically more efficient to design a labelling scheme where the the channels with

higher rates of symbols use less label resource (ie shorter labels) compared to channels with lower

symbol rates.

In practice the labelling is an encoding the identity of the tributary port on the multiplex function. The

information is already there in that the symbols arrive through the port which automatically gives them an

identity within the function. Noting this, we see that the multiplexing function has not created information.

Nor indeed, has the demultiplexing function lost the information as the information after demultiplexing is

present in the trib port of the demux function.

In addition to adding labelling, the multiplexer must also allocate the capacity of the host channel to the

symbols of the client channel. In contrast to the allocation of the capacity in the case of an unmultiplexed

channel which has a single input, this capacity allocation function has a different independent input from

each virtual channel. The allocation function is likely to require to know the load arriving from other inputs

in order to decide on its behaviour. This shared common state suggests that localised implementations are

likely to be more efficient that physically distributed solutions where there is a significant delay in acquiring

the common state. This is illustrated in Figure 5.6.

The second stage of the extension is to extend the single host channel to a full network with topology. The

sender, present at one source has messages for different destinations. However, in addition, the different

destinations will have messages from different sources. The symbols at the senders’ ends must be labelled

according to their destination while at the receivers’ ends must be labelled according to source in order to

reconstruct the individual messages from individual sources. In other words, the context of the labelling must

be extended from a single host channel to the network with topology.

Figure 5.7 shows a generic representation of a network with the labelling and filtering that must occur in

order to get one sender’s messages to the appropriate destination and then disentangle this message from

other messages at the far end. Note, this has been developed from simple information theory and has made

no reference to any technology or implementation. This is the techniques that was followed by the ITU-T

in developing the G.800 series of recommendations and ensures the functional model is truly abstract and

independent of implementation. This is very closely associated with the portability requirement of Trilogy 2 .

We can now look at the network from the outside. The network is in fact a host function which is capable of

supporting many virtual channels between senders and receivers at its end points as illustrated in Figure 5.8.

Page 60 of (74) c© TRILOGY2 Consortium 2015

!"#$%#&

'(#)*%+#

),-##".

"#)+$"/

/")"%0%#&

'(#)*%+#

),-##".

$")+$"/

!"#$%#&

'(#)*%+#

),-##".

"#)+$"/

/")"%0%#&

'(#)*%+#

),-##".

$")+$"/

!"#"!$%&

'()"*'

!"/0"/

"#)+$"/

!+"**(,-.(/01.!(-!"#"!$%&

21*".&3

/")"%0%#&

'(#)*%+#

!"/0"/

$")+$"/1

4$.%1",$/('-"5/%."!%-!"#"!$%&

21*".&3

.(/01.!(-

",,0!"%$0*

!"#$%"&'(%)*+

),-##".

$"2(.*%3."4"/51

$".-6".."/

Figure 5.6: Resource allocation

!"#$%&'

(%&$)&*+!,-*%.)+!

!"#$%&'() &%#*+ ,%&-%

&%#*+

&%#*+

!"#$%&'()

&%#*+

,%&-%&%#*+

&%#*+

!"#$%&'()

&%#*+

,%&-%

&%#*+

&%#*+

!"#$%&'.)

!"#$%&'.)

!"#$%&'.)

#*/%# ,%&-%

#*/%#

#*/%#

(%#*/%#

(%#*/%#

(%#*/%#

#*/%# ,%&-%

#*/%#

#*/%#

#*/%# ,%&-%

#*/%#

#*/%#

(%#*/%#

(%#*/%#

(%#*/%#

(%#*/%#

(%#*/%#

(%#*/%#

Figure 5.7: A general network

c© TRILOGY2 Consortium 2015 Page 61 of (74)

!"#$$%&

%$!'(%)

!"#$$%&

(%!'(%)

!"#$$%&

%$!'(%)

!"#$$%&

(%!'(%)

*%)+%)

%$!'(%)

*%)+%),

(%!'(%),

!"#$$%&

%$!'(%)

!"#$$%&

%$!'(%)

*%)+%),

%$!'(%)

!"#$$%&

(%!'(%)

!"#$$%&

(%!'(%)

*%)+%),

(%!'(%),

*%$(-$.,

/0$!1-'$

)%!%-+-$.

/0$!1-'$

+-)10#&-*%(,#2*1)#!1,!"#$$%&

3!&-%$1,*452'&,)%.

"'*1,!"#$%&'

3*%)+%),*452'&,7

()*"(+,-.(#"&,*/,0"1#.!)#.%!+,&"()/+,-.(#"&,*/,1%2&3"+,0"()*"(6

Figure 5.8: Using a general network to support virtual channels

Having extended the general functional model of a channel to that of a network, we are left with the question

of “what is the capacity of the network?”.

In any practical network, that will depend on the routing of the traffic. The capacity must include the “to

destination” part of the the “relay to destination symbol” operation.

However, this is consistent with Shannon’s original definition of capacity which is the logarithm of all possible

sequences of operations which can be supported over a long period of time divided by that period of time.

Normally, much longer sequences of operations are possible to some destinations than others.

This is a result of the fact that most networks are cost optimised around popular routes. However, this is

exactly the same observation that Shannon made about the optimisation of codes like Morse Code around the

most popular letters of the alphabet.

Therefore the Shannon capacity of the network is the maximum capacity of the network assuming destinations

are chosen exactly according to the topology of the network. If the actual demand deviates from this optimum,

the maximal capacity cannot be achieved.

However, we also note that unlike the simple “select symbol” operation, an encoding of a sequence of popular

destinations cannot be made equivalent to a less popular destination. There is therefore no equivalent to

Shannon’s main theorem of the possibility of ideal encoding.

We can make one important conclusion at this stage. We note that when we consider partitioning of a net-

work according to the rules of G.800 series, we see routing is a sequence of “relay to destination symbol”

Page 62 of (74) c© TRILOGY2 Consortium 2015

across subnetworks which are bound into the network topology. We can say that the native language of the

network for routing is sequences of intermediate subnetwork destinations. The network therefore must create

an encoding of each network destination, in the context of each source, into a sequence of intermediate sub-

network destinations, its native language. As with Shannon encoding, the efficiency of the use of the network

is determined by the efficiency of this encoding.

At intermediate subnetwork destinations in the network, it is possible to consider that an encoding of a

sequence of popular intermediate subnetwork destinations can be made equivalent to a less popular one. This

is exactly what MPTCP does in forming multiple routes. This suggests that Shannon capacity and information

are an equivalent way of analysing the network resource optimisation. MPTCP is a mechanism which can

allow the encoding of sequences of intermediate subnetwork destinations which define multiple paths in order

attempt an optimal match between the network capacity and the traffic load from all senders.

As a final observation on routing, in the same way that binary makes possible a maximal entropy channel

were the capacity is the same no matter what the input bit sequence, the same is possible topology. This

is the so called “fat tree” topology which we now see in widespread use in data centres. The fat tree has

the property that with the constrain that senders’ and receivers’ port capacity is available, all possible traffic

matrices can be supported with equal capacity. In datacentres and in other places, this independence is more

important than cost optimising to popular destinations.

As a final note on this definition of network capacity, the definition did not address what should be the base

of the logarithms. In this case, base 2 does not seem to be the natural answer. Base 2 works with a channel on

the basis that optimal encoding is possible and therefore the size of the symbol set does not matter. However,

in the case of destinations, the set of destinations does matter and so choosing the base to take account of the

size of the destination set seems more appropriate.

5.2.3 Initial Suggestion on Measuring Trilogy 2 or NFVI Resource

This work is still at a relatively early stage and so this section sets out the general elements of the possible di-

rection to measuring the capacity of general host functions and the load placed on then by virtual applications

(in the case of NFV, VNFs).

Figure 5.9 illustrated the general scenario of a virtual functional block being hosted by a hosting functional

block. The interface to the virtual functional block is actually an interface to the host functional block which

realises the operations of the virtualised functional block.

However, the host functional block has two types of interfaces. In addition to the operational interfaces, it also

has configuration/programming interfaces. This is the type of interface through which the host function can

be configured to realise the virtual functional block with its operations. This was more formally developed

in D2.1 and Figure 5.10 is reproduced from D2.1 and shows how these two types of interface effectively

freeze some state in the host function block in order to realise the virtual functional block. (This figure also

identifies a third type of interface for the private management of the host functional block).

c© TRILOGY2 Consortium 2015 Page 63 of (74)

!"#$%&'(

)!*+$,-*

!"#"$%

&#'()*$

.-#$/)!*+$,-*

!"#"$%&#'()*$

0,%$!'1,#&2/'3#$%'+$/)!*+$,-*

+),"-#.)!$/%#0!",#'"%!"#"$%&#'()*$

+-*),4!%'$,-*5/

"%-4%'((,*4/

,*$&%)'+&

-"&%'$,-*'1/

,*$&%)'+&

Figure 5.9: General hosting of a virtual function

Host transfer function

State
Output

interfaces
Input

interfaces Container Interface

Configured state = virtual function
Dynamic to host, static to VF

Virtual function dynamic state

Host
private
state

VFB operational input interfaces VFB operational output interfaces

VFB specification input interfaces VFB specification output interfaces

HFB private input interfaces HFB private output interfaces

Figure 5.10: Interfaces of a host functional block

The basic question is “what is the capacity of the host functional block?”.

The suggestion is to again reuse Shannon’s definition of capacity. The capacity of the host functional block

would therefore be defined as the logarithm of all the possible sequences of operations that can be supported

from all possible virtual functional blocks that can be hosted over a long period of time and divided by that

period of time.

However, as we noted with the network, the number of operations in any one sequence will depend on the

time taken to perform the operations, and this can vary greatly. Moreover, some hosts will be tailored to

support some operations more quickly than others. Even more, many hosts are only capable of supporting

certain types of virtual functional blocks.

This latter point is important as hosts cannot be restricted to “universal machines”. There are many useful

host devices which are designed to host a certain class of virtual function. there are two obvious examples

in the case of a network hosting only virtual channels and in the case of storage arrays only hosting virtual

storage. However, even “processing” hosts may not be universal. This restriction is even more important

when we consider that in the real-time environment, a host is only supporting a virtual functional block if it

meets all its timing requirements of its operations, not just the logic of the operations. In this regard, most

“universal machines” are not at all universal.

As with the network where we noted we define the maximal capacity of the network, we also define the

Page 64 of (74) c© TRILOGY2 Consortium 2015

maximal capacity of the general host. The efficiency of the use of the host is determined by the encoding of

the virtual functional blocks into the language of the host.

As an obvious example and very practical example, consider a virtual functional block which is implemented

by a programme on a standard server machine (eg x86). In this example, the maximal capacity of the host

functional block is primary determined by the speed with which the Central Processing Unit (CPU) processes

x86 instructions and the the encoding of the virtual functional block is the programme. The efficiency is

determined by the efficiency of the programme to exploit the language of the host, that is the x86 instruction

set. This accords with the current notions of both measuring the capacity of the host and the efficiency of

the implementation. However, in this case, the derivation is not empirical, it is mathematical. Moreover, the

derivation can be applied to all forms of host not just CPUs with an instruction set where execution rate is an

obvious performance benchmark.

There is still some work needed to develop this definition as a fully operational measure of host resource.

This approach appears to have the follows advantages:

• it is mathematically based;

• it fits with existing pragmatic measures;

• it directly deals with universal hosts and load optimised hosts;

• the separation of maximal capacity from the encoding efficiency gives a practical way of dealing with

the wide performance differences that can exist as a result of different coding implementations.

5.3 Evolution of the standardisation landscape
The Trilogy 2 architecture described in Deliverable D2.1 is heavily based on the architecture proposed by the

ETSI NFV ISG. From the moment we released that deliverable until now, we have contributed at different

initiatives at the IETF and the IRTF covering gaps or enhancing out original Trilogy 2 architecture. We have

had different degrees of success in bringing Trilogy 2 work into different SDOs. In some instances we are

working in established IETF work groups (WGs) and in others we are in the process of establishing new ones.

5.3.1 IETF: Service Function Chaining

The SFC working group within the IETF is devising mechanisms to steer traffic in a data-centre-alike envi-

ronment in such a way that elements implementing Service Functions (SFs) can be chained in a given order

to result in different service function chains [11]. These SFs can be either physical devices or virtualised

appliances, whereby VNFs are covered.

A key aspect when chaining SFs is how to check that the resulting function chain is working correctly.

Additionally, means are needed to spot points of failure when something goes wrong. This is covered by the

term “OAM” [3]. In this spirit, we are contributing to the requirement collection for an OAM framework for

SFC. Initialy, our findings were contributed to [18] for the IETF#90. This Internet Draft (I-D) was merged

c© TRILOGY2 Consortium 2015 Page 65 of (74)

with [2] for the IETF#91. Once the framework is in place, we will start the work on concrete protocols by

selecting existing OAM protocols and analysing the gaps to fully cover the specifics of VNFs.

5.3.1.1 Intent and scope of SFC OAM

We distinguish different types of Appliance or Service Function that can be chained in a function chain:

(i) Ingress appliances that classify packets (per tenant, per flow etc.), handle metadata generation, set up

one or more chains and mark packets.

(ii) Stateful appliances such as firewalls or other devices, where packet modification and/or Layer 4-7

session termination will be performed

(iii) Transparent appliances (e.g. DPI devices, stealth firewalls, etc.) which do not perform Layer 4-7

session termination and where packet modification may or may not be performed.

Our intent is to monitor and ensure the integrity of the Service Function Chaining. This I-D is not attempting

to monitor services or trying to replace transport OAM. It rather will capitalise on existing OAM functions in

the network and define the missing pieces. a Specific challenge in SFC is that the elements of the chain are

not only not required to deliver all the Internet Protocol (IP) packets they receive, but may also generate IP

packets themselves.

5.3.1.2 Relationship with other Trilogy 2 activities

With the advent of Network Function Virtualisation, network functions that are traditionally implemented

on specialized hardware devices are moved to virtualised computing platforms. A Virtual Network Function

implements the same network function (e.g. firewall, load balancer) as its non-virtualised pendant, but is

deployed as a software instance running on general purpose servers via a virtualization layer, such as an

hypervisor. This way, a network service is a sequence of topologically distributed VNF instances that become

a VNF chain. These VNF chains can be treated as Service Function Chains.

5.3.2 IETF: VNFPOOL

The use of VNFs opens new challenges and requirements concerning the reliability of provided (network)

services. When network functions are deployed on monolithic hardware platforms, the lifecycle of individual

services is strictly bound to the device availability, and management backplanes may detect outages and fail

over all affected services to new instances deployed on backup hardware. On the other hand, with VNFs,

individual network functions may still fail, and there are more factors of risk such as software failure at

various levels, including hypervisors and virtual machines, hardware failure, and instance migration that may

make a VNF unreliable. Moreover, there is currently no mechanism to provide detection and redundancy

for individual functions of a VNF chain, and the use of VNFs introduces new problems in reliable service

provisioning that are not addressed in existing control and management mechanisms. First of all, how to

detect and respond to a failure in an element of a VNF or of a chain? And how to inform VNF chain

neighbours about a failure, and how do they respond? And how to transfer VNF state information to its

backup VNF?

Page 66 of (74) c© TRILOGY2 Consortium 2015

In this context, the VNFPool effort in IETF tries to achieve higher reliability for VNFs, and in particular

to adopt VNF pooling mechanisms where a number of VNF instances can be grouped as a pool to provide

the same function in a reliable way. VNFPool tries to address challenges and open questions concerning

the reliability of individual VNFs belonging to VNF pools: e.g. how to manage the redundancy model (e.g.

select active/standby for a VNF instance in a pool) while considering the policy and the physical infrastructure

conditions, and how the service states of a VNF are maintained and synchronized with backup instances in a

pool.

5.3.2.1 VNFPool Requirements and Use Cases

As a complement to the VNFPool architecture exercise, some work around requirements and use cases for

VNFPool in the NFV realm is active in IETF. In particular, the deployment of VNF based services requires

a transition of resiliency capabilities and mechanisms from physical (specialized) network devices, typically

highly available, to such entities (like VMs) running VNFs in the context of pools of virtualized resources.

When moving towards a VNFPool enabled approach for VNFs deployment and operation, the generic re-

siliency requirements are translated into the following ones [26]:

• Service continuity: when a hardware failure or capacity limits (memory and CPU) occur on platforms

hosting VMs (and therefore VNFs), it is necessary to migrate VNFs to other VMs and/or hardware

platforms to guarantee service continuity without negligible impact to users

• Topological transparency: the hand-over between live and backup VNFs must be implemented in a

transparent way for the user and also for the network service itself. This means that the backup in-

stances need to replicate the necessary information (configuration, addressing, etc.) so that the network

function is taken over without any topological disruption (i.e. at the VNF chain level)

• Load balancing or scaling: migration of VNF instances may also happen for load-balancing purposes

(e.g. for CPU, memory overload in virtualized platforms) or scaling of network services (with VNFs

moved to new hardware platforms). In both cases the working network function is moved to a new

VNF instance and the service continuity must be maintained.

• Auto Scale of VNFs Instances: when a VNF requires increased resource allocation to improve overall

service performance, the network function could be distributed across multiple VMs, and to guarantee

the performance improvement dedicated pooling mechanisms for scaling up or down resources to each

VNF in a consistent way are needed

• Multiple VNF Resilience Classes: each type of end-to-end network service (e.g. web, financial back-

end, video streaming, etc.) has its own specific resiliency requirements for the VNFs that implement

such service. While for operators it is not easy to achieve service resiliency SLAs without building to

peak, a basic set of VNF resiliency classes can be defined in the context of VNFPool to identify some

c© TRILOGY2 Consortium 2015 Page 67 of (74)

metrics, such as: if a VNF needs status synchronization; fault detection and restoration time objective

(e.g. real-time); service availability metrics; service quality metrics; service latency metrics for VNF

chain components.

A set of use cases for VNFPool are under investigation in IETF [26, 15], with the aim of validating the VNF-

Pool architecture concepts and also to identify any new resiliency requirement that improve the architecture

specification.

5.3.2.2 VNFPool Architecture

The VNFPool architecture aims to provide reliability mechanisms to VNF instances, that are not typically

considered as built-in functionalities on their hosts, i.e. the general purpose servers. Apart from the already

mentioned VNF instance failures at both hardware (i.e. server overload) and software (i.e hypervisor, VM,

VNF itself) levels, a further crucial aspect to be considered when providing VNF pooling mechanisms is the

instance migration caused by performance downgrade by excessive load (e.g. CPU, memory, disk I/O), server

consolidation or any network service constraint upgrade. Even if this VNF load balancing aspect is distinct

from a hardware/software failure, it may give the same appearance from a pure VNF perspective, and must

be considered in the VNFPool architecture. With VNFPool, a given group of VNF instances is called VNF

set, and it can include either single or multiple types of VNF, and each type of VNF has typically a number

of instances providing the same network function. The VNFPool architecture aims to provide mechanisms

to dynamically manage a set of VNFs providing the same function in a transparent way for end-hosts and

service control entities, and also map the current VNF in use with the group it belongs. The VNFPool

architecture, as it is currently defined in IETF, is depicted in Figure 5.11. A VNF has a VNFPool associated

that contains a certain number of VNF instances, called VNFPool Elements, that provide the same network

function. Therefore a VNF set is transversal to the pools in Figure 5.11 and can be grouped into multiple

VNFPools implementing specific VNFs. For each VNF, a Pool Manager manage the reliability of the VNF

itself, by selecting the active instance and interacting with the Service Control Entity for consistent end-to-

end network service provisioning. Each VNFPool is typically identified with a kind of abstract and unique

identifier across all the Pools, and the role of the Pool Manager is to keep the active instance transparent to

the Service Control Entity and map this identifier with that active instance.

On the other hand, the Service Control Entity is responsible for the provisioning of the network services, and

therefore is the high level entity that combines and orchestrates all the VNFs under its ownership. The major

benefit when using a VNFPool approach is that the reliability mechanisms and the pooling of VNFs is com-

pletely transparent to the Service Control Entity: the management of the redundancy of each VNF composing

a network service (i.e. a VNF chain) is carried out inside each VNFPool by each Pool Manager. This way, a

VNFPool enabled VNF is exposed to the Service Control Entity as a normal VNF. When composing network

services, VNFPool enabled VNFs become part of VNF chains managed and orchestrated by the Service Con-

trol Entity, following the principles defined by IETF for the Service Function Chaining (SFC) [11]. A service

Page 68 of (74) c© TRILOGY2 Consortium 2015

VNF-A Pool VNF-B Pool

VNF-A#1 ... VNF-A#n VNF-B#1 ... VNF-B#n

Pool Manager Pool Manager

VNF-A VNF-B

Service Control Entity

Figure 5.11: VNFPool reference architecture

chain is here defined as an ordered set of service functions that must be applied to packets in a given network

service, and according to the VNFPool principles described above, VNFPool is orthogonal and somehow

invisible to SFC, even if their concepts are compatible and VNFPool enabled VNFs can be orchestrated by a

SFC framework. The current IETF specification for the VNFPool architecture describes the open challenges

and issues for the application of reliability and redundancy management to VNFs:

• Redundancy model inside VNF: the selection and placement of backup VNF instances in the physical

infrastructure is a key VNFPool aspect and should be dependant on the given type of VNF. Active and

backup instances should be placed geographically closed, but most probably not in the same server to

avoid outages of backups in case of hardware failures.

• State synchronization inside VNF: service states specific for each type of VNF (e.g. NAT translation ta-

ble, TCP connection states, etc.) need to be synchronized among the live VNF and its backup instances.

The Pool Manager should be responsible to coordinate these mechanisms inside each VNFPool, as well

as to maintain some pool states related to redundancy settings, backups locations, etc.

• Interaction between VNF and Service Control Entity: the communication between the Pool Manager

and the Service Control Entity should be as more transparent as possible with respect to the capabilities

and characteristics of the VNFPool. However, some information exchange is needed for VNFPool

addressing, and above to inform the Service Control Entity of any change in VNF capabilities (VM

capacity, bandwidth, processing constraints, etc.) when moving from a live instance to a backup in the

pool.

• Reliable transport: reliable transport protocols should be considered for the delivery of VNFPool con-

trol messages, e.g. for redundancy management, selection of active/backup VNFs, etc. MPTCP and

SCTP could be good candidate and should be evaluated for their applicability in VNFPool.

c© TRILOGY2 Consortium 2015 Page 69 of (74)

OSS/BSS

Service, VNF, and Infrastructure

Description

VNF Pool 1

EMS 1

VNF Pool 2

EMS 2

VNF Pool 3

EMS 3

NFVI

Virtual

Computing

Virtual

Storage
Virtual

Network

Vn-Nf

Vl-Ha

Virtualisation Layer

Computing

Hardware

Storage

Hardware

Network

Hardware

Hardware Resources

Os-Ma

Se-Ma

Ve-

Vnfm

Nf-Vi

NFV Managament and

Orchestration

Orchestrator

VNF

Manager(s)

Pool
Manager(s)

Or-Vnfm

Virtualised

Infrastructure

Manager(s)

Vi-Vnfm

Or-Vi

Figure 5.12: VNFPOOL-enabled ETSI NFV reference architecture

5.3.2.3 VNFPool in the Trilogy 2 /NFV architecture

The VNFPool concepts introduced above perfectly fit in the Trilogy 2 architecture, and contribute to fill

at least the gap of VNF resiliency with respect to the initial draft of the Liquid Net architecture. Indeed,

Trilogy 2 has included the ETSI NFV concepts as a particularisation of its architecture, and VNFPool aims

to provide those resiliency and VNF pooling mechanisms not initially considered in ETSI. Figure 5.12 shows

that the VNFPool concepts and mechanisms fit in the NFV management and orchestration layer of the ETSI

NFV ISG architecture. The VNF Manager is responsible for the management of VNF lifecycle, and provides

control functions for instantiation, update, query, termination of VNFs. Different deployment models are

supported in this NFV architecture for VNF Managers: one per VNF, or a single one for multiple VNFs.

Most of the VNFPool resiliency mechanisms described above can be implemented as VNF Manager dedi-

cated control functions: indeed the Pool Manager in Figure 5.12 can be included in the ETSI NFV architecture

as a component of the VNF Manager, responsible for managing pools of VNFs providing the same network

function and supporting both resiliency and VNF scaling (upgrade/downgrade) functions. On top of the VNF

Manager, the NFV orchestrator, which is in charge of the orchestration and management of the NFV in-

frastructure and virtual resources also providing primitives for VNFs chaining, matches the Service Control

Entity in the VNFPool architecture (as shown in Figure 5.12).

Page 70 of (74) c© TRILOGY2 Consortium 2015

5.3.3 IRTF: NVFRG

A new RG for NFV specific issues was proposed to the IRTF for the IETF’90. It has met in the IETF’90 and

IETF’91 meetings. The group is currently co-chaired by Diego López, from Telefónica I+D, who is an active

member of the Trilogy 2 project.

Areas of interest

The NFVRG lists following areas of interest in their WIKI [12]:

• Network and service function chaining: architecture and implementation (e.g. automation of service

chain building)

• Autonomous service orchestration and optimization

• New operational aspects of network and service virtualization, as well as new operational models re-

quired by virtualization

• Infrastructure and service function description and programming (languages, APIs, frameworks for

combined processing, network and storage programming)

• Virtualized network economics and business modeling

• Security, trust and service verification

• Real-time big data analytics and data-centric management of virtualized infrastructure

• New application domains enabled by virtualized infrastructure and services

• System wide optimization of compute, storage, network and energy efficiency

• Explore infrastructure and service abstractions enabled by virtualization

• Autonomic and real-time orchestration enabled by network function virtualization

Relevance to Trilogy 2

Most of the research topics targeted by the NFVRG are relevant for the architecture discussions in Tril-

ogy 2 and beyond.

5.4 Conclusion
The ETSI Network Function Virtualisation Industry Study Group architecture presented in Deliverable D2.1

has been the basis of our work during this period and we have been able to identify different gaps when

handling liquidity. The additions we present here it give us the tools to overcome them. We will continue

with the development of the OAM framework, as it gives us a reliable tool to check that the NFVs within a

chain work correctly. With regards to the pooling mechanisms, we will endeavour to find a fitting venue to

this work as it is key for achieving operator grade reliability with software-based, virtualised components.

c© TRILOGY2 Consortium 2015 Page 71 of (74)

6 Conclusion and Next steps
At this point, we have a very consistent framework that covers most of the aspects of Network Liquidity we

set forth to explore in Trilogy 2. This architecture will be tested within the project, mainly in WP3 and will

be the base for further standardisation work.

6.1 Standardisation
The architecture presented at and adopted by the ETSI Network Function Virtualisation Industry Study

Group, which is the base of this and the previous architecture deliverable of Trilogy 2, is serving as the

foundation for the second phase in the work of this Industry Study Group in the ETSI, which is due to start

during the last year of Trilogy 2. Additionally, we have also different WGs at the IETF and the IRTF to

standardise our work. Any further findings stemming from the implementation of the use cases will be fed

into the adequate SDO.

6.2 Further work
As stated above, the work now will go on testing the architecture against the use cases in work package 3.

Additionally, we will continue defining the information models for the different components. We are releasing

a first set of tools for controlling liquidity in parallel with this deliverable (see Deliverable D2.4). This set of

tools will be checked and refined during the next phase of the project and will result in the final set of tools

for controlling liquidity of Deliverable D2.5. This final set of tools will also include information models that

take into account all aspects of liquidity developed in Trilogy 2.

Page 72 of (74) c© TRILOGY2 Consortium 2015

Bibliography
[1] D7 overall architecture including design principles. Deliverable 7, Trilogy Project EU 7th Framework

Project ICT-216372, jun 2009.

[2] Sam Aldrin, Ram Krishnan, Nobo Akiya, Carlos Pignataro, and Anoop Ghanwani. Service Function

Chaining Operation, Administration and Maintenance Framework. Internet-Draft draft-aldrin-sfc-oam-

framework-01, IETF Secretariat, October 2014. I-D Exists.

[3] L. Andersson, H. van Helvoort, R. Bonica, D. Romascanu, and S. Mansfield. Guidelines for the Use of

the ”OAM” Acronym in the IETF. Technical Report 6291, IETF Secretariat, June 2011.

[4] Marcelo Bagnulo, Christoph Paasch, Fernando Gont, Olivier Bonaventure, and Costin Raiciu. Anal-

ysis of MPTCP residual threats and possible fixes. Internet-Draft draft-ietf-mptcp-attacks-02, IETF

Secretariat, July 2014. IESG Evaluation.

[5] Alistair Barros, Marlon Dumas, and Phillipa Oaks. Standards for web service choreography and orches-

tration: Status and perspectives. In in Proceedings of the Workshop on Web Services Choreography and

Orchestration for Business Process Management, 2005.

[6] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. RFC 3135: Performance Enhancing

Proxies Intended to Mitigate Link-Related Degradations, June 2001.

[7] David D. Clark, John Wroclawski, Karen R. Sollins, and Robert Braden. Tussle in cyberspace: Defining

tomorrow’s internet. IEEE/ACM Trans. Netw., 13(3):462–475, June 2005.

[8] Thomas Erl. Service-oriented architecture: concepts, technology, and design. Pearson Education India,

2005.

[9] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for Multipath Operation with

Multiple Addresses. Technical Report 6824, IETF Secretariat, January 2013.

[10] Fernando Gont. Security Assessment of the Transmission Control Protocol (TCP). Internet-Draft draft-

gont-tcp-security-00, IETF Secretariat, February 2009.

[11] Jim Guichard and Thomas Narten. Service function chaining charter. Technical report, IETF, Dec 2013.

[12] Jim Guichard and Thomas Narten. Network function virtualization research group (nfvrg) (proposed).

http://trac.tools.ietf.org/group/irtf/trac/wiki/nfvrg, Dec 2014.

[13] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Handley, and Hideyuki

Tokuda. Is it still possible to extend tcp? In Proc. ACM IMC, 2011.

[14] KantaraInitiative. https://kantarainitiative.org/. note.

c© TRILOGY2 Consortium 2015 Page 73 of (74)

http://trac.tools.ietf.org/group/irtf/trac/wiki/nfvrg
https://kantarainitiative.org/

[15] Daniel King, Marco Liebsch, Peter Willis, and Jeong dong Ryoo. Virtualisation of Mobile Core Network

Use Case. Internet-Draft draft-king-vnfpool-mobile-use-case-01, IETF Secretariat, June 2014.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click modular router. ACM

Transactions on Computer Systems, August 2000, 2000.

[17] Arne Koschel, Sabina Hofmann, and Irina Astrova. Standardization in Cloud Computing, pages 195–

204. WSEAS Press.

[18] Ram (Ramki) Krishnan, Anoop Ghanwani, Pedro Gutierrez, Diego Lopez, Joel Halpern, Sriganesh Kini,

and Andy Reid. SFC OAM Requirements and Framework. Internet-Draft draft-krishnan-sfc-oam-req-

framework-00, IETF Secretariat, July 2014. I-D Exists.

[19] Lucian Popa, Ali Ghodsi, and Ion Stoica. Http as the narrow waist of the future internet. In Hotnets,

2010.

[20] K. Ramakrishnan, S. Floyd, and D. Black. RFC 3168: The Addition of Explicit Congestion Notification

(ECN) to IP , September 2001.

[21] Andy B. Reid. Architectural Comments on GS NFV MAN001, feb 2014. Contribution to ESI NFV

ISG, NFV(14)000014.

[22] Randall Stewart. RFC 4960: Stream Control Transmission Protocol, September 2007.

[23] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. Symnet: Static checking for

stateful networks. In HotMiddlebox, 2013.

[24] J. Touch, A. Mankin, and R. Bonica. The TCP Authentication Option. Technical Report 5925, IETF

Secretariat, June 2010.

[25] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design, implementation and

evaluation of congestion control for multipath tcp. In NSDI, 2011.

[26] Liang Xia, Qin Wu, Daniel King, Hidetoshi Yokota, and Naseem Khan. Requirements and Use Cases for

Virtual Network Functions. Internet-Draft draft-xia-vnfpool-use-cases-02, IETF Secretariat, November

2014. I-D Exists.

Page 74 of (74) c© TRILOGY2 Consortium 2015

	Executive Summary
	List of Authors
	 List of Figures
	List of Tables
	Introduction
	General
	nfv
	Objectives
	Document structure

	Principles
	Axiomatic Architectural Principles
	Guiding Principles

	High level orchestration of domains
	Introduction
	What is Orchestration
	How orchestration is used in
	Orchestration Scope
	Orchestration in the local domain
	Orchestration between multiple domains

	Efforts from other groups
	Network management and orchestration
	IEEE Intercloud Project

	Bringing control back to the endpoints
	A Broken Contract
	Steps towards a solution

	Ninja tunnels: efficiently hiding network traffic
	A constructive approach: an explicit interface to allow endpoints and the network to communicate
	Implementing the API
	Use cases

	Ubiquitous encryption to regain control of data
	TCPINC and Upper layers
	TCPINC and other security protocols
	TCPINC and TLS/SSL
	TCPINC and TCP-AO

	Compatibility with TCP
	Simultaneous open

	TCPINC and middleboxes
	TCPINC and NATs
	TCPINC and other middleboxes

	TCP header protection
	Use of option space
	Disabling encryption
	Crypto Agility
	TCPINC and MPTCP
	TCPINC and TFO
	Key exchange
	Privacy considerations
	Reusing cypto material

	A thought about the future

	NFV as a particularisation of the infrastructure
	Introduction
	A generalised representation for resources in the liquid network
	Measuring Transport Resource
	Measuring Network Resource
	Initial Suggestion on Measuring Trilogy 2 or NFVI Resource

	Evolution of the standardisation landscape
	ietf: sfc
	Intent and scope of sfc oam
	Relationship with other activities

	ietf: VNFPOOL
	VNFPool Requirements and Use Cases
	VNFPool Architecture
	VNFPool in the /NFV architecture

	irtf: NVFRG

	Conclusion

	Conclusion and Next steps
	Standardisation
	Further work

	References

