
ICT-317756

TRILOGY 2
Trilogy 2: Building the Liquid Net

Specific Targeted Research Project
FP7 ICT Objective 1.1 The Network of the Future

D2.5 - Tools for controlling liquidity

Due date of deliverable: 31st December 2015
Actual submission date: 31st December 2015

Start date of project 1 January 2013
Duration 36 months
Lead contractor for this deliverable Universidad Carlos III de Madrid
Version v0.1 , January 11, 2016
Confidentiality status Public

c© TRILOGY 2 Consortium 2016 Page 1 of (89)

Abstract
The goal of the Trilogy 2 project is to create resource liquidity with three type of resources, namely,
compute, storage and networking. WP1 is in charge of developing the tools to create liquidity and
WP2 develops the tools for controlling the created liquidity. This deliverable describes the work done
in the third and final year of the Trilogy 2 project in terms of liquidity control tools. This deliverable
first presents the Trilogy 2 Information model to describe the resources being pooled. It then details
the tools developed to control liquidity from the end user’s perspective. Such tools include the use of
end to end encryption to modulate the effects of operator’s liquidity tools in the end user’s traffic, the
creation of an incentive framework to foster users to create liquidity in the edges of the network and the
development of a MPTCP subflow manager to assist the end user with the creation of MPTCP subflows.
This deliverable also contains a set of tools for liquidity control from the operator’s perspective. Such
tools include the control tools for the Federated Market and Cloud.net and the means for operators to
affect the liquidity created by MPTCP. Finally, we describe a few tools to understand liquidity, in order
to exert informed control over resources.

Target Audience
The ultimate target audience for this deliverable is the community of knowledge engineers who define
the structure of ICT systems, and those who define the standards and frameworks that are necessary for
these ICT systems to interwork across the industry. In addition, this deliverable is also targeted at a) the
project participants to ensure the whole is understood to be greater than the parts and b) the project’s
scientific advisory board and reviewers to articulate the approach being taken across the project in order
to elicit useful feedback and criticism.

Disclaimer
This document contains material, which is the copyright of certain Trilogy 2 consortium parties, and may
not be reproduced or copied without permission. All Trilogy 2 consortium parties have agreed to the full
publication of this document. The commercial use of any information contained in this document may require
a license from the proprietor of that information.
Neither the Trilogy 2 consortium as a whole, nor a certain party of the Trilogy 2 consortium warrant that the
information contained in this document is capable of use, or that use of the information is free from risk, and
accept no liability for loss or damage suffered by any person using this information.
This document does not represent the opinion of the European Community, and the European Community is
not responsible for any use that might be made of its content.

Impressum
Full project title TRILOGY 2: Building the Liquid Net
Title of the workpackage WP2 - Tussle over Liquidity
Editor Francisco Valera, UC3M
Project Co-ordinator Marcelo Bagnulo Braun, UC3M
Copyright notice c© 2016 Participants in project TRILOGY 2

Page 2 of (89) c© TRILOGY 2 Consortium 2016

Executive Summary
The Trilogy 2 project is set to increase liquidity in the network. A liquid network is one where its resources
are pooled together behaving as one more capable resource, bringing higher flexibility and efficiency in the
usage of resources. The Trilogy 2 project is targeting three types of resources, namely, networking, compute
and storage resources. The task of WP1 is to develop the tools for creating liquidity and the task of WP2 is to
define the tools for controlling the created liquidity. Control of liquidity is paramount to guarantee of proper
use of the pooled resources, to avoid abuses and unfair distribution of resources. This deliverable describes
the work on the third and final year of the Trilogy 2 WP2 on Controlling liquidity.
This deliverable structures the presentation of the different control tools as follows: it first presents the Trilogy
2 information model, then it covers the tools for controlling liquidity from the end user perspective, then it
moves on to describe the liquidity control tools for the operator and finally it presents tools to understand the
liquidity.
The first contribution presented in this deliverable is the Trilogy 2 Information Model. The proposed infor-
mation model describes the resources to be pooled. This information model allows for a uniform description
of the resources and enables the exchange of information of the resources involved. This is a fundamental
piece to enable control of resources, since the first step to control the amount and type of resources each user
is allowed to consume is to properly quantify them. Using the proposed information model, it is then possible
to create specific data model instances that describe the resources at hand. This information model is used to
describe the resources traded in the cloud Federated Market, that we describe below.
The second contribution contained in this deliverable is the set of tools for liquidity control from the user‘s
perspective. Network users and network providers have in many cases different perspectives, due to the dif-
ferences in goals, requirements, network usage, etc. It is then natural to provide different tools for controlling
liquidity for users and for providers. Users control the fringes of the network and in particular the end sys-
tems. Operators control the core of the network. User’s tools for controlling liquidity are mainly end to end.
In this deliverable we present three main tools for user control of liquidity, namely, end to end encryption,
incentives for the creation of liquidity at the edges and selection of available paths, which we summarize next.
In the Trilogy 2 architecture presented in deliverable D.2.3 we presented end to end encryption as a funda-
mental tool to enable user control of liquidity. Liquidity tools deployed by the operator, such as Network
Function Virtualization, makes the network much more flexible, allowing the operator to deploy network
functions in very short time scales. While in many cases this benefits the users, many of the functions de-
ployed by the operator affect user’s traffic in ways the users may prefer to avoid or at least modulate. For
example, operators may deploy Deep Packet Inspection capabilities to rate limit some types of traffic. End
users can use encryption to regain control of their traffic and determine which part of their traffic is affected
by these type of operator network functions. In deliverable D2.4 we described several tools for encrypting
end to end traffic, in particular we presented two approaches to secure MPTCP traffic. In this deliverable, we
present two contributions related to end to end encryption. First, we performed a large scale feasibility study
of the deployment and adoption of end to end encryption in the Internet. Proposed tools are only useful if
they can be deployed in the Internet. By doing a large scale deployment study, we can assess if the proposed
tools will work in the Internet and if not, how they need to changed in order to be deployable. We find that
in most ports except for port 80, end to end encryption is deployable. Building on this conclusion from the
feasibility study, we deploy a specific tool to encrypt web traffic, called HTTPCrypt. HPPTCrypt provides
opportunistic encryption (like TCPINC, described in deliverable D2.4) but specific for web traffic. By making
the encrypted content to look like regular HTTP traffic, HTTPCrypt manages to overcome the deployment
limitations faced by TCP opportunistic encryption.
As described in the Trilogy 2 project Description of Work, incentives play a fundamental role in controlling
liquidity. Rational players behavior is determined by the available incentives, so setting incentives right is
one fundamental step towards achieving the desired behavior. In this deliverable, we present Kadupul, a tool
for creating the incentives for end users to make liquidity available in the fringes of the network. Current
network possess a rich interconnection in the fringes thanks for a myriad of available wireless technologies,
such as wifi, bluetooth etc. This mesh of interconnection could enable direct user to user communication,
or at least a larger networking pool to interconnect end users with a low latency. However, this connectivity
remains largely unused due to lack of incentives to make it available for other users. Kadupul introduces

c© TRILOGY 2 Consortium 2016 Page 3 of (89)

micro-payments in the form of Bitcoins to allow users to pay other users who are willing to transport their
packets towards their destination, unlocking the connectivity potential at the edge of the network.
MPTCP makes multiple paths available to the end user. It is then critical for the end user to determine how
these path are going to be used to control the liquidity created by MPTCP. The next contribution contained
in the deliverable is the MPTCP subflow manager. When a MPTCP connection is started, MPTCP has the
possibility to initiate many subflows e.g. using all the possible source and destination IP addresses available.
However, creating all possible subflows may or may not be the optimal strategy, depending on the specific
user needs. The MPTCP subflow manager controls which and how subflows are created. We present different
strategies for different use cases.
The third contribution contained in this deliverable is a set of tools for control of liquidity from the operator’s
perspective. The Federated Market is a platform created in the Trilogy 2 project to enable cloud providers and
client to trade cloud resources. Cloud providers make available compute, storage and networking resources
for clients to hire. It is fundamental then for all the stakeholders to have the means to control the usage of
resources. The Federated Market relies on the Information Model presented earlier to describe the resources
traded. It also develops incentive mechanisms based on payment mechanisms to ensure proper usage of
resources. It also provides built in enforcement mechanisms to prevent inappropriate use of resources in the
market place. All these mechanisms are described in this deliverable.
We have presented MPTCP as a core technology to create network liquidity. MPTCP is inherently an end
user technology, as TCP resides in the end system. However, operator will carry the MPTCP traffic, so it is
natural for them to try to exercise some form of control over the network resource pools created by MPTCP.
We explore how the operators can use packet drop as a control signal to affect MPTCP behaviour. We provide
a game theory model that allow us to explore different ways the operator can use packet drops to divert or
attract MPTCP capable traffic.
The fourth and final contribution in this deliverable is a set of tools for understanding liquidity. In order to
properly control liquidity it is important first to understand liquidity. We present two tools for understand-
ing liquidity, namely a Web dependency graph analyser and Symnet, a symbolic execution environment for
network functions.
The Web dependency graph analyzer allow us to understand the structure of modern web pages and to explore
how web content can benefit from the available liquidity tools, such as multipath transport. Indeed, as modern
web pages contain several components, it is possible that it is beneficial to use different paths to transport
different web objects composing a given web page. This and other relevant question can be addressed using
the web dependency graph analyser, helping then determine the number of subflows that would be optimal to
have in a given MPTCP connection (feeding into the MPTCP subflow manager discussed earlier).
As described in Deliverable D2.3, Network Function Virtualization is a core technology to create liquidity
in the network. It allows to dynamically deploy network functions in very short time scales. However, due
to the rapid deployment and large number of network functions, it also makes the network harder to reason
about. It is then more challenging to understand how the traffic is processed in an NFV based network. In this
deliverable we describe Symnet, a symbolic execution framework for network functions. Symnet explores all
possible execution paths, that different packets can take through a network (i.e. all possible combinations of
network functions) to expose how packets are treated when deploying a number of network functions.
Through the described tools, we believe that the different stakeholders will have a rich tool set to understand
and control the liquid resources in the network.

Page 4 of (89) c© TRILOGY 2 Consortium 2016

List of Authors
Authors B. Hesmans, R. Bauduin, O. Bonaventure, C. Raiciu, M. Popovici, R. Stoenescu, V. Olteanu, J. Thom-

son, T. Moncaster, I. Sidorov, J. Chesterfield, M. Bagnulo, Jon Crowcroft, Anil Madhavapeddy
Participants UCL-BE, UPB, ONAPP, UC3M, UCAM
Work Package D.2.5 - Tools for controlling liquidity
Security Public (PU)
Nature R
Version v0.1
Total number of pages 89

c© TRILOGY 2 Consortium 2016 Page 5 of (89)

Contents

Executive Summary 3

List of Authors 5

List of Figures 8

List of Tables 10

1 Introduction 11

2 Information Model 13
2.1 Introduction . 13
2.2 Constructing the Information Model . 13
2.3 Deriving a simple Information Model . 13
2.4 The Trilogy 2 Information Model . 14

2.4.1 Actors . 16
2.4.2 Operations . 16
2.4.3 Systems . 17
2.4.4 Software . 18
2.4.5 Context . 19
2.4.6 Business . 19

2.5 Example of applications of the information model . 19
2.5.1 Transparent Migration Example . 21
2.5.2 DRaaS . 22
2.5.3 Multi-WIFI . 23
2.5.4 Applying the Information Model to Openstack . 23

2.6 Alternatives to the Trilogy 2 Information Model . 26
2.7 Conclusion . 28

3 User Control 30
3.1 MPTCP security feasibility measurement . 30

3.1.1 Deployability analysis of the proposed MPTCP security extensions 30
3.1.2 Methodology . 31
3.1.3 Results . 31
3.1.4 Discussion . 32

3.2 HTTPCrypt - Low Latency Opportunistic Encryption . 32
3.2.1 Design Goals . 33
3.2.2 Latency and performance . 34
3.2.3 Integration with the existing code . 35
3.2.4 Protocol Description . 35
3.2.5 Deriving a session key . 36
3.2.6 Request structure . 36
3.2.7 Chunked encoding . 37
3.2.8 Cryptographic primitives . 37
3.2.9 Security Analysis . 38
3.2.10 Operating System Optimizations . 40
3.2.11 Embedded usage . 40
3.2.12 Evaluation . 41

3.3 Kadupul - incentive based enforcement liquid control . 43
3.3.1 Kadupul Design . 45

3.4 Managing Multipath TCP sufblows . 48

Page 6 of (89) c© TRILOGY 2 Consortium 2016

3.4.1 Introduction . 48
3.4.2 The subflow controller . 49
3.4.3 Sample use cases . 50

3.4.3.1 Smarter long-lived connections . 50
3.4.3.2 Smarter backup . 51
3.4.3.3 Smarter streaming . 51
3.4.3.4 Smarter exploitation of flow-based LB 52
3.4.3.5 User space path manager performances 52

4 Operator Control 56
4.1 Federated Market and Cloud.net . 56

4.1.1 Federation . 56
4.1.1.1 Enabling Private Federation Via Tokens 56
4.1.1.2 Users and roles in the Federation . 56
4.1.1.3 Managing the network for Federated VMs 57
4.1.1.4 Ensuring that users have credit on the platform 57

4.1.2 Tools to control and manage resources in Cloud.net 57
4.1.2.1 Payment in Cloud.net . 57
4.1.2.2 Enforcement activities . 57
4.1.2.3 Incentive activities . 58

4.1.3 Tools to control and manage resources in DRaaS 58
4.1.3.1 Incentives and Enforcement . 59

4.2 Operator games in the age of MPTCP . 59
4.2.1 Prices . 60
4.2.2 Availability . 60
4.2.3 Throughput and traffic policing . 60
4.2.4 Client & provider utility . 60
4.2.5 Throughput and shaping . 61
4.2.6 Initial results . 62

5 Tools for Understanding Liquidity 63
5.1 Web dependency graph analyser . 63

5.1.1 Web Page Load Process . 64
5.1.2 Dependency Graph Activities . 65
5.1.3 Implementation . 66

5.2 Symbolic execution for networks with Symnet . 70
5.2.1 Motivating examples . 71
5.2.2 Design Overview . 73
5.2.3 SEFL Language . 74
5.2.4 Symbolic execution with Symnet . 75
5.2.5 Network Verification with Symnet . 75
5.2.6 Modeling networks with SEFL . 76
5.2.7 Evaluation . 79
5.2.8 Conclusions . 81

6 Conclusions 82

7 Appendix 83
7.1 DRaaS use-case listing . 83

References 86

c© TRILOGY 2 Consortium 2016 Page 7 of (89)

List of Figures
1.1 Trilogy 2 use-cases and architecture . 11

2.1 OpenStack Architecture . 15
2.2 Base Info Model . 15
2.3 Actors in Info Model . 16
2.4 Operations in Info Model . 18
2.5 Systems in Info Model . 18
2.6 Software in Info Model . 19
2.7 Resources in Info Model . 20
2.8 Properties in Info Model . 20
2.9 Configuration in Info Model . 20
2.10 OnApp DB Schema . 21
2.11 vM3 architecture . 22
2.12 OpenStack services . 24
2.13 OpenStack conceptual architecture . 24
2.14 mOSAIC ontology is not open source . 26
2.15 mOSAIC top level concepts . 27

3.1 The overall structure of an HTTPCrypt connection. The server public key can be retrieved
out-of-band via DNS, or directly over HTTP . 33

3.2 The performance of HTTPCrypt prototype with ChaCha20-Curve25519 crypto while serving
files using 1 process on Intel Xeon E5 2.4 GHz . 42

3.3 The performance of HTTPCrypt prototype with OpenSSL crypto while serving files using 1
process on Intel Xeon E5 2.4 GHz . 43

3.4 HTTPCurve and Nginx+TLS scaling from the number of worker processes 44
3.5 HTTPCrypt Latency . 45
3.6 ISP and edge forwarding paths between nodes A and B . 45
3.7 Kadupul Forwarders . 53
3.8 Deferred payment . 54
3.9 The subflow controller and the Netlink path manager . 54
3.10 The subflow controller detects when the retransmission timer becomes too long and creates

the backup subflow at this time. 54
3.11 CDF of the delay required to deliver a 64 KBytes to the client under different packet loss

conditions. 55
3.12 By regularly restablishing low-performing subflows, our subflow controller improves network

utilisation . 55
3.13 Kernel path manager is slightly faster than user space path manger to open a second subflow 55

4.1 Resource accessibility . 56
4.2 Resource prices and limits . 58
4.3 Our deduced cost function compared to Internet subscription prices in Romania (on the X

axis: the subscription expressed in Mbps; on the Y axis: the price expressed in RON) 61

5.1 An example HTML file . 65
5.2 Zoomed out view of dependency graph of www.amazon.com. 68
5.3 Dependency graph resulting for analysing the example HTML page. Grey boxes indicate a

single frame, or a computation consisting the several sub-computations. Parse Chunks show
their size, and the start and end HTML (row, column) pairs for the chunk. Computations
display their duration. 69

5.4 Waterfall diagram of downloading example.html over HTTP/1.0. Wait times are shown in grey. 70
5.5 TCP Options processing code for a middlebox that drops unknown options. 72
5.6 SEFL instruction set. 73

Page 8 of (89) c© TRILOGY 2 Consortium 2016

5.7 Symbolic execution with Symnet. The tool keeps a per-path value stack and assignment
history for each variable. 75

5.8 Symnet packet modeling uses the same physical layout as real packets. 75
5.9 TCP options parsing code in SEFL; no new execution paths are created. 78
5.10 Split TCP Deployment, sideband mode [29]. 80

c© TRILOGY 2 Consortium 2016 Page 9 of (89)

List of Tables
2.2 Actors within the Information Model (Operator, Customer, User) 16
2.3 Operations relating to the Information Model . 17
2.1 Properties in the Information Model . 29

3.1 Results from aggregated results, fixed line and mobile network 32
3.2 Packets analysis, percentage of received SYN . 32

5.1 Summary of dependency graph activities and their possible parents 67
5.2 Symnet vs HSA runtime comparison . 80

Page 10 of (89) c© TRILOGY 2 Consortium 2016

GRIN

VM3

Virtual
CPE

VNF
Pool

Bruce
IMS

Figure 1.1: Trilogy 2 use-cases and architecture

1 Introduction
The goal of the Trilogy 2 project is the creation of a more liquid Internet. In order to achieve that, the project
has produced over the last three years a number of tools aimed to create liquidity from the available network
resources. Liquidity is created by pooling available resources. A resource pool is a set of resources that
behaves as a single more potent resource. The three main types of resources that the project has focus its
effort on are networking, processing and storage resources. Some of the tools created by the Trilogy 2 project
also allow for trading resources, so that it is possible for different parties to trade one type of resource for
another (e.g. to use more processing to reduce the use of storage). The tools for creating and trading liquidity
are developed in WP1 and in particular the tools developed in this third year of the project are described in
D1.3. The different tools produced during the whole project lifetime are depicted in Figure 1.1. The figure
shows the different resources pooled by the different tools.
While the creation of resource liquidity is in general beneficial as it allows a more efficient use of resources,
it can be negative if not properly controlled. For example, by pooling all available resources, it is possible for
a single user to (ab-)use all the resource pool, consuming all available resources. Other forms of detrimental
effects can also be identified. In order to avoid such negative effects, it is then necessary to provide the tools
to control the extent of liquidity. In this deliverable, the describe the different tools produced in the third and
final year of the Trilogy 2 project for controlling the resource pools.
In order to control liquidity, it is first necessary to uniformly describe the available resources, so that informa-
tion characterizing the resources can be exposed and exchanged among the different stakeholders involved.
We achieve that by defining an Information Model for the resources being pooled. The first contribution
contained in this deliverable is the Trilogy 2 Information Model for the different types of resources being
pooled by the different tools created in the project. The Trilogy 2 Information Model is described in Section
2). Using the Information Model, we can then exchange information and reason about the different resources
being pooled. We can use the information model to properly define service level agreements or other forms
of definitions involving the amount of resources that each user is entitled to.
In addition to the Information Model, we have produced a number of liquidity control tools. These tools
provide different means to control liquidity, including the means for creating the incentives for users to do a
proper use of the available resources and the tools to enforce the proper usage of resources.
In this deliverable, we present three main types of control tools, namely, tools for user control of liquidity,
tools for operator control of liquidity and tools for understanding the extent of liquidity.
In Section 3 we describe the tools for enabling the end-user to control liquidity. As we described in the Trilogy
2 architecture presented in Deliverable D2.3, end-to-end encryption is a cornerstone mechanism to enable user

c© TRILOGY 2 Consortium 2016 Page 11 of (89)

control of liquidity. By enabling the end user to encrypt its traffic, we allow the end user to control in what
extent its traffic is affected by the liquidity mechanisms created and controlled by the operator, in particular
by the Network Function Virtualization mechanisms presented in Section 5 of Deliverable D2.3. Significant
work on end to end encryption mechanisms as liquidity control tools for the end user was reported in D2.4.
Section 3 presents the work on this last year of the project in this area.
In addition to end to end encryption, Section 3 describes two other mechanisms for user control of liquidity,
namely a MPTCP subflow controller and Kadupul, a mechanism to create the incentives for creating liquidity.
The MPTCP subflow controller provides the means for the end user to control how to use the available
network resource pool by selecting which path to use to actually forward data. This work covers some of
the control aspects of the MPTCP work done in the project, in particular the work reported in Deliverable
D1.3. The other mechanism presented in Section 3 for user control of liquidity is Kadupul. Kadupul is a
mechanism to create the incentives for end user to create liquidity. As described in the Trilogy 2 Description
of Work and in particular in Task 2.3, incentives are an important mean to provide control of liquidity, because
given the right incentives, the different parties involved will behave as expected (assuming they are rational).
Kadupul focusses in creating the incentives for end users to contribute with their available resources to create
networking pools in the very edges, where the operator has little or no resources.
In Section 4, we present the work done in this last year of the Trilogy 2 project in terms of tools for enabling
the control of liquidity from the operator side. We first present the control tools for the Federated Market and
Cloud.net and then we move on to describe how the ISPs can try to control the liquidity create by the end users
using MPTCP. The Federated Market was introduced in Deliverables D1.3 and D2.4 as a technology to enable
different cloud providers and clients to trade cloud resources. It benefits from the proposed Information model
to describe the different resources traded. The tools described in Section 4 provide both the incentives (though
payments) and the enforcement tools to control that the resources consumed are coherent with the resources
traded. We next describe the tools that operators can use to control the liquidity created by user using MPTCP.
MPTCP is an end-to-end protocol. This means that it is up to the end users (client and server) to deploy and
use MPTCP without any involvement from the operator in the middle. However, MPTCP affects the traffic
patterns exposed to the operators. As such, it is only natural to question how the ISPs will/can react to the
MPTCP traffic. In Section 4 we explore how the ISP can use packet dropping to shape the MPTCP-enabled
end user traffic.
Finally, in Section 5 we describe tools for understanding liquidity. We believe that in order to properly control
liquidity, it is important to understand certain aspects of the liquidity pools available. We present tools for
understanding two key aspects of liquidity, namely a Web dependency graph analyser and Symnet. The Web
dependency graph analyzer is a tool that allow us to understand how the modern web protocols would interact
with MPTCP and other multipath transports and in particular how much benefits can MPTCP provide when
it is used to deliver Web traffic, given the nature of the modern Web pages. Symnet is a tools that enables
symbolic execution of network functions. A core part of the work done in Trilogy 2 was on developing
various NFV concepts. In an NFV capable network, network functions can be dynamically deployed and
combined to fit the operators needs. However, such flexibility makes it much harder to understand and reason
about the network. In this section we describe Symnet, a symbolic execution tool that by exploring all
possible execution paths for the functions available in the network, it allows to gain deeper understanding of
the behavior of the combination of deployed network functions.

Page 12 of (89) c© TRILOGY 2 Consortium 2016

2 Information Model
2.1 Introduction
In recent years the Internet has become a much more fluid system. Processing, storage and bandwidth usage
from different machines and different parts of the network are being pooled together. Users draw resources
from the pool, making trade-offs between their different requirements. The mechanisms that allow such
liquidity all create resource pools. A resource pool is a collection of individual resources which together act
as a single more capable and more robust resource. Once a resource pool has been created, it becomes a
source of liquidity, as the elements of the pool are interchangeable. This does not however imply that the
elements of the pool are homogeneous they will typically vary in capability and location, so moving demand
between them affects performance and redistributes costs.
From the description of work -

This task will deliver technology to describe resources in the pool, making this information avail-
able to the interested stakeholders. It will determine the information model regarding resources,
describing their salient features such as geo-location, topological location, congestion, cost etc.,
which may then be used for resource discovery and selection. It will develop or adopt a mechanism
to disseminate dynamic resource information in a timely manner.

2.2 Constructing the Information Model
An Information Model defines the concepts specific to a domain and defines the relationships between these
concepts and is an extension of the principles behind Entity-Relationship models[10]. Once defined, an
Information Model is then used for generating data models that are specific to particular parts of the system.
A data model contains application specific implementation details that can be used by system designers for
generating working applications that conform to the information model.
The Trilogy 2 Information Model has emerged organically from the work done throughout the course of the
project. In the following section we use a simple example to show how the model has been derived, describe
the model itself, give some details of how the model applies to the Trilogy 2 use cases and provide some
background on alternative approaches.

2.3 Deriving a simple Information Model
To understand the concepts relevant to Trilogy 2 it was important to first gather the set of use-cases for the
various systems being worked on in Trilogy 2. The use-cases have been captured in the initial Information
Model working document D2.2 and have been subsequently refined in the use-cases work package in WP3.
The use-cases have been generated by the individual Trilogy 2 partners who are working on systems related
to resource liquidity. By covering a broad set of use-cases we intended to capture a broad domain with
seemingly unrelated concepts to investigate how they may be related and brought together to enable the
Liquid Net proposed by Trilogy 2.
We have performed an analysis of the use-cases described in the original Deliverable D2.2 document and
captured the concepts embedded in thos use cases. These are described in a first pass that resembles the
model produced by mOSAIC[33]. The DMTF Common Information Model or CIM[15] was seen as overly
complex for the domains that are covered in Trilogy 2, but it is suggested that at a later stage the model could
be made to conform with the CIM.
The following simple example highlights the methodology used to derive the Trilogy 2 Information Model. It
is based on the Cloud Liquidity Use Case (see section 4.2 of D3.2). This Use Case is about migrating virtual
machines (VMs) across the wide area network. As a minimum a virtual machine consists of some form
of virtual storage disk (vDisk), a virtual network interface (vIF) and some state defining what underlying
hardware is needed to run the VM (e.g. type of hypervisor, amount of virtualised resources, etc). In order
to migrate the VM to a new location you need suitable hardware to be able to run this VM (same type of
hypervisor, sufficient resources) and you need to be able to transfer a copy of the vDisk to the new location.
Looking at each of these elements in turn we extract the underlying concepts captured in bold text and in
italic for the relationships:

c© TRILOGY 2 Consortium 2016 Page 13 of (89)

• A vDisk has a given size (bytes) and is stored as a given number of blocks in one or more stripes
on one or more physical disks attached to one or more servers. The vDisk will contain a filesystem
which will contain the VM OS and data.

• The VM has state associated with it describing its virtual resources (VIFs, vDisks, etc.), its current
power state, its VM Owner and any state relating to Security.

• The VM runs on a server which has a Processor of a given Architecture and with a number of cores.
The server has a given amount of RAM and runs a Host OS with a Hypervisor. It has one or more
NICs connected to one or more networks. These networks may have multiple VLANs defined and
the VM will be associated with various network Addresses.

• The server is part of a cluster (cloud) associated with a Cloud Owner / Operator. The cluster is
within a Datacentre which is run by a Datacentre Operator. The Data centre will have a known
physical Location.

• The wide area network is run by a number of Network Operators. It will use some form of Routing
in order to ensure data reaches its destination. It may have a number of Middleboxes interacting with
the Data flows / subflows. Individual data flows may be Secured using a protocol such as TLS or
SSH and they may be part of a multi-path flow.

The above is far from complete but demonstrates how the process works. Alongside the list of concepts there
are also a number of relationships that need to be defined. For instance for a VM these include Create, Power
On, Power Off, Migrate and Backup. There are also various actions relating to monitoring resource usage,
billing, security, AAA, etc.

2.4 The Trilogy 2 Information Model
An Information Model defines the concepts and abstract elements of a system as well as the relationships be-
tween those abstract concepts. Throughout the project we have divided resources into three broad categories
using a similar approach to that adopted in the OpenStack architecture1 as seen in Figure 2.1:

• Processing

• Storage

• Network

As we stated in the Trilogy 2 Architecture, “Transport, Processing and Storage are all Strongly Inter-
Dependent”. In other words while an action may be primarily related to one resource type in most cases
it also involves either one or both of the others. In the Architecture document we gave the example of writing
some data to storage. While this is clearly mainly a Storage related action it also requires Processing (Com-
pute) and in many cases also leads to some information being transferred over the Network (in the broadest
sense, most inter-process-communication on a modern multi-core server involves some form of networking).
Clearly within these broad categories there are a large number of specific resources and concepts that need
to be captured in any comprehensive Information Model. While this Information Model has been developed
in the context of the specific Trilogy 2 Use Cases, we have aimed to make it generic enough to be applicable
more widely.
The table below attempts to capture the full set of resources and concepts needed for the Information Model.
A top level diagram that shows how these concepts are represented in the Trilogy 2 Information Model is
shown in Figure 2.2. These distinct concepts combine together along with the concepts described at lower
levels to capture the majority of the Trilogy 2 use-case concepts.

1https://www.openstack.org/software/

Page 14 of (89) c© TRILOGY 2 Consortium 2016

https://www.openstack.org/software/

Figure 2.1: OpenStack early Architecture from 2011

Figure 2.2: The Trilogy 2 Information Model top level concepts

c© TRILOGY 2 Consortium 2016 Page 15 of (89)

Figure 2.3: Actors as captured in the Trilogy 2 Information Model

2.4.1 Actors
As an example of how the Information Model was generated we capture the terms relevant to the Federation
and Market actors in Table 2.2. This table captured high-level terms that could then be split into two concep-
tual elements; actors and roles. The set of Actors could then be categorised into a scheme that differentiates
the type of individual from the type of role that they perform. A visual representation of these concepts as
captured for the actors can be seen in the OWL model visualisation shown in Figure 2.3.

Table 2.2: Actors within the Information Model (Operator, Customer, User)

Role Type NotesO C U
Cloud Operator 3 3 ×
Cloud Administrator × 3 × May also be cloud operator
Virtual Cloud Admin 3 3 3 Is both a user and customer of the cloud operator
Datacentre Operator 3 3 ×
VM Owner × 3 3 Customer of Cloud/Virtual Cloud. User of service.
Federation Marketplace 3 × × Acts on behalf of users and Cloud Operators.
DRaaS Dashboard 3 × × Acts on behalf of users and Cloud Operators
Network Operator 3 3 3 May be customer (VNF)
Virtual Network Operator 3 3 3

CDN Provider 3 3 × Often also a Cloud Operator
Middlebox 3 × 3 May be enabled as VNF for ISP.
End User 3 3 ×

2.4.2 Operations
Some of the more complicated elements to represent and conceptualise in the Information Model were the
various functions and operations that would be performed. There are some protocol specific functions that we
denote as bottom-level members in the Information Model. These members are just particular instantiations
and do not cover a concept themselves. Given the wide-spectrum of types of operations as can be seen in
Table 2.3 it meant that some of the concepts pertaining to state also had to moved into a separate concept.

Page 16 of (89) c© TRILOGY 2 Consortium 2016

Table 2.3: Operations relating to the Information Model

Operation Type Operations
Connection and Session Management • Handshake

• Congestion Control
• Flow Control
• Keepalive
• Connection Teardown
• Flow Handover / Handoff
• HTTP Daemon
• TCP Re-termination

Network Functions • BGP
• OSPF
• VPN
• Unicast
• Anycast
•Multicast

Monitoring and Management • Congestion Exposure
• Data volume
• DPI and Flow Classification
• VM Usage

Security • Access Control
• Authentication
• Authorisation
• Intrusion Detection
• Encryption

Data Input / Output •Write Data
• Read Data
• Copy Data
• Cache Data

VM Lifecycle • Create
• Destroy
•Migrate (both hot and cold)
• Power Operations (On, Off, Reset)
• Rate-limiting (of Network and I/O)
• Modification of VM (change vCPU, RAM, Storage,
vNICS)

Communication • IPC

A visual representation of these concepts can be seen in Figure 2.4

2.4.3 Systems
• vCPE

• VM

• HV

• router

• Virtual routing forwarding instance (VRF)

• VR (VMs that implement routing protocols)

• Point of presence

c© TRILOGY 2 Consortium 2016 Page 17 of (89)

Figure 2.4: Operations as represented in the Trilogy 2 Information Model

Figure 2.5: System representation in the Trilogy 2 Information Model

• Storage cache (minicache)

• MirageOS

• KVM / XEN

• Uni-kernel

A visual representation of these concepts can be seen in Figure 2.5

2.4.4 Software
• HTTPd daemon - Apache

• Monitoring system

• Scheduling system

• Database - MySQL

• File-system

• Files

• Web-browser

• VOIP clients

Page 18 of (89) c© TRILOGY 2 Consortium 2016

Figure 2.6: Software representation in Trilogy 2 Information Model

• Email clients

• Apps

• qemu

• drivers

• (git)

A visual representation of these concepts can be seen in Figure 2.6

2.4.5 Context
• Configuration

• State (VM On / Off, Connection up / down, etc)

2.4.6 Business
• Pay-as-you-grow

• Pay-per-use

• Pay for metrics that they want to improve

• Contract / licences

• Costs

Electricity

Power (Watt / SI J/s)

• Charges

Price (USD / GBP / Euro)

2.5 Example of applications of the information model
The Information Model as described in previous section captures the concepts relevant to Trilogy 2. The
Information Model can be used to generate Data Models that are applicable to specific applications that will
conform with the Information Model. For instance the Information Model can lead to the generation of
a Data Model such as the one used by the OnApp platform as seen in Figure 2.10. Data Models contain
implementation specific details that are less generalised and more useful for system designers. Different data
models can be derived from the same Information Model. For instance the high-level concepts captured in

c© TRILOGY 2 Consortium 2016 Page 19 of (89)

Figure 2.7: Resource representation in the Trilogy 2 Information Model

Figure 2.8: Properties representation in the Trilogy 2 Information Model

Figure 2.9: Configuration representation in the Trilogy 2 Information Model

Page 20 of (89) c© TRILOGY 2 Consortium 2016

Figure 2.10: OnApp DB Schema

the Information Model could equally map to the OpenStack data model (see Section 2.5.4). Concepts that are
not present but needed by the OpenStack data model they could be incorporated by relating them to existing
concepts and adding missing concepts as necessary.
We now describe how the Trilogy 2 Information Model can be applied to three of the Trilogy 2 use-cases.
The three use-cases used to demonstrate the usage of the Information Model are:

(i) Transparent compute migration

(ii) Disaster Recovery as a Service (DRaaS) that uses Storage and Network resource pools

(iii) Multi-WIFI to demonstrate the use of Network resource pooling

2.5.1 Transparent Migration Example
The Intel Virtual Machine Migration for Mobile (vM3) devices use-case as described in WP3 has many sim-
ilar concepts to SWBRAS and VM Migration across cloud sites so will be used as a representative example
for how the Trilogy 2 Information Model can be applied to these use-cases.
The following text summarises the use-case description:
The Android implementation is composed from two main parts: Migration Services(MS) and VMSlot (VMs),
as seen in Figure 2.11. Migration services manage resources on the mobile device, and exposes capabilities
to other nearby devices. Migration Services run on each devices that implements vM3. MS identifies other
devices on the local network that are capable of receiving apps and communicates with them to access their
resources without any need for continuous user intervention. The VMSlot is the app container solution for
Android. The solution is based on QEMU and requires KVM to be enabled in the host OS. By using hardware

c© TRILOGY 2 Consortium 2016 Page 21 of (89)

Figure 2.11: The Intel Virtual Machine Migration for Mobile devices architecture as captured from D3.2

virtualization technologies, the app container will run with near-native performance, so the user wont see the
difference between an Android app and the vM3 solution. The guest OS will start a stripped-down version
of the Chromium browser that will handle the streaming. The MS will start and manage VMs, based on
each specific app requirements and available hardware. When the user starts an app, a small footprint OS is
booted and initialized inside a container, and the web app is ini- tialized afterwards. The MS will manage the
containers IP address, routing and other migration parameters. VMSlot also accounts for appication isolation,
based on the fact that in Android an application cannot have more than one instance running at the same time.
When the user wants to initiate migration to another device, a request is sent to the MS asking for the list of
neighbouring peers. The user can then choose a peer or manually enter the IP address. The MS will negotiate
the migration parameters (e.g. throughput, maximum accepted downtime, etc.) and will initiate the migration.
During the migration, the applicatiob still runs on the first device. When the state is fully synchronized, the
application shuts down on the first device and starts on the receiver, resulting in a user-perceived downtime
of less than one second.
This can then be represented by Trilogy 2 Information Model concepts:
A MobilePhone hasOperatingSystem AndroidOS. The AndroidOS contains two SoftwareServers; an Ap-
plication that performsOperation OperationMigration and empty SystemVMs (VM Slots). The Migration
services Application hasRole RoleManager and performs operation CommunicationBroadcast to other Sys-
tems inLocality PLocationLocal.
To support this behaviour the System must run a SystemHVKVM (KVM Hypervisor) and SoftwareQEMU.
At the time an EndUser performs MigrationOperation a CommunicationMessagePointToPoint sends to
the Migration Service Application and a list of PLocalityLocal (local) Systems is displayed. Once a peer
is selected the Migration Service Application negotiates the NetworkSession and performs OperationMi-
gration. The StateRunning Application continues to run. The SoftwareData replicates to the destination.
Once StateSynchronised the State is changed for the Application on the Source System and the Applica-
tion starts on the Destination System. This results in a MetricDowntime as perceived by the EndUser.

2.5.2 DRaaS
The DRaaS use-case is captured in the 7 in Section 7.1. This use-case describes storage and network liquidity.
To allow for DRaaS there must be three Actors in the system; DRaaSOperator, Consumer and Supplier.
To ensure true resilience in the face of a disaster, the Consumer and Supplier of DRaaS should be in different
locations, e.g. have hasLocality PLocalityRemote. The Consumer will performRole RoleManage a Cloud
that contains SystemVMs on SystemHVs.
On selecting the DRaaS service the Consumer hasContract BusinessSLA with the DRaaSOperator. Sim-
ilarly the DRaaSOperator hasContract BusinessSLA with the Supplier. The HVZone enables Opera-
tionReplication and a NetworkLink is set up between the two Clouds. The SoftwareData will replicate
as DataBlocks. A ShadowVM runs on the Supplier Cloud until there is a failure event on the Source. At
this point a OperationFailover can be performed. A SystemVM corresponding to the Source SystemVM
starts on the Destination. The ShadowVM state is changed to VMPowerOff and the VM runs on the
Destination Cloud. The Pricing while running on the Destination Cloud has greater MetricPrice than
running the ShadowVM. Once the failure condition is resolved the reverse procedure can be performed with
OperationFailback performed.

Page 22 of (89) c© TRILOGY 2 Consortium 2016

2.5.3 Multi-WIFI
Multi-WIFI is described in greater detail in D3.3 Section 2.2. It is summarised briefly here for convenience:
Traditional WiFi mobility techniques (as with all other L2 mobility mechanisms) are based on the concept of
fast handover: when a mobile client exits the coverage area of one Access Point (AP), it should very quickly
find another AP to connect to, and quickly associate to it. There is a great wealth of research into optimizing
fast handover including scanning in advance, re-using IP addresses to avoid DHCP, synchronizing APs via
a backplane protocol, even the using additional cards to reduce the association delay. This seems to be the
wrong approach for many reasons including:

(i) To start the handover mechanism, a client has to lose connectivity to the AP, or break-before-make

(ii) There is no standard way to decide which of the many APs to associate with for best performance

(iii) Once a decision is made, there is no way to dynamically adjust to changes in signal strength or load

The solution proposed by MultiWifi is to associate to multiple access points using MPTCP and then to in-
crease and decrease the flow as the different sub-flows status change. Experimental results as described in
D3.3 are promising.
The use-case uses a mobile phone that has access to the Internet through WIFI available on multiple Access
Point routers. The use-case assumes that the end-user is allowed to use any of the access points.
Describing this use-case through the Information Model:
An EndUser hasRole RoleOwner MobilePhone and connects to the Internet through multiple AccessPoints
that offer NetworkWifi. The AccessPoints may have different owners, e.g. Providers hasRole RoleOwner.
As the MobilePhone Property Location changes the NetworkSpeed offered by the different AccessPoints
will differ due to differences in distances. MPTCP offers an aggregate of multiple TCP NetworkFlows.
By establishing multiple SubFlows it is possible for the Client System to weight particular Subflows more
highly and get closer to full NetworkSpeed supported by the WIFI NIC.

2.5.4 Applying the Information Model to Openstack
OpenStack2 is one of the most popular open source software platforms for Cloud computing. It is primarily an
Infrastructure-as-a-Service (IaaS) platform and is a non-commercial alternative to OnApp. It is used by many
research communities and is often the de-facto platform used for Cloud management projects that need more
control than is allowed by commercial providers such as Amazon AWS who manage the platform online.
OnApp is closer to OpenStack as it provides the software for the management of Cloud resources under
licence, whereas Amazon you can only use the web platform and APIs to manage the resources remotely
provided.
The overall functionality of OpenStack is to create and manage Cloud resources and is captured (non-
exhaustively) as a collection of services in the diagram shown in Figure 2.12 (source Wikipedia). As seen in
that diagram apart from the high-level management features and services that are used to manage collections
of resources and apply policies and strategies, the main resource management system is OpenStack Nova3.
Nova maps well into the Information Model as the majority of concepts are the same between OnApp and
OpenStack and the OnApp platform has been used as one of the primary constituents of the Trilogy 2 Infor-
mation Model. Nova doesn’t currently have an Information Model as far as the authors are aware. There is
however an extensive data model that is provided in the form of APIs that are in active development. However,
a conceptual architecture as generated for the Juno version of OpenStack captures how Nova interoperates
with other components in OpenStack at an abstract level and could be mapped to an Information Model. This
is captured in Figure 2.13.
Taking Figure 2.13 into consideration the following mapping can be made to the Trilogy 2 Information
Model. OpenStack HEAT can be mapped into a System that has Role, RoleOrchestrator. Horizon is a
System that has Role Provider. Horizon also implements SoftwareUI. Each of Cinder, Nova, Neutron and
Glance are System that have unique Role for provide a unique Resource to a SystemVM. Nova additionally
has Role RoleAdmin of the SystemVM. Swift has Role RoleBackup. Ceilometer has Role RoleMonitor
that perform MonitorActivity for the other System and the SystemVM. Keystone independently has Role
RoleACL that provide Permission ACL for the other System.

2http://www.openstack.org/
3https://wiki.openstack.org/wiki/Nova

c© TRILOGY 2 Consortium 2016 Page 23 of (89)

http://www.openstack.org/
https://wiki.openstack.org/wiki/Nova

Figure 2.12: A tree diagram showing the principle OpenStack services provided

Figure 2.13: The OpenStack conceptual architecture as captured for the Juno version of OpenStack

Page 24 of (89) c© TRILOGY 2 Consortium 2016

It is relatively easy to map the concepts in the Information Model to OpenStack. CPUs (IM: PhysicalCPU)
are commonly referred in Openstack as virtual cores (IM: vCPU) and their management is handled by the
nova component. Compute load (IM: MetricCompute) is modeled as a set of metrics regarding the activity
(MetricActivity) of a guest Virtual Machine (IM: SystemVM). To reliably collect data (IM: MetricStats)
on the utilization of the physical and virtual resources comprising deployed guests, persist these data for sub-
sequent retrieval (IM: DataRead) and analysis (IM: OperationAnalysis), and trigger actions when defined
criteria are met, the following components are used:

• Ceilometer (data collection)

• Aodh (alarming service)

• Gnocchi (time-series database and resource indexing service)

Network layers (IM: NFPNetworkLayer) are based on Neutron, a component which implements services
and associated libraries (IM: SoftwareLibrary) to provide on-demand, scalable, and technology-agnostic
network abstraction. In particular, Neutron gives cloud tenants an API to build rich networking topologies,
and configure advanced network policies (IM: Policy) in the cloud. Examples include:

• create multi-tier web application topology

Enables innovation plugins (open and closed source) that introduce advanced network capabilities

• use L2-in-L3 tunneling to avoid VLAN limits, provide end-to-end QoS guarantees, use monitoring
protocols like NetFlow.

Lets anyone build advanced network services (open and closed source) that plug into Openstack
tenant networks.

• LB-aaS, VPN-aaS, firewall-aaS, IDS-aaS (not implemented), data-center-interconnect-aaS.

provides an API Extensibility Framework, including extensions for “provider network”, which
maps Neutron L2 networks to a specific VLAN in the physical data centre.

Security is handled by two crucial components: Keystone which provides authentication and authorization;
Barbican which provides secure storage, provisioning and management of user (tenant) secrets such as pass-
words, encryption keys and X.509 Certificates. Data units are handled by Cinder (block storage) or Swift
(object storage) when referring to files, blobs and any kind of block/object storage.
Based on the above, we can map operations as follows:

Guest control: create/destroy/migrate/power on/power off are all handled by Nova through a rich REST
API. Nova in turn issues these operations to the underlying backend driver based on the hypervisor
(Xen/KVM/Hyper-V etc.) or the bare-metal infrastructure.

Guest monitoring: Ceilometer gathers statistics about the status and usage of key resources of the system. it
has a project granularity so accounting is only done at this level

Access control: for guests is handled by barbican for tenants (users) is handled by keystone

Connection and Session management: This is handled by the VM guest operating system.

Routing and switching : This is handled by neutron and its underlying components (or plugins). These
include open vSwitch, various HW specific switch models, Linux Bridge, Modular Layer 2 (ml2), sev-
eral implementations of commercial Network Virtualization Platforms and implementations of various
OpenFlow Controllers.

The mapping to the Information Model would therefore be as follows; A CloudAdministrator, a particu-
lar Administrator can modifyState of SystemVMs. They can VMPowerOn, VMPowerOff a SystemVM.
They can also perform OperationMigrate or modifyState to PowerOn or PowerOff via a SoftwareAPI
that in turn uses SoftwareDriver. The SoftwareDriver depends on the type of SystemHV, whether it be

c© TRILOGY 2 Consortium 2016 Page 25 of (89)

Figure 2.14: As captured in a concertation meeting, the mOSAIC ontology is not open source

SystemHVKVM, SystemHVXEN or just a SystemServer. Operation Monitoring of the SystemHV and
SystemVM is performed by a MonitorActivity. CloudAdministrator ‘Barbican’ and ‘Keystone’ perform
Role Administrator for Actor and Role via Permission ACL. The Administrator ‘neutron’ manage Op-
erations OperationRouting and OperationSwitching. The OperationRouting and OperationRouting is
performed on a PhysicalSystem or LogicalSystem that perform Role RoleRouter or RoleSwitch.

2.6 Alternatives to the Trilogy 2 Information Model
There are a large number of alternative information models and ontologies that are potentially relevant to the
the work done in the Trilogy 2 Project.
One of the most useful alternatives is the mOSAIC ontology[33]. Unfortunately this is not open source (as is
suggested in the diagram captured in Figure 2.144). However the resource descriptors and high level descrip-
tion are captured in D1.2 of the mOSAIC deliverables, retrieved from InterCloudTestbed Project website5.
Although the complete mOSAIC ontology is not publicly available, the designers methodology and the top-
level concepts are captured in their public deliverable (see Figure 2.15). The presentation from the con-
certation meeting also suggests that most cloud brokerage and IaaS type platforms focus primarily on the
Component, Protocol and Layer concepts discussed in mOSAIC, whereas NIST primarily focuses on De-
ployment Model, CloudSystemVisibility, Essential Characteristic and Service Models.
The mOSAIC review cited the Unified Cloud Interface[1] as one of the earliest semantic Cloud ontologies.
They also suggested that CCIF were working on an ontology that was not available in 2011. Checking the
Google Groups page suggests that activity in this forum closed in 20126.
A literature review published in 2012[4] indicated that the most often cited work for Cloud ontologies was a
work by Youseff et al. produced in 2008[55].
For higher level management systems, solutions have been proposed for inter-cloud management such as

4http://www.cloudwatchhub.eu/sites/default/files/MOSaiC_diMartino_
Concertation-Meeting_12-13Mar2014.pdf

5http://www.intercloudtestbed.org/uploads/2/1/3/9/21396364/p2302-13-0012-00-drft-beniamino-di-martino-ontology-contribution.
pdf

6https://groups.google.com/forum/#!forum/cloudforum checked at the time of writing (December 2015)

Page 26 of (89) c© TRILOGY 2 Consortium 2016

http://www.cloudwatchhub.eu/sites/default/files/MOSaiC_diMartino_Concertation-Meeting_12-13Mar2014.pdf
http://www.cloudwatchhub.eu/sites/default/files/MOSaiC_diMartino_Concertation-Meeting_12-13Mar2014.pdf
http://www.intercloudtestbed.org/uploads/2/1/3/9/21396364/p2302-13-0012-00-drft-beniamino-di-martino-ontology-contribution.pdf
http://www.intercloudtestbed.org/uploads/2/1/3/9/21396364/p2302-13-0012-00-drft-beniamino-di-martino-ontology-contribution.pdf
https://groups.google.com/forum/#!forum/cloudforum

Figure 2.15: A screenshot from mOSAIC D1.2 document showing the top level concepts defined in mOSAIC
ontology

FI-WARE’s7 Inter-Cloud Bridge system[46] and the InterCloud as a Service[47] (ICaaS).
SeaClouds[8] describes resources from a slightly different perspective where it looks at distributing multi-
component services across distributed cloud resources.
The Oracle cloud resource model API 8 created in 2010. In particular the reference in Section 9 to the Cloud
model is particularly relevant. (Now located in the guides as - 9)
The Common Information Models (CIM) is a standardised set of information model that are part of the
schema generated by DMTF[15]10 In particular - CIM System, CIM Physical, CIM Network, CIM Device,
CIM Core, CIM Policy The CIM provided by the DMTF is ‘complex’ and is ‘more comprehensive’ than
the SPLUNK CIM11 that is used by many enterprises to utilise machine data for the purposes of operational
intelligence.
Yangui S.[54] identifies many of the same systems for provisioning on the cloud including;

• PaaSage

• mOSAIC

• Cloud4SOA

• Contrail

• Cloud-TM

• 4CaaSt

• RESERVOIR

System SOA support Portability Standardised Model Standardised API
PaaSage Yes No No No
mOSAIC No Yes Yes Yes

Cloud4SOA Yes/No Yes Yes Yes
Contrail No No Yes Yes

Cloud-TM No No Yes Yes
4CaaSt No No Yes Yes

RESERVOIR No No Yes Yes

7https://www.fiware.org
8http://www.oracle.com/technetwork/topics/cloud/oracle-cloud-resource-model-api-154279.

pdf
9https://docs.oracle.com/html/E28814_01/resource.htm

10http://www.dmtf.org/standards/cim/cim_schema_v2441
11http://docs.splunk.com/Documentation/CIM/latest/User/Overview

c© TRILOGY 2 Consortium 2016 Page 27 of (89)

https://www.fiware.org
http://www.oracle.com/technetwork/topics/cloud/oracle-cloud-resource-model-api-154279.pdf
http://www.oracle.com/technetwork/topics/cloud/oracle-cloud-resource-model-api-154279.pdf
https://docs.oracle.com/html/E28814_01/resource.htm
http://www.dmtf.org/standards/cim/cim_schema_v2441
http://docs.splunk.com/Documentation/CIM/latest/User/Overview

For the Cloud resources description he identifies the following applicable descriptors/frameworks;
System SOA support Portability Standardised Model Standardised API
PaaSage Yes No No No
mOSAIC No Yes Yes Yes

Cloud4SOA Yes/No Yes Yes Yes
Contrail No No Yes Yes

Cloud-TM No No Yes Yes
4CaaSt No No Yes Yes

RESERVOIR No No Yes Yes
- - - - -

TOSCA Yes No Yes Yes
CAMP Yes No Yes Yes
OCCI No Yes Yes Yes

2.7 Conclusion
The Information Model is available from the website http://trilogy2.eu/wp-content/uploads/trilogy2-base.owl.
It has only been used in the scope of Trilogy 2 specific domain concepts and as such should not be seen as a
reference model without prior investigation and tailoring to the application specific needs.
The Trilogy 2 Information Model is based on a broad set of use-cases that investigate different aspects of
resource Liquidity. The interests of the Trilogy 2 partners are diverse and investigate Storage, Compute and
Network resource sharing from different approaches. The partners also take into account the interaction of
resources at different levels of the network, looking into how operators and end-users can benefit from Liq-
uidity. From these use-cases, the key concepts have been extracted and modelled using an iterative approach.
Starting from a small subset of use-cases and building up by adding more concepts required that the model
be re-designed to incorporate these concepts. The use-cases provide a non-exhaustive set of requirements.
The motivation behind the model is not to re-invent the wheel in re-defining concepts that have already been
well defined by different knowledge engineering communities but rather to work on how to link the various
knowledge-bases together in a useful manner. Data models can be generated from an Information Model. We
have highlighted a generalised Cloud Data Model through the OnApp Data Model. This could be mapped to
other specific implementations such as OpenStack and we have described how some of these concepts may
be mapped. To demonstrate the applicability of the Information Model to a set of use-cases we have taken
three representative use-cases that cover different areas of the Trilogy 2 domain and shown how the use-cases
can be described in terms of the Information Model.

Page 28 of (89) c© TRILOGY 2 Consortium 2016

Table 2.1: Properties in the Information Model

Property Sub-properties Metric T2 Resource
CPU • Arch (AMD/ ARM/ x86)

• ISA (x86 64/ ARMv8b)
• VT-x

• Floating point speed
(GFlops)
• Frequency (Hz)
• Number of cores
• IPC / IPS (instruction per
clock / second)

Compute

Compute Load • Activity (of a VM)
• Requests
• Efficiency
• Throughput
• Virtual CPU

• Requests per second
• Overcommit ratio
• bits per second

Compute

Location • Coordinates (WGS84)
• Timezone (UTC / SI)
• IP address (IETF)
•MAC Address (IEEE)
• VLAN (IEEE)

Compute,
Network

Network Layers • Physical
• Virtual Physical
• Network
• Transport
• Application

• Protocol choice (MPTCP,
ECMP, PVTCP)

Network

Virtualisation • CPU Virtualisation
• Storage virtualisation
• Network virtualisation

• Hypervisor (Xen, KVM,
HyperV, etc)
• VLAN

Compute,
Network,
Storage

Security • SMTCP
•MPTLS
• SSH
• TLS
• API Key
• Data Encryption
• HTTPCrypt

Compute,
Network,
Storage

Data unit • Packet
• Flow
• Subflow
• Stream
• Stripe
• Blob
• File
• Template

• Bits
• Bytes
• 5-tuple
• latency
• throughput

Network,
Storage

c© TRILOGY 2 Consortium 2016 Page 29 of (89)

3 User Control
In this section we present the tools for controlling liquidity developed during this third and last year of the
Trilogy 2 project. We have pursued three main lines of work during this last year: end-to-end encryption,
incentives for creating liquidity by the end user and controlling MPTCP traffic.
End-to-end encryption was presented in the Trilogy 2 architecture (deliverable D2.3) as one of the key mech-
anisms to allow the end users to control the extent in which the liquidity tools deployed by the ISPs (in
particular NFV) can affect the user’s traffic. As presented in D2.3, an operator deploying NFV is able to
pool all its resources (in particular processing resources) to dynamically create network functions that affect
the end user’s traffic. While some of these network functions can be perceived as beneficial from the user’s
perspective, others functions may be not be so (an example of these not so beneficial functions include traffic
shaping for specific applications using Deep Packet Inspection (DPI) techniques). We argue that end to end
encryption is a mechanism to allow the end user to somehow control how the deployed network functions
will affect its traffic. In the particular example presented before, by encrypting the traffic, the user decides
what traffic is exposed to the ISP and therefore inspected by the DPI engine. In deliverable D2.4 we presented
two protocols for providing end to end encryption with MPTCP. In this section we first present a feasibility
study of the deployment of such solutions in the real Internet. We see that while it is feasible to deploy such
solutions with a low number of errors in general, it is not the case for web traffic carried in port 80. In order to
deal with that specific limitation and to overcome other issues with current TLS based solutions for securing
web traffic, we then present HTTPCrypt, a novel solution for opportunistic encryption of web traffic, aligned
with the work carried out on TCPINC, described in Deliverable D2.3.
Incentives are another important tool to provide control of liquidity. If the incentives are properly set, users
will generally take the incentivised course and overall the system will be manageable and behave as expected.
In this section we next present Kadupul, a mechanism to create the proper incentives for end user to create
network liquidity. We argue that especially in the fringes of the network, there are large pools of resources
that are underutilized because lack on incentives from the users controlling these network pools to offer them
to other users. In particular, given current pervasive wireless technologies, there is a large number of direct
paths between users using wifi/bluetooth or other wireless technologies. These network pools are unexploited
because users have no incentives to make them available to other. Kadupul is a tool that uses Bitcoin based
micropayments to create the incentives to users to offer their network resources to others to forward traffic.
Finally, we present the MPTCP subflow controller. MPTCP is one of the key liquidity tools of the Trilogy 2
project. A key aspect for the creating of networking liquidity with MPTCP is the creating of subflows through
different paths. The subflow controller described in this section allows the user to control the creation of
liquidity by determining which subflows to create. Different strategies are presented as well as associated use
cases for each of them.

3.1 MPTCP security feasibility measurement
3.1.1 Deployability analysis of the proposed MPTCP security extensions
In deliverable 2.3 we presented pervasive encryption as a fundamental mechanisms to empower endpoints
and allowing them to regain control of their communications. We proposed two alternative designs to secure
MPTCP, both of which rely on encrypting the data exchanged. In this section, we investigate the deployability
of such solutions in the real Internet.
Modern networks often rely on dedicated hardware components generically dubbed middleboxes to perform
advanced processing functions like, for example, enhancing application performance, traffic shaping, opti-
mizing the usage of IPv4 address space or security. One major criticism of middleboxes is that they might
filter traffic that does not conform to expected behaviors, thus ossifying the Internet and rendering it as a
hostile environment for innovation [23].
This does not mean that it is impossible to deploy new protocols, but that in order to ensure success it is
imperative to first understand the interaction of the proposed solutions with the middleboxes active along the
path.
In this section, we aim to understand the feasibility of the deployment of secure flavors of MPTCP by us-
ing a novel methodology for performing large scale Internet measurements, using a crowdsourcing solution
approach. The emerging sea of crowdsourcing (such as the Amazon Mechanical Turk, Microworkers and

Page 30 of (89) c© TRILOGY 2 Consortium 2016

others) can provide an accessible alternative to perform large scale Internet measurements. By expanding the
traditional crowdsourcing focus from the human element to use a diverse and numerous group of end-user
devices as measurement vantage points [16] we can leverage on crowdsourcing platforms to run Internet wide
measurements.
In order to assess the reaction of deployed middleboxes to secure version of MPTCP, we measure the success
rate when we try to establish TLS connections encryption in traditionally unsecured ports. In particular, we
attempt to initiate TLS connections in 68 different ports that normally do not use any form of encryption
and analyze the success of the connection. This is a first necessary step towards a full comprehension of the
behavior of middleboxes relative to secure MPTCP deployment.

3.1.2 Methodology
In this section, we describe the measurements methodology we employ to assess the potential success of
deploying secure version of MPTCP in the Internet using crowdsourcing. We try to establish TLS connections
from a large number of vantage points (from now on, measurement agents (MAs)) to a large number of
ports, which traditionally do not use TLS in a target server (from now on, measurement server (MS)), using
crowdsourcing based measurements. In order to mimic the behavior of an encryption protocol in the Internet,
we try to establish TLS connections from a large number of vantage points (from now on, measurement
agents) to a large number of ports in a target server (from now on, measurement server) which we control.
Crowdsourcing platforms connect employers and workers from around the world. The employer is the one
who creates the task (or the ”micro-job”) for workers and specifies the parameters of its campaign, e.g., the
size of the set of users performing the task or their geographical location at country level.
We argue that this approach can become an important tool for evaluating innovation solutions, primarily due
to the large number of accessible and diverse measurement vantage points. Additionally, we can benefit from
the freedom of deploying our own custom-designed measurement tests.
We recruit users through the Microworkers crowdsourcing platform to complete measurements on the fea-
sibility of pervasive encryption in the current Internet ecosystem. To capture how effective would secure
MPTCP actually be if deployed in today’s Internet, we collect and analyze the results from more than 2,000
MAs that try to establish TLS connections in a large number of ports which normally do not use TLS.
The MAs attempt to establish both HTTP and TLS connections to 68 different ports, namely 10 well-known
ports, 56 registered ports and 2 ephemeral ports. We use the success rate of the HTTP connections as the
benchmark against which we compare the number of TLS successful connections. We establish then the
success rate of the TLS connection by contrasting the result against the status of an unencrypted HTTP
connection established in the same port. We also store and analyze in detail the server side packet exchanges.
The procedure is as follows. First, we start by asking the user to connect using a HTTP connection in port
80 to a webpage we provide. Meanwhile, in the background, HTTP and HTTPS connections are performed
from the measurement devices to our servers in all the other 67 ports. In this case, data about the performance
are collected in the MS.
Second, the webpage we provide contains a short form asking for additional input about the type of Internet
access they are using. Finally, on the server side, we also collect and store metadata on each of the MAs that
connect to our servers, such as the IP address, the user agent type, the language, and any other information
included in the HTTP header.

3.1.3 Results
In the campaigns for fixed lines, we recruit 1,165 workers from 53 different countries. The MAs are hosted
in 286 ASes overall.
For the mobile case study, we recruit 956 workers, from 45 different countries and 183 ASes.
Considering that each MA performs 68 connections to our MS, we build a complex dataset for a total of
114,228 connections 1.
Table 3.1 refers to the results obtained from aggregated results, for both fixed line and mobile network (label
Aggregated), the results from users that use a fixed line and from users connected to a cellular network (labels
Fixed, Mobile). We also compare the rate of successful TLS connections for users we detect using a proxy
and for users that do not (labels Proxy, Non-proxy) in mobile network scenario. To better understand how
proxies or other middleboxes behavior impacts the performance of the TLS protocol in unconventional ports,

1The data set is freely available on http://it.uc3m.es/amandala/dataset.php

c© TRILOGY 2 Consortium 2016 Page 31 of (89)

Table 3.1: Results from aggregated results, fixed line and mobile network

Analysis Port 80 (%) Average other ports (%)

Aggregated 16,5 5,8
Fixed 9 6,95

Mobile 25 4,54
Proxy 70 4,23

Non-proxy 10 6,8

Table 3.2: Packets analysis, percentage of received SYN

Analysis Fixed Line Mobile
SYN(%) NO SYN(%) SYN(%) NO SYN(%)

All 96,8 3,2 36 64
Port 80 88,3 11,7 27,7 72,3
Proxy 22,2 77,8

Non-proxy 12,7 87,3
Proxy (80) 9,6 90,4

Non-proxy (80) 36,4 63,6

we focus on the packet analysis, splitting the analysis for fixed line, mobile and for users that use or not a
proxy.
Table 3.2 refers to the percentage of SYN we receive when users try to establish a TLS connection to our
MS from fixed line use case and from mobile network, considering all port and particularizing the analysis
for port 80 (labels All, Port 80). Moreover, in the case of mobile network we particularize the analysis for
proxy/non-proxy case (labels Proxy, Non-proxy, Proxy (80), Non-proxy (80)).
We observe that in the case of proxies, 90% of the SYN packets are missing. While this may seem non causal
at first (as the SYN packet is forwarded before the middle box actually knows whether this is a regular HTTP
connection or a TLS connection), proxies usually wait until they receive the GET from the client to establish
the connection to the server in order to apply their policies. This explains why in the case of TLS, we miss a
high number of SYN packets.
We also try to understand if the filtering of TLS is consistent across the different ports for a given MA. In
other words, if the TLS connection fails in a given port, how likely is that it will fail in other ports. In
order to quantify this, we estimate the conditional probability of failure in a given port X given that the TLS
connection in port 80 has failed. We choose the port 80 as it is in general a port with high failure rate.
We estimate the aforementioned conditional probability for the case of fixed line and for the case of mobile
network without proxies. We can see that the estimated conditional probability is around 90% in both cases
(slightly higher in the fixed line case), implying that when the TLS connection fails in port 80, it is very likely
that it will fail in the other ports.

3.1.4 Discussion
We find that in average the failure rate of TLS over different ports is near the 6%. We also find that in the
case of mobile networks where proxies are used, the failure rate can be as high as 70%. We conclude that it
is probably feasible to roll out TLS protection for most ports except for port 80, assuming a low failure rate
(6%).
We believe that our results can serve as a lower bound for the failure rate for using protocols other than
expected in different ports.

3.2 HTTPCrypt - Low Latency Opportunistic Encryption
We introduce HTTPCrypt, a scheme of opportunistic encryption for the plain HTTP protocol designed to
build web services compatible with the existing clients, servers and proxies ecosystem. HTTPCrypt uses
state-of-art cryptographic primitives to provide both high performance throughput and low latency connec-
tion establishment, as well as complete interoperability with any middlebox that supports plain HTTP traf-
fic. Unlike other opportunistic encryption schemes, HTTPCrypt defines procedures to establish name-based
authenticity of a server, even in the case of networks with restrictive access policies. We evaluated the prac-
ticality of deploying HTTPCrypt by integrating it into a popular HTTP server stack and evaluating it against
alternative opportunistic encryption schemes.
Transport Layer Security (TLS) has long been the standard choice for HTTP data encryption (to prevent
passive snooping) and the validation of peer identities (to prevent active attacks). Clients connections are
secured by first establishing a TLS connection to the endpoint, and then issuing standard HTTP requests

Page 32 of (89) c© TRILOGY 2 Consortium 2016

Figure 3.1: The overall structure of an HTTPCrypt connection. The server public key can be retrieved out-
of-band via DNS, or directly over HTTP

across TLS tunnel. This separation has significantly increased the latency of encrypted web browsing due to
the multiple network round-trips required, and motivated the proposal of TLS protocol extensions to optimise
the process.
The introduction of the HTTP/2.0 standardisation process, the first major HTTP protocol revision since 1999,
has brought up the possibility of supporting opportunistic encryption for all web services, including those
connections whose identities cannot be verified due to server misconfiguration, self-signed certificates, or
expired signatures. All such proposals have involved upgrading the connection to TLS, thus maintaining the
dependency to the complex suite of libraries that implement the full TLS protocol.
We introduce HTTPCrypt: an alternative application level HTTP extension that enables HTTP payload en-
cryption with the following desirable properties:

• Transparency for existing HTTP caches and proxies, meaning that it is expensive to distinguish
HTTPCrypt requests from plain HTTP requests;

• No significant latency increase of opportunistically encrypted connections vs plain HTTP;

• Removes the dependency on TLS and replaces it with cryptography suitable for embedded devices;

• Optional end-to-end identity checking;

• Low performance overhead for server software, including support for using the same efficient kernel
system calls to transfer large files.

• Easy migration to the encrypted connections for the existing software clude by evaluating our imple-
mentation of HTTPCrypt vs a popular application stack.

3.2.1 Design Goals
HTTPCrypt is designed to work with the HTTP protocol and its many quirks, and avoids forcing a depen-
dency on TLS as the sole method of opportunistic encryption. We will next explain our approach to HTTP
compatibility, the impact on performance and latency, and finally how our approach is easy to embed.

c© TRILOGY 2 Consortium 2016 Page 33 of (89)

HTTP Compatibility
The HTTP protocol has explicitly supported proxying since its inception, and the influence of middleboxes
can no longer be ignored when updating protocols. Middleboxes have hampered the adoption of many new
Internet protocols; from full transport stacks such as SCTP or CurveCP, to extensions to existing protocols
such as TCPCrypt or MPTCP. It is also common to encounter monitored gateways that provide Internet access
purely through HTTP proxies that actively intercept or block HTTPS traffic.
The logical choice to avoid the influence of middleboxes while adding opportunistic encryption is to make
HTTP requests that are difficult to distinguish from ordinary requests. In particular, the Cookie HTTP header
is well suited to carrying cryptographic data, as it usually contains an encrypted payload that is indistinguish-
able from random data. Request URL is another suitable place for putting cryptographic data by the same
reason as cookies.
Another main difference with the use of opportunistic encryption vs a fully established secure transport is
that peer identities need not be fully verified. HTTPCrypt supports establishing the remote peer’s identity
via side channels such as the local DNS service, and we explain later why this is a reasonable approach in
the modern Internet. The basic scheme of an HTTPCrypt request is depicted in Figure 3.1. A client obtains
the server public key out-of-band, and makes a normal HTTP request with the session key contained in the
cookie. The encrypted contents then follow containing nonce and authentication tag.
In plain HTTP protocol, there is no payload within GET requests. However, for HTTPCrypt any request
requires encrypted content. The first way to solve this incompatibility is to use POST requests for all HTTP
messages. Another option is to encode the complete encrypted HTTP request within the request URL. In this
case, the limit of HTTP request that could be encoded is about 2K due to URL length restriction (that is 2083
bytes). Since encrypted payload contains a nonce, all request URLs will be unique preventing thus caching
on proxies. HTTP pragmas could also reduce chances to be cached by middleboxes for HTTPCrypt request
but this does not matter for the protocol itself merely helping to reduce unnecessary caching by intermediate
proxies. HTTPCrypt is compatible with all the major HTTP transfer encodings, such as chunked encoding,
and can maintain keep-alive connections just as normal HTTP does. Moreover, HTTPCrypt natively supports
name based virtual hosts without the need for protocol extensions such as the TLS Server Name Indication.
Unlike TLS, where there is a ciphersuites agreement phase, we claim that it can be skipped for the vast
majority of REST based HTTP services: in case of ciphersuite migration, it is possible to specify a new
scheme explicitly, for example by creating a new set of access URL’s or even by creating a dedicated host for
the new ciphers. Moreover, the current encryption scheme used by a specific server could be explicitly stated
in the DNS.

3.2.2 Latency and performance
HTTPCrypt requests follow the HTTP model of starting without any preliminary handshake phases. The
client is responsible for obtaining the server public key, and the only extra information that needs to be
passed to a client connection is the client’s own public key. The client can therefore encrypt an HTTP
request immediately using its own private key and the server’s public key, and assume that the server can
decrypt the request using its own private key and the client’s public key. One drawback of this approach is the
vulnerability to replay attacks, since a server cannot send its own random data before the initial client request.
We discuss later how developers can mitigate this problem at the application level to prevent replaying the
whole session. The initial request can always still be replayed, but this is not a security flaw if mitigated at
the application level or if used to access read-only data.
HTTPCrypt is designed to establish HTTP sessions by skipping intermediate phases of key exchange or
capability agreement for a connection. The disadvantage of this approach is that it reduces the flexibility of
the connections, but it is also simpler and prevents downgrade attacks, such as one recent TLS vulnerability.
The performance and latency benefits from the above simplifications are significant, and make this is a viable
approach for widespread implementation of opportunistic encryption. The data passed over HTTPCrypt is
encrypted in-place, with a small authentication tag for a data chunk placed prior to each the encrypted pay-
load. This allows using of multi-buffer kernel system calls such as writev to avoid data copying and improve
performance. It also permits implementations to transfer arbitrary sized chunks of payload to optimize the
connection utilization, and not be limited to a window of the maximum intermediate buffer size. It is very
common to encounter many short requests in HTTP, particularly when dealing with proxies that do not fully
support HTTP/1.1 keep-alive. Opportunistic encryption schemes that require TLS handshakes are costly both

Page 34 of (89) c© TRILOGY 2 Consortium 2016

in terms of connection setup latency and the request rate. In contrast, HTTPCrypt skips the full handshake-
term connections, thus supporting the asynchronous requests to advertising networks or loggins counters that
are commonplace in modern websites.

3.2.3 Integration with the existing code
The TLS protocol stack is very complex, and even embedded implementations contain tens of thousands of
lines of code. One reason for the code bloat is that all TLS implementations have to implement multiple
cipher suites, key exchange and signing schemes for the purposes of backwards compatibility. Rather than
propagate this complexity into opportunistic encryption (which we want deployed as widely as possible),
HTTPCrypt specialises its encryption to be based on the NaCL cryptobox primitives. Cryptobox can be
implemented using both a high-performance profile or as a small library within about a thousand lines of
portable code. The design of HTTPCrypt proposes the minimal changes to the existing applications: just use
any suitable cryptobox library (choosing either performance or code size), get any HTTP parser library and
encrypt the payload using cryptobox construction. Unlike TLS, HTTPCrypt does not interfere with the IO
processing logic nor require some intermediate buffering.

3.2.4 Protocol Description
We now describe describe the architecture of HTTPCrypt in detail, via the handshake procedure, request
structure, cryptographic primitives and session resumption.

Handshake Procedure
The client initially obtains and checks the ephemeral public key of a server. Since we are dealing with
opportunistic encryption, it is not necessary to protect this phase against active attacks. Methods of retrieving
the public key include:

• Obtain an ephemeral public key from the corresponding DNS record, and check the authenticity of this
reply using DNSSEC or DNSCurve.

• Obtain a DNS record with the current ephemeral public key as a SPKI or x.509 certificate using, for
example EdDSA signature scheme to fit the whole certificate in a DNS record (which is typically
allowed to be not larger than 512 bytes for many constrained networks).

• Perform a plain-text HTTP OPTIONS request to the target HTTP server and obtain the current certifi-
cate.

The Domain Name System is the preferred way to obtain the ephemeral public keys since DNS is used to
resolve names and to verify domains ownership. If DNSSEC or DNSCurve are enabled for name resolution,
it is also possible to validate the published key via DNS without PKI system. On the other hand, DNSCurve
breaks intermediate DNS caching and DNSSEC can significantly increase requests latencies for clients as
each name must be validated using multiple requests for each name component when using DNSSEC. DNS
caching could reduce the negative effect of validation but it is still required to ask a caching server for each
name component for a client. Moreover, DNSSEC and DNSSCurve can be filtered in restrictive networks,
where plain DNS requests are the last resort available for the clients. Therefore, HTTPCrypt enabled services
should publish the full PKI certificate in the DNS record to be compatible with all clients. Using of the
modern signature schemes, such as EdDSA, allows storing a full x509 certificate within 512 bytes that is
typical limit for a DNS record.
Storing ephemeral keys in the DNS defines their expiration time as equal to the DNS TTL value. HTTPCrypt
defines these methods to store ephemeral keys in DNS:

• DANE TLSA records that contain the full ephemeral key signed by a trusted key within x.509 or SPKI
certificate;

• TXT records can carry the keys and signatures encoded with Base64 encoding;

• AAAA or A resource records can also encode keys and signatures (described below)

• AAAA record tunnelling

c© TRILOGY 2 Consortium 2016 Page 35 of (89)

Not all types of DNS records are allowed by some network policies; for instance, a common practice is to
filter all unknown DNS resource records. TLSA records have been proposed relatively recently, and so are
treated as unknown by many DNS recursive forwarders. TXT queries are forbidden in some networks since
such records are frequently used to construct IP-over-DNS tunnels. This restriction also denies DNSCurve
requests that use the TXT compatibility mode for their encrypted payloads.
In such a constrained network, HTTPCrypt can use IPv6 AAAA records to encode public key material.
We store the relative order of the key material record inside the first 16 bits of the address and use the
remaining 120 bits to encapsulate the payload in network-endian order. The first 12 bits are used to define
IPv6 addresses. The order field is required to reconstruct the payload when a DNS server performs round-
robin rotation of resource records. With 4 bits of order available, it is possible to encode up to 16 addresses
with 112 bits of useful payload. Therefore, to encode a 256-bit key and 512-bit signature, we need 8 IPv6
addresses: three for the public key and five for the signature. An additional address can be used to publish
when this signature has been issued and the validity interval.

3.2.5 Deriving a session key
After obtaining the server’s public key, a client generates (or reuses) its own key pair and derives the shared
secret using the curve25519 scalar multiplication procedure on the server’s public key and its local private
key. An additional round of pseudo-random permutation then produces the final session key. The resulting
session key is subsequently used to encrypt and authenticate the HTTP payload. The authentication tag only
covers the encrypted payload, since middleboxes can modify HTTP headers or the structure of a plain HTTP
request. In contrast, the HTTP payload is not altered by proxies.
After receiving the HTTPCrypt request from a client, a server derives the shared secret using its local se-
cret key and the client’s public key from the Cookie HTTP header. The cookie also contains the ID of the
server’s public key. All further requests down the TCP connection (including HTTP Keep-Alive sessions) are
encrypted using the established shared key. The keep-alive timeout must thus be less than the ephemeral key
lifetime to guarantee forward secrecy for all long term connections.

3.2.6 Request structure
HTTPCrypt requests are designed to be difficult to distinguish from plain HTTP requests. Therefore,
HTTPCrypt uses the HTTP Cookie header to provide the public key of a client to the server. The struc-
ture of this header is: Cookie: IDsk||pad=Kclient ||pad
All the values are encoded with base64 that is commonly used in HTTP cookies. The padding prevents
middleboxes from detecting the specific length of the public key and ID (if desired). Paddings should have
unpredictable length and content for that purposes. The server key ID field applies a SHA3 cryptographic
hash function to the server’s public key and takes the first 10 bytes of its output: ID = take(10, PRF(pubkey))
The server uses this ID when rotating ephemeral keys to select the correct key for a particular connection.
Two ID collision probability is 1/240 which is suitable for the purpose of public keys distinguishing on a
server’s side in conjunction with Host header.
In HTTPCrypt, the encrypted payload encapsulates the real HTTP request, but some HTTP headers are used
from the unencrypted part, for instance the:

• Host is used to distinguish name-based virtual hosts and is required if those hosts have different public
keys. Alternatively, the HTTP server may distinguish hosts by the IDsk value and ignore this header.

• User-Agent header may be checked by middleboxes.

• Content-Length, Content-Range headers are used by the HTTP session as-is.

• Pragma, Expires and Cache-Control prevents proxies from caching encrypted requests.

While most of the HTTP headers could be sent unencrypted to save computational resources, some headers
such as Cookie or Referer must remain encrypted (the former because its use is overloaded by the HTTPCrypt
request structure). We do not define the exact list of headers that must be encrypted as this depends on the
applications’ architecture. If the payload is placed within HTTP body, HTTPCrypt uses the unencrypted URL
to store the initial nonce for the request. We propose to use the first path component after the HTTP path as
nonce whilst the initial path could be used by a web server to find HTTPCrypt protected resource.

Page 36 of (89) c© TRILOGY 2 Consortium 2016

In the case when request is completely encoded within URL, the encrypted payload is placed (base64 en-
coded) into the query parameters component of URL.

3.2.7 Chunked encoding
In HTTP standard, chunked encoding must be supported by any client, therefore any proxy can split the orig-
inal request into chunks. Hence, HTTPCrypt provides support to transfer chunked HTTP messages securely
by means of the internal encrypted chunks. To distinguish between chunked and plain encoding, HTTPCrypt
uses the special query ?chunked=1 to tell a client that the request is split to a set of encrypted chunks. The
traditional Content-Transfer-Encoding header could not be used since it can be altered by middleboxes (for
example, when a proxy performs gzip encoding). However, encrypted chunks support requires more com-
plicated procedure to decode, so it might be avoided when implementing simple services. In this case, a
client always reconstruct a server’s reply as a single chunk; even if the plain request contains chunks they are
merged into a single buffer for decryption and verification.
When HTTP chunked encoding is used, each chunk has its own nonce, MAC tag and additional length of the
encrypted content. The second length specifies the size of data that is authenticated by this MAC with the
specific nonce. It is needed when a middlebox or a proxy performs chunks resegmentation. In this case, a
client will still be able to restore the original chunks sent by a server, decrypt and authenticate them properly.
To avoid reordering of chunks, the subsequent nonces after the first one should be incremented as counter.
Additionally, each authentication tag should be calculated using the previous authentication tag in addition to
the current encrypted chunk content as following: M(i) = Mn(Mn1 (i1) ||P) where P is the current encrypted
payload and n is the current nonce value. In this scheme, an attacker cannot remove any chunk of data from
a message: if he or she removes the first chunk, then MAC won’t be valid for the subsequent chunk as the
original MAC is calculated using the first chunk MAC. The same logic is valid for all subsequent chunks.
Even in the case if chunks have the same content, the fact that they are encrypted using different nonces and
fact that the MAC tag is calculated over the encrypted payload (encrypt-the-nmac method) provide negligible
chances that MAC tags for these equal chunks will be the same. Nonetheless, the last chunk is special. In
plain HTTP, the last chunk has always zero length. However, re-using of this plain scheme opens a security
breach: an attacker can simply remove some chunks from the end of a message adding unencrypted zero-
length chunk. Therefore, HTTPCrypt defines a special encrypted zero-chunk which contains a next nonce,
zero encrypted length and authentication tag calculated as following: M = Mn+1(Mn(i1) ||0)
After this special tag, all following payload could be used for compatibility with HTTP (namely, the last zero
chunk) and should be ignored by HTTPCrypt protocol.
To reconstruct the final HTTP message HTTPCrypt defines the following procedure:

(i) Parse the original request and append all unencrypted headers except for the Cookie header.

(ii) For each encrypted chunk or the whole message increment the previous nonce, read the authentication
tag and verify the encrypted content using the previous MAC tag as additional data for authentication
(for the second and subsequent chunks). If the verification succeeds, decrypt the contents and parse the
encapsulated request.

The request URI in the encapsulated request replaces the original URI and all encrypted headers replace the
corresponding unencrypted headers. If MAC verification fails for any chunk, the peer sends an HTTP 500
error code inside the encrypted payload to prevent connection termination by an adversary who can inject
arbitrary HTTP messages to the peers.

3.2.8 Cryptographic primitives
HTTPCrypt encryption is based on the Cryptobox construction introduced by Daniel Bernstein in the NaCL
cryptographic library. This construction defines both secrecy and integrity for the messages based on public
key cryptography, and is a conjunction of (i) public key exchange procedure; (ii) a stream cipher; and a (iii)
one-time authentication algorithm.
The wire format of Cryptobox specifies a cryptographic nonce, an authentication tag (MAC) and the en-
crypted payload. Nonces for the first message in an HTTP session is generated randomly by both a client
and a server. Nonces length is chosen to be long enough to make the probability of repetition negligible.
Bernstein defines a nonce length of 24 bytes which is 2192 of possible nonces values and the probability of
nonces collision as low as at least 1/2128. For the subsequent chunks or messages within the same keepalive

c© TRILOGY 2 Consortium 2016 Page 37 of (89)

HTTP session, client and server should monotonically increase their initial nonces in counter like matter.
Switching to counters allows to skip nonces in all but the first chunks.
Algorithms selection
The original NaCL implementation suggests the following components to be used in the cryptobox:

• curve25519 and hsalsa20 as the public key exchange operation

• xsalsa20 for symmetric encryption

• poly1305 for message authentication

At present, the salsa cipher family is superseded by chacha ciphers that have the same internal architecture
but are optimised for the modern hardware and vectorized operations. We later evaluate the chacha cipher
vs other state-of-art ciphers such as AES. The most significant advantage of chacha is good performance on
the commodity hardware, including embedded systems based on ARM or MIPS processors as well as x86.
Hence, our final selection of symmetric encryption algorithm is the chacha20 stream cipher. Moreover, the
hsalsa and xsalsa ciphers are replaced with the corresponding chacha variants.
Session Resumption
Since the generation of public key shared secrets is an expensive procedure, HTTPCrypt defines several
approaches to skip it for already establishes sessions. HTTPCrypt uses the same common principles that are
defined in TLS by means of a session cache and ticket mechanism.
Session Cache
The session cache stores some of the client’s state on the server side to avoid recalculating it. The state in
HTTPCrypt includes the hashes of the client’s and server’s ephemeral public keys, and the resulting shared
secret. When re-establishing a session, a server finds the cached state based on the public keys fingerprints
and reuses the shared secret instead of regenerating it using public key cryptography. Session expiration is
based on the server’s ephemeral public key lifetime, and a least-recent-use expiration strategy if there are
more clients than session cache space available. The server must destroy sessions associated with an expired
ephemeral key in order to ensure that forward secrecy is preserved.
Sessions tickets
Session tickets are a mechanism for an HTTPCrypt server to support session resumption without having
to store per-client state. This method implies that a client supports and enables tickets when resuming an
HTTPCrypt connection. When using session tickets, the shared state is encrypted by a symmetric secret key
known only by the server and subsequently passed to the client. The client can then reconnect by including
a previously obtained session ticket in the initial handshake. The server decrypts and verifies this ticket
and restores the session without an additional key exchange procedure being required. Session tickets in
HTTPCrypt have the same structure and definition as in TLS with the only difference that an HTTP header is
used to store and pass a session ticket.

3.2.9 Security Analysis
We now elaborate on the HTTPCrypt protocol’s security properties, support for forward secrecy and denial
of service resistance. We define the threat model for HTTPCrypt as follows:

• HTTPCrypt should be resistant to passive, active and denial-of-service attacks;

• HTTPCrypt should provide both secrecy and integrity for transmitted payload;

• There should be no easy way to distinguish HTTPCrypt requests from plain HTTP traffic.

HTTPCrypt Security Model
To defend against active attacks such as Man-in-the-Middle, HTTPCrypt uses the traditional model of peer
validation using public key signatures and trusted 3rd party authorities. When using DNS-based signatures
the authorities are defined as trusted DNS anchors, while in the case of a certificate chain HTTPCrypt uses
the traditional PKI model where a peer’s key can be signed by any trusted authority.
HTTPCrypt recommends the use of DNS chains of trust granted by means of DNSSEC or DNSCurve anchors.
Nevertheless, for embedded appliances or difficult-to-change infrastructure the cost of a complete DNSSEC

Page 38 of (89) c© TRILOGY 2 Consortium 2016

validation might be too expensive. Furthermore, the cryptographic algorithms and standards recommended
by DNSSEC (e.g. 1024-bit RSA), are more expensive than state-of-art cryptography.
In contrast, DNSCurve provides secure and efficient cryptographic primitives but is not widely deployed in
the Internet for various reasons both historical and more practical since DNSCurve does not interoperate with
intermediate DNS caching. Therefore, the traditional PKI model based on EdDSA signatures is a reasonable
fall-back choice for HTTPCrypt validation.

Replay Protection
Protecting against replay attacks is more complicated than in HTTPS, since HTTPCrypt does not require a
server handshake with a random cookie provided by the server. In HTTPCrypt, the first request can always
be replayed by an adversary for the duration of the server’s ephemeral key it is purely client initiated. It is
possible (and recommended) to implement replay protection at the application level, for example by providing
a unique authentication token from server to a client before granting access to the restricted area. However, a
session before the first server reply is not protected against replay attacks.
To protect the subsequent session, the server places the random cookie in the encrypted and authenticated
reply, for example inside a predetermined HTTP header. If the first request sent over HTTPCrypt is limited
to an idempotent GET method, an adversary can capture and replay the first request, but will not be able to
gain any advantage since the server’s reply then includes a random element. Therefore, an attacker cannot
replay any subsequent messages within a session, in particular side-effecting operations such as HTTP POST
or DELETE methods. Here is the practical example of replay protection applied to an HTTPCrypt session.
Initially, a client sends a GET request that contains a client’s random cookie within the header inside the
encrypted payload to provide protection from replayed server’s messages: Client-Random: <24-bytes-of-
random-data >
A server, in turn, generates the full authentication token (that should be long enough to make repetition prob-
ability negligible) by appending its own random cookie and pushes it inside the encrypted header: Random:
<client-random><server-random>
This model provides effective replay attacks protection. For example, if an adversary can repeat the server’s
replies, then a client will not be able to match its own random part. Similarly, a server will fail to verify its
own cookie and will drop the replayed requests if the client is replayed. Placing random cookies inside the
authenticated and encrypted payload prevents an adversary from both observing or modifying the tokens.

Forward Secrecy
HTTPCrypt uses slowly rotating ephemeral public keys for HTTP servers to provide forward secrecy. Clients
generate a new keypair for each unique HTTPCrypt session. If DNS is used to store and validate public keys,
the rotation of ephemeral servers keys is implicitly defined by the DNS time-to-live (TTL) property used
as the lifetime value for the ephemeral server’s key. To avoid time synchronisation issues, servers should
generate new ephemeral keys at each period of time equal to the DNS resource record’s TTL value, and
publish keys material to the DNS server.
HTTPCrypt does not mandate an exact procedure for updating the DNS, since any of the standard methods
used all serve; e.g. AXFR, an LDAP directory or by executing scripts via SSH. Servers just need to be able
to store ephemeral keys for the time equal to two DNS TTL values to be able to interact with the clients
that have previous keys cached in some DNS cache Hence, the real ephemeral key lifetime is two DNS TTL
periods. The servers should destroy the keys from persistent storage once they have expired.

Denial-of-Service Protection
Availability is an important property of HTTPCrypt if it is to achieve wide deployment. Unlike TLS, the
HTTPCrypt server computes the shared key one the first stage of a connection. This operation is expensive in
terms of CPU resources, whereas in TLS all computationally complex procedures are performed at the later
stages of the handshake (starting from the second message received from a client).
At first glance, this is a disadvantage of the HTTPCrypt design. However, we observe that the TCP three-way
handshake protects a HTTPCrypt server from promoting spoofed requests, to the established state. On the
other hand, if an adversary is able to establish a valid TCP connection (for instance, via a distributed botnet)
then there are no obstacles to continue to the additional stages of a TLS negotiation and force the server
to execute CPU expensive computations. Therefore, HTTPCrypt is no more vulnerable to denial-of-service
attacks than HTTP+TLS. Moreover, since the random response cookies are signed by the server in TLS, it

c© TRILOGY 2 Consortium 2016 Page 39 of (89)

requires more resources to perform signing and shared secret generation than the HTTPCrypt mechanism of
merely generating a shared secret and encrypting the cookie. HTTPCrypt could also upgrade its scope to
include cryptographic puzzles as part of its handshake, for example as defined in the MinimalT protocol. The
concrete definition and evaluation of crypto puzzles are beyond the scope of this work.

Discussion
We now describe the implementation peculiarities used by our HTTPCrypt prototype, beginning with low-
level cryptographic optimisations, operating system acceleration, and integration with existing application
stacks.

Cryptobox Optimizations
As a default ciphers suite HTTPCrypt proposes chacha20 as stream cipher and pseudo-random function,
poly1305 as one time authenticator, and curve25519 as key exchange function. However, these primitives
could be easily switched to another ones (for example, further we demonstrate openssl cryptography used
by HTTPCrypt). In our experiments, we use optimized versions of chacha20-poly1305 and optimized ver-
sion of curve25519 ECDH implementation derived from Sandy2x. Both bulk encryption and key exchange
algorithms benefit from AVX instructions set implemented in Intel processors.
We have also extended the original NaCL cryptobox primitive to allow vectorization of the encryption, for
example, to encrypt headers and body in the same call to the API. This change still allows to encrypt and
authenticate data in-place and avoid intermediate buffering.

3.2.10 Operating System Optimizations
Contemporary operating systems provide various high performance systems calls to optimise the I/O han-
dling for serving HTTP requests with a high throughput. For example, an HTTP server running on Linux
or FreeBSD can utilise the sendfile system call to transfer a file to a socket directly via the kernel with-
out requiring intermediate copying through user-space buffers. Some variants of this system call (e.g. the
FreeBSD sendfile) also accept arbitrary prefixes as arguments. Unlike TLS that requires intermediate buffer-
ing, HTTPCrypt can use the semantic of sendfile call to send files encrypted without requiring copying
through userspace. To support HTTPCrypt, the sendfile interface needs to be extended to accept a session
key and a generated nonce. Bulk data can be encrypted directly in the kernel. In contrast, in TLS other
protocol components, such as TLS Alerts or other extensions all require complex processing that is not easy
(or wise) to put into the kernel.
To migrate to HTTPCrypt from plaintext HTTP, applications must also use a cryptographic quality random
number generator to generate nonces and key pairs. This is particularly important where there is not much
entropy available, for example in embedded devices or virtual machines. However, this requirement is held
for TLS as well.

3.2.11 Embedded usage
HTTPCrypt is particularly well suited to embedded devices where including the full TLS suite is too large
or too slow to use. The CPUs used in embedded appliances are often not able to drive encrypted connec-
tions at a reasonable rate as they have neither hardware cryptographic acceleration nor optimised instructions
cores. HTTPCrypt with the static key model is a better choice to protect communications on such embed-
ded devices. Despite the fact that this scheme does not guarantee forward secrecy, it is still better than
plaintext HTTP connections by providing stronger confidentiality and authentication properties. There are
several optimised embedded implementations of the Cryptobox construction elements used in HTTPCrypt;
for example, ARM NEON specific optimisations to speed up ChaCha20-Poly1305. There is also a generic
implementation of Cryptobox optimized for code size and memory consumption called TweetNaCl. This
library supports the digital signatures created by the Ed25519 algorithm, which can be used to check the
identity of ephemeral keys via the PKI chain-of-trust model. We have evaluated the performance of generic
version of our HTTPCrypt prototype on Cortex A20 ARM board. And even with the generic unoptimized C
versions of all cryptographic primitives it has shown highes requests per second rate then TLS stack (50 com-
plete encrypted requests per second against 30 requests per second for TLS). However, the detailed evaluation
on embedded platforms is beyond the scope of this work.

Page 40 of (89) c© TRILOGY 2 Consortium 2016

3.2.12 Evaluation
We have built the prototype of HTTPCrypt built on top of the http-parser library that is in turn based on the
popular Nginx HTTP server code. The goal of our tests was to compare HTTPCrypt with the standard web
workloads using TLS. We have compared our implementation against Nginx 1.9.5 built with OpenSSL 1.0.2d
using TLS v1.2 protocol with nistp256 curves for both ECDSA and ECDHE.

Integration with Existing Software
HTTPCrypt is designed to be integrated with existing application easily. While it is relatively straightforward
to migrate the already written plaintext services to TLS by means of a proxy such as stud1, it is more difficult
to integrate TLS stack directly into an application that is not specifically designed for to support TLS for the
following reasons:

• TLS alerts and handshakes change the connection processing logic significantly, especially for asyn-
chronous or non-blocking applications;

• TLS uses intermediate buffering for all data transfers that leads to additional latency and performance
penalties.

In contrast, in HTTPCrypt, there are no protocol alerts or additional handshake stages to complicate integra-
tion. Applications thus can send or receive data without any intermediate steps, leaving the event process-
ing logic in the client and server unchanged. In TLS, read operation might require writing and vice-versa:
write operation might request reading. Moreover, an application can create messages in HTTPCrypt without
copying data to an intermediate buffer since all data is encrypted and authenticated in-place. Reading and
processing of HTTPCrypt requests is implemented by extracting the authentication tag from the encrypted
payload, and parsing the following encapsulated HTTP request as defined earlier.
For HTTPCrypt testing, we wrote our HTTP server and benchmarking tool based on the same principles
as wrk (non-blocking IO) and the same HTTP parser. We ran a sequence of experiments using both Nginx
and the HTTPCrypt prototype. The HTTP client is the wrk HTTP benchmarking utility with a single testing
thread and 50 parallel connections in the test runs. We first ran the servers in plain HTTP mode with no
encryption enabled at all (Unencrypted). When then disabled SSL sessions cache/tickets in order to evaluate
the performance of complete TLS handshakes (Encrypted, uncached). In the last experiment, we turned on
the SSL session cache to evaluate the performance of session resumption (Encrypted, tickets) The selection of
cipher suites and the ECDHE curve was based on the assumption that on the tested CPU with hardware AES
support (via AES-NI instructions) and vectorised operations (AVX instructions), the speed of these particular
primitives was optimal. We used the openssl speed command to ensure that the performance of specific
algorithms was optimal on the tested hardware:
256 bit ecdh (nistp256)
256 bit ecdsa(nistp256)
aes-256-gcm
8582.6 op/s
15000.0 signs/s
731623.42 kB/s
In all cases, we evaluated serving static files using a single process on the client and one on the server to
estimate latency and the number of requests per second that were processed. The client and server were con-
nected over the 10G network interface, and all requests were successfully processed. We have also evaluated
HTTPCrypt proxying using both forward proxies, such as squid or tinyproxy, and reverse proxies, such as
nginx or lighttpd. We have not found any compatibility issues when traversing HTTPCrypt requests over
these proxies.

Performance Evaluation
Figure 3.2 shows the workload patterns obtained from the HTTPCrypt test suite. The important results are
the tests with encryption enabled, and in this case HTTPCrypt demonstrates significantly superior requests
per second than Nginx/TLS for the transfer of small files. For larger request the throughput benefits of
HTTPCrypt are not so clear, since the handshake cost is negligible comparing to the cost of bulk encryption
and network transfer.

c© TRILOGY 2 Consortium 2016 Page 41 of (89)

For HTTPCrypt testing, we wrote our HTTP server and
benchmarking tool based on the same principles as wrk

(non-blocking IO) and the same HTTP parser.
We ran a sequence of experiments using both Nginx and

the HTTPCrypt prototype. The HTTP client is the wrk [18]
HTTP benchmarking utility with a single testing thread and
50 parallel connections in the test runs.

We first ran the servers in plain HTTP mode with no
encryption enabled at all (“Unencrypted”). When then dis-
abled SSL sessions cache/tickets in order to evaluate the
performance of complete TLS handshakes (“Encrypted, un-
cached”). In the last experiment, we turned on the SSL ses-
sion cache to evaluate the performance of session resump-
tion (“Encrypted, tickets”).

The selection of cipher suites and the ECDHE curve was
based on the assumption that on the tested CPU with hard-
ware AES support (via AES-NI instructions) and vectorised
operations (AVX instructions), the speed of these particular
primitives was optimal. We used the openssl speed com-
mand to ensure that the performance of specific algorithms
was optimal on the tested hardware:

256 bit ecdh (nistp256): 8582.6 op/s

256 bit ecdsa(nistp256): 15000.0 signs/s

aes-256-gcm: 731623.42 kB/s

In all cases, we evaluated serving static files using a
single process on the client and one on the server to estimate
latency and the number of requests per second that were
processed. The client and server were connected over the
10G network interface, and all requests were successfully
processed.

We have also evaluated HTTPCrypt proxying using both
forward proxies, such as squid or tinyproxy, and reverse
proxies, such as nginx or lighttpd. We have not found any
compatibility issues when traversing HTTPCrypt requests
over these proxies.

6.1 Performance Evaluation
Figure 4, shows the number of requests per second of the
experimental runs with Nginx, and Figure 5 shows the same
workload patterns obtained from the HTTPCrypt test suite.

The important results are the tests with encryption en-
abled, and in this case HTTPCrypt demonstrates signifi-
cantly superior requests per second than Nginx/TLS for the
transfer of small files. For larger request the throughput ben-
efits of HTTPCrypt are not so clear, since the handshake cost
is negligible comparing to the cost of bulk encryption and
network transfer.

The better performance of HTTPCrypt is achieved by
use of the faster ECDH crypto primitives, the elimination
of the handshake stages, and skipping encryption of the
unnecessary HTTP headers in favour of the payload.

Furthermore in the Figure 6, we demonstrated the differ-
ence between OpenSSL and HTTPCrypt comparing them
with nginx+TLS as the baseline. OpenSSL mode used the

Figure 4. The performance of Nginx while serving static
files using 1 process on Intel Xeon E5 2.4 GHz

Figure 5. The performance of HTTPCrypt prototype with
ChaCha20-Curve25519 crypto while serving files using 1
process on Intel Xeon E5 2.4 GHz

following set of crypto primitives: NIST p256 curve for
ECDH, AES-256-GCM for authenticated encryption and
hchacha20 as PRF (PRF selection does not influence the
overall performance since its execution time is negligible
comparing to ECDH procedure). This test shows that even
with the equal cryptography model HTTPCrypt is signifi-
cantly faster than TLS for small requests that are common
for the web RPC services.

In the Figure 7, we demonstrated scaling of HTTPCrypt
prototype from the number of independent processes run-
ning on the same machine comparing to TLS. For both ng-
inx/TLS and HTTPCrypt we used the equal number of pro-
cesses for both client and server. This experiment illustrates

9 2015/10/23

Figure 3.2: The performance of HTTPCrypt prototype with ChaCha20-Curve25519 crypto while serving files
using 1 process on Intel Xeon E5 2.4 GHz

The better performance of HTTPCrypt is achieved by use of the faster ECDH crypto primitives, the elimi-
nation of the handshake stages, and skipping encryption of the unnecessary HTTP headers in favour of the
payload. Furthermore in the Figure 3.3, we demonstrated the difference between OpenSSL and HTTPCrypt
comparing them with nginx+TLS as the baseline. OpenSSL mode used the following set of crypto primitives:
NIST p256 curve for ECDH, AES-256-GCM for authenticated encryption and hchacha20 as PRF (PRF se-
lection does not influence the overall performance since its execution time is negligible comparing to ECDH
procedure). This test shows that even with the equal cryptography model HTTPCrypt is significantly faster
than TLS for small requests that are common for the web RPC services.
In the Figure 3.4, we demonstrated scaling of HTTPCrypt prototype from the number of independent pro-
cesses running on the same machine comparing to TLS. For both nginx/TLS and HTTPCrypt we used
the equal number of processes for both client and server. This experiment illustrates the capabilities of
HTTPCrypt to scale with the CPU cores amount increasing.

Overhead evaluation
The traffic overhead is another important property of an encryption protocol. Therefore, we have compared
the extra data required for HTTPCrypt and TLS connections depending on the payload size. We have chosen
the plain HTTP request of the same size as the baseline and estimated both incoming and outcoming traffic
on the client side. The results shows that HTTPCrypt introduces less overhead than TLS, especially for small
requests, that could reduce the overall traffic for the encrypted connections comparing to the TLS case.

Latency evaluation
Request latency is an important property for opportunistic encryption, since we want this to be deployed
widely and with no user-visible impact. We compared the request latency for different encryption methods
using the unencrypted latency as the baseline.
The evaluation results are shown in Figure 3.5. We measured the latency between connecting to the HTTP
server, sending a request and receiving the reply that concludes the complete HTTP session (keep-alive was
disabled). Connection latency is included as well since the socket connection time introduces a small and
constant delay. The latency tests are consistent with the earlier throughput evaluation: HTTPCrypt provides
lower delay than TLS, but latency degrades when serving large files due to the current lack of IO optimisations
in our prototype. However, once again the important result is that for encrypted connections, the benefit from
HTTPCrypt compared to HTTPS is very significant, especially for the common case of small HTTP response
sizes.
The most expensive computational operations for TLS are generating a shared secret and signing the random
cookie. In contrast, HTTPCrypt does not require the server to do any signing, since the random cookie is
cheaply placed within the encrypted and authenticated payload. The work in the first stage is significant

Page 42 of (89) c© TRILOGY 2 Consortium 2016

Figure 3.3: The performance of HTTPCrypt prototype with OpenSSL crypto while serving files using 1
process on Intel Xeon E5 2.4 GHz

comparing to the first stage of TLS; however this difference does not make HTTPCrypt more vulnerable to
denial-of-service attacks than TLS.

3.3 Kadupul - incentive based enforcement liquid control
Devices connected to the Internet today have a wide range of local communication channels available, such
as wireless Wifi, Bluetooth or NFC, as well as wired backhaul. In densely populated areas it is possible to
create heterogeneous, multihop communication paths using a combination of these technologies, and often
transmit data with lower latency than via a wired Internet connection. However, the potential for sharing
meshed wireless radios in this way has never been realised, due to the lack of economic incentives to do so
on the part of individual nodes. In this work, we explored how virtual currencies might be used to provide
an end-to-end incentive scheme to convince forwarding nodes that it is profitable to send messages on via
the lowest latency mechanism available. Clients inject a small amount of money to transmit a message, and
forwarding engines compete to solve a time-locked puzzle that can be claimed by the node that delivers the
result in the lowest latency. Our approach naturally extends congestion control techniques to a surge pricing
model when available bandwidth is low and does not require latency measurements.
Devices connected to the Internet today have a wide range of local communication channels available. For
example, most new wifi-routers and access points have two or more radios (one for 2.4 GHz and one for 5GHz
communication). Connected to each access point there are clients with several radio technologies available,
such as Bluetooth and NFC. Other physical communication channels also exist, for example LEDs, cameras
and microphones depending on available hardware.
In urban areas it is possible to create heterogeneous, multihop communication paths using these technologies.
As radio waves propagate at the speed of light, these paths offer lower-latency communication. However,
there are few economic incentives for edge nodes to act as low-latency data forwarders, and the disincentive
of wasting their batteries on other nodes’ traffic. As an example of how wireless edge nodes can be used
for faster forwarding, consider a user A who wants to send messages to user B a few kilometers away, as
illustrated in Figure 3.6.
Using a traditional forwarding path the messages may first have to be delivered through the core network of
A’s ISP (or mobile operator), then be forwarded to the core network of B’s ISP, before finally being delivered
to user B. The forwarding latency in this example depends on the number of hops and distance to travel via the
core networks of the ISPs, not the geographical distance between the nodes. As a result, nodes A and B may
experience the same latency whether the geographical distance between them is one or tens of kilometers.
An alternative forwarding path could be established as a wireless path through intermediate radio devices
between A and B, such as node C in Figure 3.6. This forwarding path could potentially achieve significantly

c© TRILOGY 2 Consortium 2016 Page 43 of (89)

Figure 3.4: HTTPCurve and Nginx+TLS scaling from the number of worker processes

lower latency than traditional methods, as well as being resilient to wide-area networking failures since it
only depends on the local communications network. There are however few devices today that are willing
or able to participate in the network as low-latency edge forwarders. We argue that the primary reason for
this is not technical, but caused by lack of incentives compared to the increased workload and need for
investment in the edge nodes. For example, it is not uncommon for edge nodes to participate as forwarders
in city-wide mesh networks due to bad or expensive Internet connectivity, or to act as forwarders to improve
communication during a political crisis. Examples of the latter are Guifi in Spain, the Occupy Wall Street
movement mesh network and the Open Mesh Project in Egypt. In these cases the incentives caused by
external factors outweigh the forwarding cost.
The perceived cost of forwarding a message depends on the workload imposed on the edge node. Depending
on the technology, this workload may be low (forward on regular Wifi), but one could imagine higher work-
loads - such as for a mobile phone that has to turn on Bluetooth discovery for long time periods. The owner of
the node may also have to install custom software or invest in upgraded hardware to forward messages faster.
Other factors, such as power consumption may also play an important role. A forwarding incentive can be
created by simply offering payment to the forwarders, for example by using a decentralized virtual currency
like Bitcoin. A useful feature of many virtual currencies is that micro-payments can be issued with minimal
transaction costs and without relying on a centralized authority. It is more difficult to create a payment system
with incentives for minimizing latency, since it is difficult to measure latency objectively in a way that can be
accepted by all nodes. For example, the latency observed by the sender, a forwarder and the final recipient
may not be the same, and all parties have economic incentives to under or overreport the latency.
Kadupul is a system that incentivises low-latency forwarding between edge nodes without relying on latency
measurements. This is accomplished by creating a reward system based on time-locked puzzles. Time-locked
puzzles can be used to hide information until the puzzle is solved or the solution is provided by the creator or
a third-party. Recently, a time-locked puzzle based on Bitcoin was proposed and implemented, which allows
Bitcoin rewards to be locked for a given time period and be collected by the first node that solves the puzzle
(or is told the solution). We build on Todd’s time-lock puzzle mechanism to propose a forwarding model for
rewarding forwarders by giving them an advantage in solving a puzzle. A forwarder can collect a reward if it
provides the correct solution to a puzzle protecting it. Each forwarder is provided with a solution to a reward
after it has forwarded a message. The catch is that each puzzle is public and solvable by anyone after a known
amount of time. This creates a race to forward the message before the puzzle has been solved by other nodes.
Our main contribution is a new forwarding model that creates incentives for low-latency forwarding without

Page 44 of (89) c© TRILOGY 2 Consortium 2016

Figure 9. The request latency for Nginx while serving files
using 1 process on Intel Xeon E5 2.4 GHz

Figure 10. The request latency for the HTTPCrypt proto-
type while serving files using 1 process on Intel Xeon E5 2.4
GHz

within the encrypted and authenticated payload. The work
in the first stage is significant comparing to the first stage of
TLS; however we discussed in §4.3 that this difference does
not make HTTPCrypt more vulnerable to denial-of-service
attacks than TLS.

7. Related work
There have been several proposals related to improving op-
portunistic encryption support in HTTP, which we now dis-
cuss.

7.1 Transport protocols
TLS 1.3 TLS version 1.3 [13] is the next version of TLS
protocol that defines various features and improvements that

Figure 11. Q-Q plot of latencies distribution for
HTTPCurve serving 500 bytes payload with 1 worker
process

RTT Payload Work done
1 CHello Generate server random

2
SHello

Certificate Send certificates

2(3) SKeyEx Sign random and ephemeral key
3(4) CKeyEx Generate shared secret
4(5) CCSpec -

Table 1. Computation executed by a server at each stage of
TLS connections

RTT Payload Work done

1
Request
Cookie
Payload

Generate shared secret

2
Reply

Payload Create server random addition

Table 2. Computation executed by a server at each stage of
HTTPCrypt connections

are similar to HTTPCrypt properties. For example, it intro-
duces Zero-RTT connection establishment which involves
obtaining of a server’s credentials prior to connection cre-
ation. This feature looks very similar to HTTPCrypt and al-
lows to skip several stages of TLS connection handshake and
skip online signing stage. However, even in this case, replay
protection either requires additional stages or TLS states that
the first client request payload is not replay protected which
could lead to future misuse of Zero-RTT connection feature
in applications. On the other hand, this TLS version does
not change the application interfaces meaning that there is
still the requirement of data copying and changing the IO
logic when enabling TLS encryption. Proxies interaction is

11 2015/10/23

Figure 3.5: HTTPCrypt Latency

Kadupul: Livin’ on the Edge with Virtual Currencies and
Time-Locked Puzzles

Magnus Skjegstad, Anil Madhavapeddy, Jon Crowcroft
Computer Laboratory

University of Cambridge
firstname.lastname@cl.cam.ac.uk

ABSTRACT
Devices connected to the Internet today have a wide range
of local communication channels available, such as wire-
less Wifi, Bluetooth or NFC, as well as wired backhaul. In
densely populated areas it is possible to create heteroge-
neous, multihop communication paths using a combination
of these technologies, and often transmit data with lower la-
tency than via a wired Internet connection. However, the
potential for sharing meshed wireless radios in this way has
never been realised due to the lack of economic incentives to
do so on the part of individual nodes.

In this paper, we explore how virtual currencies might be
used to provide an end-to-end incentive scheme to convince
forwarding nodes that it is profitable to send messages on
via the lowest latency mechanism available. Clients inject a
small amount of money to transmit a message, and forward-
ing engines compete to solve a time-locked puzzle that can
be claimed by the node that delivers the result in the lowest
latency. Our approach naturally extends congestion control
techniques to a surge pricing model when available band-
width is low and does not require latency measurements.

1. INTRODUCTION
Devices connected to the Internet today have a wide

range of local communication channels available. For
example, most new wifi-routers and access points have
two or more radios (one for 2.4 GHz and one for 5GHz
communication). Connected to each access point there
are clients with several radio technologies available, such
as Bluetooth and NFC. Other physical communication
channels also exist, for example LEDs, cameras [14] and
microphones [10] depending on available hardware.

In urban areas it is possible to create heterogeneous,
multihop communication paths using these technolo-
gies. As radio waves propagate at the speed of light,
these paths o↵er lower-latency communication. How-
ever, there are few economic incentives for edge nodes
to act as low-latency data forwarders, and the disincen-
tive of wasting their batteries on other nodes’ tra�c.

As an example of how wireless edge nodes can be used
for faster forwarding, consider a user A who wants to
send messages to user B a few kilometers away, as illus-

A B

C

ISP A ISP BInternet

low latency wireless path
(needs sharing)

high latency wired path
(no sharing)

Figure 1: ISP and edge forwarding paths between nodes
A and B

trated in Figure 1. Using a traditional forwarding path
the messages may first have to be delivered through the
core network of A’s ISP (or mobile operator), then be
forwarded to the core network of B’s ISP, before finally
being delivered to user B. The forwarding latency in
this example depends on the number of hops and dis-
tance to travel via the core networks of the ISPs, not
the geographical distance between the nodes. As a re-
sult, nodes A and B may experience the same latency
whether the geographical distance between them is one
or tens of kilometers.

An alternative forwarding path could be established
as a wireless path through intermediate radio devices
between A and B, such as node C in Figure 1. This
forwarding path could potentially achieve significantly
lower latency than traditional methods, as well as being
resilient to wide-area networking failures since it only
depends on the local communications network. There
are however few devices today that are willing or able
to participate in the network as low-latency edge for-
warders. We argue that the primary reason for this is
not technical, but caused by lack of incentives compared
to the increased workload and need for investment in the
edge nodes. For example, it is not uncommon for edge
nodes to participate as forwarders in city-wide mesh
networks due to bad or expensive Internet connectiv-
ity, as in Athens [1], or to act as forwarders to improve
communication during a political crisis. Examples of
the latter are the Occupy Wall Street movement mesh

1

Figure 3.6: ISP and edge forwarding paths between nodes A and B

having to measure the latency. Economic incentives for optimizing other parameters in ad-hoc networks, such
as bandwidth or power, have been proposed in earlier works, primarily Bit coin as a reward system, the ideas
described here can be used with other virtual currencies as well, as long as they provide a similar underlying
P2P protocol. We will now describe the basic mechanisms in Kadupul and propose several forwarding models
based on time locked puzzles as incentives.

3.3.1 Kadupul Design
We describe the core functionality of Kadupul by first discussing how the forwarding paths are established
and negotiated. We then describe in detail how time locked puzzles can be used as a low-latency forwarding
incentive and propose several forwarding models based on the mechanism.
We assume that most of the nodes that participate as forwarders in Kadupul rarely change their geographical
location (although they can). This means that although nodes may be anonymous as users of the virtual
currency, they will over time be able to gather information about other radio nodes in their region. Kadupul
nodes may use this to estimate risk by observing the behaviour and reliability of nodes they cooperate with
over time.
A message forwarded by Kadupul can be of any size. For example, a high quality video can be transferred as
a single message.

Establishing forwarding paths
Some coordination must be performed in advance to form heterogeneous multihop communication paths. The
forwarders along the path may be able to discover each other directly using radio or other techniques, but if a
wide range of technologies are being used over large geographical areas this may not always be possible. In
the following we provide an example of how a forwarding path may be set up with the help of a decentralized
P2P network on the Internet. We assume that in most cases the forwarding path is established by the sender.
This requires an initial discovery step where the sender finds potential forwarders that together can forward

c© TRILOGY 2 Consortium 2016 Page 45 of (89)

information from the sender to the receiver. Potential forwarders can for example be discovered based on
their location and local communication range, using a decentralized, Internet-based P2P network.
When a potential forwarder is found, the sender contacts the node directly over the Internet and requests a
forwarding quote. If the price and capabilities of the forwarder is acceptable, the sender attempts to find other
nodes that are able to receive the message when it is forwarded. The process is repeated with these nodes. If
no recipients are found (or the prices are unacceptable), the sender must find a different forwarder. Note that
a forwarder may have different radio technologies available, be able to transfer on different frequencies and
at different power levels. Each configuration may have a different expected forwarding latency and price.
Time-locked forwarding rewards
After establishing the forwarding path, the sender must publish a set of rewards. We now describe the mech-
anism and protocol used to publish, as well as collect rewards for the forwarding nodes in more detail. Todd
proposes an interesting scheme for implementing time-locked puzzles with Bitcoin rewards. A chain of re-
wards can be hidden in puzzles and published. Each puzzle has a value in Bitcoins that can be collected by
any node that knows the solution to the puzzle. The solution can either be provided or can be calculated
after a known amount of time. The puzzle is constructed in such a way that it can be created in parallel, but
only solved in serial. More specifically, the scheme uses multiple rounds of a SHA256 hash to calculate a
Bitcoin secret key from a randomly chosen initialization vector for each block of the reward puzzle chain.
If the reward chain has for example 10 blocks, 10 initialization vectors are chosen and SHA256 is executed
iteratively on each vector. Based on the result, a Bitcoin secret key is generated, which in turn is used to
generate a public key and a Bitcoin address. The number of iterations determines how long it will take to
recover the key pair if only the initialization vector is known. When the key pair is found, the public key must
be revealed to collect the reward.
When the reward chain is made public, the initialization vector in each block (except the first) is obfuscated
by XORing it with the SHA256 of the public key of the previous block. Thus, to decode a reward key pair
iteratively you would first need the public key used to collect the reward from the previous block. This
prevents the puzzles from being solved in parallel, while forcing reward collectors to reveal the missing piece
of information required to collect the next reward. To estimate the time it takes to unlock the reward we
must assume a lower bound for how long it takes to perform the hash operation. As SHA256 is used to mine
Bitcoins there have for several years been strong economic incentives to create faster hardware and software
solutions to calculate it. A list of known Bitcoin hardware miners showing speeds in million double SHA256
hashes per second (Mhash/s) and power consumption (MHash/J) is maintained online. For example, the
fastest ASIC-based device currently available can calculate 5.500.000 Mhash/s at 1506 Mhash/J. However,
these devices rely on parallel operations and can not be used to crack a time-locked puzzle that must be
solved in serial. A more realistic lower bound is thus similar to a very fast single core CPU or FPGA. The
lower bound can be adjusted over time if it is observed in the block chain that a puzzle is broken faster than
intended. This mechanism can be adapted to create forwarding incentives in several ways, and we discuss
four such forwarding models next. Note that control traffic (but not the actual data) is transferred over a
higher latency control plane, which for example could be the Internet.
Double incentive forwarding
The objective in this model is to create a mechanism that makes the forwarders lose their reward unless they
forward the message intact to the next hop as soon as possible, but also to create an incentive for assisting
other forwarders. The full process is shown in Figure 3.7.
Figure3.7a gives an overview of the initial tasks that must be performed before forwarding can begin. First,
the sender must find the forwarders and negotiate the forwarding fees. The sender then generates and makes
public a chain of rewards using time-locked encryption. For simplicity, we assume that one reward block is
generated for each forwarder. The reward attached to each block may differ in value depending on the terms
that were negotiated with the respective forwarder. As shown in Figure 3.7b, the sender proceeds to send two
values to each forwarder. The first value is a secret that enables the previous hop on the forwarding path to
retrieve its reward. The second value is a nonce that when combined with a secret from the next hop on the
forwarding path, as well as the hash of the message, results in the key required to unlock one of the rewards.
To avoid having to store the full message in each node, the nodes may use a rolling hash function to hash the
message. The nodes then only need to maintain a buffer that contains a window with enough information to
create the hash and to act as a message queue for forwarding.

Page 46 of (89) c© TRILOGY 2 Consortium 2016

Now the forwarding itself can begin, as shown in Figure3.7c. The message is forwarded along the path and
acknowledged by the next hop by sending the secret back to the forwarder. The acknowledgement address in
the control plane is also sent with the message - for example an IP address and port number.
Figure 3.7d illustrates the reward collection process. After a node has forwarded the full message and received
the required secret from the next node, it can reconstruct the puzzle solution and collect a reward. A forwarder
will only be able to claim a reward when:

(i) The previous node in the routing path was able to claim their reward and thus revealed the public key
of the previous block

(ii) It has received the full message successfully so that it can generate a hash

(iii) The next node in the path has revealed the necessary secret generated by the sender, thus acknowledging
that the full message was forwarded.

If the receiver is untrusted, the sender may encrypt the message with a key derived from the public key of
the final reward to make the message unreadable until all forwarders have been rewarded. This mechanism
ensures that all nodes have incentives both to forward the message to the next hop (to obtain the missing
secret to unlock the reward) and to supply the previous hop with its secret (otherwise they are unable to
decode their own reward). As the reward has a time-lock, the nodes are also given an incentive to perform the
forwarding as fast as they can, or the encryption may be broken by other nodes in the Bitcoin network trying
to claim the reward by brute forcing the keys. The node that can most effectively balance high-throughput
and low-enough latency forwarding stands to profit most from solving the majority of puzzles it sees and
claiming the rewards.
All or nothing
Note that in the forwarding model discussed above, the identity of every forwarder must be revealed to the
next forwarder to allow the message to be acknowledged with the correct secret. In a broadcast network this
may not be necessary. For example, a forwarder may be instructed to listen to a specific Wifi channel in
promiscuous mode to receive the message and then just forward the message as it was received over another
broadcast link. It may not be possible for the forwarders to reply with an acknowledgment in the same
way if it has a weaker radio than the previous hop. It is possible to use an alternative acknowledgement
mechanism to avoid revealing the identity of the forwarders. This forwarding scheme is shown in Figure 3
and assumes a forwarding mechanism that can hide the Internet address of the forwarder, for example by
using anonymous broadcast. Instead of distributing secrets in advance, the final receiver acknowledges the
receipt of the message to the sender and the sender then unlocks the puzzles for all the forwarders. This
scheme requires more coordination between sender and receiver, but makes it difficult for the forwarders to
collude. It also increases the forwarding risk as none of the nodes will receive their reward if the message is
lost or delayed along the way, which may affect the forwarding price.
This forwarding model can be useful in ”off-the-grid” mesh networks, where one of the goals is to avoid
eavesdropping of traffic by global passive sniffing of conventional networks.
Contract forwarding
Kadupul forwarding may also be used without establishing the forwarding path in advance. In this case the
sender negotiates a forwarding contract with another node to bring the message to the recipient. It is then up
to the node that accepted the forwarding contract to deliver the message as fast as possible. This node may
use any number of subcontractors for the message to reach its final destination. This forwarding model is
potentially simpler to implement and use for the sender, but the sender is no longer in control of the path the
message travels. It may also increase the forwarding price as more work is left to the forwarders.
This forwarding model can especially be useful in combination with the other forwarding models. For ex-
ample, a pull based delivery system can be constructed by letting the recipient negotiate a contract with the
sender. When the contract has been accepted, the sender uses another forwarding model to deliver the content
to the recipient.
Competing forwarders
The ”all or nothing” model above can be extended to create a competition between forwarders along multiple
paths. This can be accomplished by using Random Linear Network Coding (RLNC) or fountain codes to

c© TRILOGY 2 Consortium 2016 Page 47 of (89)

encode partial messages and then forward- ing the messages along multiple paths at the same time. RLNC
and fountain codes are useful because the original message can be reconstructed when enough coded packets
have been received. Fountain codes are end-to-end, but RLNC also allows recoding at intermediate nodes.
When the recipient has received enough partial messages to reconstruct the original message, rewards are
distributed to the forwarders depending on how much innovative information they forwarded.
This forwarding model can be especially useful for transferring messages that should be distributed to multi-
ple edge nodes in the same area, such as for multicasting video streams.

Edge node caching
Kadupul naturally creates incentives for edge nodes to cache content. If an edge node is able to store content
that is delivered frequently, it can volunteer to deliver the full content during the negotiation process and
collect the full reward for the delivery. It would also be able to deliver the content in much shorter time than
if it would have to be forwarded again, allowing it to provide a better offer than its competitors. Since each
node must pay for its own cost of storing the cached data in the hope of future requests, they also have an
incentive to develop efficient prediction and cache eviction algorithms.

Discussion and Conclusions
We have proposed a mechanism for creating an economic incentive for low-latency data forwarding and
described how the mechanism can be useful for establishing low-latency forwarding paths between edge
nodes on the Internet. The mechanism is decentralised and does not require latency measurements. We have
mainly focussed on edge networks in this work, but the mecha- nism can also be used in other types of
networks where low latency should be rewarded.
An advantage of Kadupul in edge networks is that forwarding nodes have incentives to avoid congestion and
long processing delays. If an area is congested, nodes that are able to forward with low latency would be
able to demand a higher price. This increased price encourages central nodes to invest in special hardware
to reduce the congestion. Two nodes may for example cooperate and set up long-range, point-to-point links
that increases hop length and reduces interference. Similarly, nodes that are near a congested area, may set
up point-to-point links that forward data across the congested area to a node on the other side. Commercial
operators may also take advantage of the system, for example by selling low latency access using a privately
owned frequency range.
Although all of the pieces needed to implement this type of forwarding exists today, some technical challenges
remain before it can be fully realised.
For instance, it may take a long time to set up the initial forwarding path because several potentially slow tasks
must be performed before forwarding can begin. For example, the reward puzzles can be generated in parallel,
but may still be time consuming to produce if the puzzle is to be protected over longer time periods. In
addition, if Bitcoin is used, transactions are relatively slow and it takes a while to publish rewards. Similarly,
it may take some time for the forwarders to collect their rewards after receiving the solution to the puzzle.
These delays require that additional time must be added to the puzzles to make sure that rewards do not
expire until the forwarders have been able to collect them. Today, this makes the method mostly suitable for
applications that will use the path for longer time periods, such as for large, planned data transfers. However,
we are confident that these delays will become much smaller in the near future. As virtual currencies are
becoming more popular, their protocols and software implementations are constantly being optimized to
reduce delays. Furthermore, the number of reward puzzles that can be generated in parallel can dramatically
increase if they are calculated using GPUs or FPGAs. Multiple rewards can be given to each hop while still
being required to be solved in serial, and so the number of rewards created in parallel can exceed the total
number of hops. Kadupul helps to balance the economic needs of service providers and users to deliver a
viable model for deploying reliable multihop edge networks, as well as enhancing the resilience of the global
network by only using local links when possible.

3.4 Managing Multipath TCP sufblows
3.4.1 Introduction
An important part of a Multipath TCP implementation is the strategy that it uses to create subflows. The Linux
kernel implementation [38] includes modules that implement these strategies. As of this writing, the Linux
implementation contains two strategies that are called path managers for historical reasons : full-mesh

Page 48 of (89) c© TRILOGY 2 Consortium 2016

and ndiffports. In both cases, only the client creates the subflows. The server never creates subflows
because the client is often behind a NAT or firewall that blocks connection attempts [19]. The full-mesh
path manager listens to events from the underlying network interfaces and creates one subflow towards the
server over each active interface. These subflows are created immediately after the creation of the connection
or when an interface becomes active. It enables smartphones to react to losses of connectivity [37]. The
ndiffports path manager creates n subflows over the same interface as the initial one immediately after
the establishment of the connection. This path manager was designed for datacenters [42] where it enables
the utilisation of paths that are load-balanced with Equal Cost Multipath (ECMP).
A few researchers have explored how Multipath TCP should manage the available subflows and interfaces.
RFC6897 proposes some extensions to the basic socket API to enable applications to add/remove addresses
to a Multipath TCP connection [44]. However, none of the existing Multipath TCP implementations imple-
ment this proposed extension [19]. Paasch et al. [37] evaluate how wireless devices can adapt to losses of
connectivity. This paper proposes three modes of operation for Multipath TCP on smartphones: single-path,
backup and full-mptcp. Bocassi et al. [7] propose the Binder path manager that leverages loose source routing
and Multipath TCP to aggregate different paths in wireless mesh networks. Lim et al. [49] propose an ex-
tension to Multipath TCP that enables to adapt the utilisation of the subflows based on information extracted
from the MAC layer. This extension is evaluated experimentally, but there are no details on how it has been
implemented. Several researchers have evaluated the energy impact of using Multipath TCP on smartphones
[40, 30]. Peng et al. propose models that demonstrate the benefits of managing the subflows to reduce energy
consumption but do not propose any implementation [40]. Lim et al. propose an energy-aware Multipath
TCP (eMPTCP) [30]. eMPTCP delays the establishment of subflows on smartphones over the LTE interface.
However, when the smartphone switches from LTE to WiFi, they propose to reset the round-trip-time estima-
tion of the LTE subflow to zero msec to force the utilisation of this subflow [30]. This speeds up the utilisation
of the LTE subflow, but is not an architecturally clean solution to the subflow management problem.
Schmidt et al. proposed the utilisation of socket intents [45] to allow applications to inform the stack of what
they know about the future communication pattern. These intents include information such as the type of
transfer (query, bulk, stream) or the information about the flow (number of bytes, duration, . . .). We also
use this kind of information in our design and socket intents could be a way to exchange it with the subflow
controller.

3.4.2 The subflow controller
The Linux implementation of Multipath TCP [38] resides entirely in the kernel. Most of the kernel code
is devoted to the transmission and reception of data, but the management of the subflows is also performed
in the kernel by the full-mesh and ndiffports path managers. This design choice was motivated by
performance reasons. An unfortunate consequence of this choice is that if an application wants to control the
utilisation of the subflows, it must include a new kernel module. This is not a good solution and only three
path managers have been implemented in the kernel in several years.
We reconsider this design choice by clearly separating the Multipath TCP data and control planes. The data
plane includes all functions that deal with the transmission of data. It remains in the kernel for performance
reasons. The control plane includes all the functions that manage the subflows that compose a Multipath
TCP connection. From a performance viewpoint, there is no reason to place these functions in the kernel.
Furthermore, some applications might want to implement complex policies to manage their subflows. This
kind of code does not really fit inside a kernel. To enable the applications to interact with the Multipath TCP
kernel code, we define a new Netlink family. Netlink [43] is an interprocess communication mechanism
supported by the Linux kernel that allows applications to interact with the kernel through messages. This is
similar to the approach proposed earlier by M. Coudron [11].
However, writing code to send and receive Netlink events can be complex for application developpers.
To ease the development of subflow controllers, we abstract all the complexity of handling Netlink in a
library [14] that is linked with the subflow controller running entirely into userspace. This library (Figure 3.9)
interacts with the Netlink path manager that is part of the kernel. This path manager uses the existing in-
kernel path manager interface (shown in red in Figure 3.9) and exposes this interface through Netlink. The
path manager is implemented in 1100 lines of C code while the library contains 1900 lines of code.
The Netlink path manager provides a flexible API that exposes events and state information from the
kernel [14]. Callback functions provided by the subflow controller are triggered when a specific event happens

c© TRILOGY 2 Consortium 2016 Page 49 of (89)

in the Multipath TCP kernel or based on other inputs. The subflow controller receives only notifications for
events it registered to.
The Netlink path manager sends and receives messages that contain information about the connection, the
subflow(s), the type of event, etc. It supports many more events and commands than M. Coudron’s earlier
prototype [11]. The created event is triggered when a Multipath TCP connection is established. It contains
the four-tuple, the id of the initial subflow and other information required to identify the connection. The
estab event indicates the success of the three-way handshake and the closed event marks the termination
of the Multipath TCP connection. These events enable a path manager to manage the connections established
by several applications.
The add addr and rem addr events provide the IP addresses announced and removed by the remote host
with Multipath TCP options [21]. Thanks to these events, the subflow controller can store the addresses of
the remote host and establish new subflows only when and if needed. This is more flexible than the existing
in-kernel path managers that immediately create subflows. This also reduces the state maintained for each
Multipath TCP connection in the kernel.
The sub estab and sub closed events enable an application to control the utilisation of the subflows.
The sub estab event is triggered once a new subflow has been established. A server could use this event
to limit the number of subflows that it currently accepts (e.g., only accept subflows originating from different
addresses to prevent ressource abuse with parallel subflows). The sub closed event is triggered when a
RST segment is received over one subflow or when a subflow is terminated due to excessive retransmissions.
This event is also associated with an error code (based on standard errno) that indicates the reason for the
removal (e.g., excessive expirations of the rto, destination unreachable, etc.).
The last event is the timeout event. On a TCP connection, the expiration of the retransmission timer is
usually an indication of severe losses. With regular TCP, there is nothing that the application could do if the
retransmission timer expires too often. With Multipath TCP, the situation is different since a second path
could have very different loss characteristics than the current one. This event reports the current value of the
retransmission timer and can be used as a trigger to create an additional subflow.
In addition, the Netlink path manager also gathers the events that are triggered by the interfaces when a
local IP address is enabled (new local addr) or disabled (del local addr).
In addition to subscribing to some of these events, the library enables the subflow controller to modify the
state of Multipath TCP connections through commands. Our initial implementation supports several types of
commands. First, it is possible to request the creation of a subflow. A controller can create a subflow based on
an arbitrary 4-tuple (IP addresses and ports). A similar command allows to remove any established subflow
(either created through the controller or established by the peer). This enables the subflow controller to easily
adjust the utilisation of the subflows. The controller can also retrieve information from the control block of
the Multipath TCP connection or one of the subflows. In practice, this is equivalent to the utilisation of the
TCP INFO socket option on Linux.

3.4.3 Sample use cases
In this section, we illustrate the benefits of the userspace subflow controller with different use cases that
demonstrate how a smart application can intelligently interact with Multipath TCP.

3.4.3.1 Smarter long-lived connections
Some applications such as ssh, various chat applications, or notification applications on smartphones use
long-lived connections that can last hours or days. These connections pose operational problems in networks
that contain middleboxes like firewalls or NAT that maintain state for each established connection. The
typical example is a connection that has been established but did not recently transmit data. Many NATs or
firewalls will drop the state for this connection after some time. Although the IETF recommends a timeout
of not less than two hours and four minutes, many deployed NATs and firewalls are more aggressive and
remove unused state after a few hundreds of seconds [24]. Furthermore, many networks include cascades
of such middleboxes [34]. Some applications react by sending data on a regular basis over each established
connection. As an example, RFC3948 [26] recommends to send keepalive packets every 20 seconds. An
unfortunate consequence of this battle between applications and middleboxes is that mobile devices need to
consume a lot of energy simply to preserve the state for the established TCP connections in the middleboxes.
Given the importance of energy consumption on such devices [40, 30], this is not a good approach.

Page 50 of (89) c© TRILOGY 2 Consortium 2016

Our first subflow controller is a reimplementation of the fullmesh path manager that is present in the
Multipath TCP Linux kernel. This controller is implemented in about 800 lines of user space C code. It
implements a listener for all the events described in Section 3.4.2. It listens to the new local addr and
del local addr events to react to the activation and deactivation of local addresses like the in-kernel path
manager. In addition, it also listens to the sub closed event to react to the failure of any subflow. When
such an event occurs, the subflow controller analyses the error condition (excessive timeout, RST, reception
of an ICMP message, etc.) and reacts accordingly. It tries to reestablish the failed subflow and sets different
timeouts based on the error condition (e.g. a short timeout if a RST was received and a longer timeout upon
reception of an ICMP network unreachable message). Experiments with this controller show that it correctly
maintains the subflows established over the different paths even under difficult network conditions.
3.4.3.2 Smarter backup
Multipath TCP [21] supports backup subflows. The backup status associated to a subflow is a binary flag that
is exchanged in the SYN segment at subflow establishment time. It can also be changed dynamically with the
MP PRIO option [21]. According to RFC6824 [21], a backup subflow is a subflow that should only be used
to transmit data once all other (non-backup) subflows have failed. This is the classical definition of a backup
interface that works well on hosts. When an interface fails on such hosts, Multipath TCP immediately detects
the failure and moves the traffic to the backup interface [37].
On mobile devices such as smartphones, the availability of one interface cannot be represented as a binary
variable. When a smartphone moves around an access point or a cellular tower, there are regions where the
wireless network does not work at all, regions where it works perfectly and regions where an IP address is
assigned to the smartphone, but the radio conditions are so bad that most of the packets are lost. We use a
Mininet [22] emulation to illustrate the situation experienced on smartphones. A connection starts over one
interface and the second is set as a backup interface. After 1 second, the packet loss ratio over the primary path
increases to 30%. Multipath TCP tries to retransmit the data over this interface and applies the exponential
backoff to its retransmission time until it reaches the maximum value (15 doublings on Linux). At this point
(after 12 minutes in our experiment with the default Linux configuration), TCP eventually terminates the
subflow. This triggers Multipath TCP to use the backup subflow since it is the only available one.
The userspace subflow controller enables a different model for backup subflows that improves user experi-
ence. Since Multipath TCP supports break-before-make [21], our controller does not immediately establish
the backup subflow. On a smartphone where the cellular interface would likely be used as a backup, this
reduces both energy and radio resource consumption. The controller simply listens to the timeout event.
When a retransmission timer expires, it checks the current value of the timer. If the timer becomes larger
than a configured threshold, the subflow is considered to be underperforming. The controller then closes the
underperforming subflow and creates a subflow over the backup interface to continue the transfer. This is
illustrated in Figure 3.10 which shows the evolution of the data sequence numbers (the color indicates the
subflow used to send the data). The transmission starts over the primary subflow (in green in Figure 3.10).
When the retransmission timer reaches one second, this subflow is terminated and a new subflow is created
over the backup path (in red in Figure 3.10).
3.4.3.3 Smarter streaming
We consider a simple streaming application that sends one 64 KBytes block every second. It expects that
each block of data will be delivered within one second. We use this application over an emulated network
with two 5 Mbps links between the client and the server. Each link has a 10 msec delay. The link bandwidth
is almost an order of magnitude larger than the application goodput (520 Kbps).
For this Mininet experiment, we first use the default full-mesh path manager. When there is no loss, each
block of 64 KBytes is delivered within 100 msec. However, when there are losses over the initial subflow the
block delay quickly increases as shown by the CDF in Figure 3.11.
A closer look at the packet traces reveals the reasons for the low performance achieved with the default
full-mesh path manager. When a retransmission timer expires on the initial subflow, the corresponding
data can be reinjected on the other subflow. However, the data is still retransmitted on the initial subflow.
If the retransmission is lost, the retransmission timer is doubled. This can happen several times and most
of the data is sent on the second subflow. If at this point the scheduler decides to send some data on the
underperforming subflow, this data is protected by an already very long RTO. If the data is lost, Multipath
TCP waits a long time to retransmit it, which explains the long tail of the CDF in Figure 3.11.

c© TRILOGY 2 Consortium 2016 Page 51 of (89)

We prototype a subflow controller that expects the blocks of data to be delivered within 1 second. 500 msec
after each start of block, it measures the progress of the data transfer by extracting the snd una state variable
from the kernel. If fewer than 32 KBytes have been sent, it considers the subflow to be underperforming and
opens another subflow on the other interface. This controller also monitors the evolution of the RTO. If the
RTO of a subflow becomes larger than 1 second, it is immediately closed. With this controller, if the initial
subflow is fast enough to support the stream no additional subflow is established. If the initial subflow does
not have enough bandwidth, a second subflow is established. The controller can also close the initial subflow
if its performance is too bad. Our experiments with different packet loss ratio (not shown in the figure) for
graphical reasons show that our controller provides almost the same CDF of the block delays for packet loss
ratios in the 10-40% range.
3.4.3.4 Smarter exploitation of flow-based LB
In many networks, there are multiple paths between a pair of single-homed hosts given the widespread usage
of Equal Cost Multipath (ECMP), link bonding and other techniques that perform flow-level load-balancing.
Typically, load-balancing routers compute a hash over the four-tuple to select the path for each flow. This
implies that hosts cannot easily predict which path will be used for a particular flow. The ndiffports
kernel path manager was designed with this use case in mind [42]. If many paths are available, the n subflows
that it creates are likely to use different paths. However, if the number of available paths is close to n, several
subflows might use the same path. Measurements and simulations with this use case have always used a fixed
number of subflows [42].
The flexibility of our subflow controller enables a different approach to the management of the subflows in
such a scenario. When the connection starts, our controller creates n subflows. These subflows use random
source ports and are load-balanced in the network. Regularly (every 2.5 seconds in our current implemen-
tation), the controller queries the Multipath TCP stack to retrieve the pacing rate of each subflow. This
pacing rate is a state variable that measures the current rate of a given TCP connection. It is included
in recent versions of the Linux TCP stack [18]. Our controller compares the pacing rate of the different
subflows, removes the one with the lowest rate and immediately creates a new subflow. This is a very simple
heuristic that will need to be updated based on experience in real networks. This controller is implemented
in only 230 lines of C code. We evaluate it in a simple Mininet environment. The client and the server are
attached to different routers. The two routers load-balance the flows over four available paths that have a
capacity of 8 Mbps and delays of respectively 10 msec, 20 msec, 30 msec and 40 msec. The client sends a
100 MBytes file and opens 5 subflows. We expect that by opening 5 subflows over 4 paths, our controller
will end up continually using all four paths, while the in-kernel ndiffports path manager will likely have
at least some of its 5 subflows using the same path. This is illustrated in Figure 3.12 which shows the CDF
of the file transfer times. With the in-kernel ndiffports path manager, we can identify 3 clusters around
28 s, 37 s and 55 s, corresponding to the subflows using 4, 3 and 2 paths respectively. Even with a very
simple implementation, our subflow controller tends to use the 4 available paths, outperforming the in-kernel
ndiffports path manager significantly. For reference, the shortest time using the four paths is 27.8 s, and
the worst time using only one path is 111.7 s.
3.4.3.5 User space path manager performances
As a first evaluation of the CPU cost of the user space path manager, we perform a simple experiment in a
lab between two hosts connected with a direct 1 Gbps Ethernet link. The server has an Intel(R) Xeon(R)
CPU X3440 @ 2.53GHz and 8GB of memory. The client has an Intel(R) Core(TM)2 Duo CPU E6550 @
2.33GHz and 4GB of memory. The server runs the lighttpd HTTP web server and the default in-kernel
path manager. The client performs one thousand consecutive HTTP/1.0 GET queries for a 512 KB file. This
experiment is performed with two variants of the ndiffports path manager : user space and in-kernel.
These two path managers create a second subflow as soon as the initial subflow has been established. We
measure the delay between the SYN of the initial subflow (i.e., containing the MP CAPABLE option) and the
SYN of the second subflow (i.e., containing the MP JOIN option. Figure 3.13 provides the CDF of the delays
measured with the two different path managers. It shows that the in-kernel path manager is slightly faster than
the user space one. On average, the user space path manager increases the delay by 23 us. This additional
delay is small and remains acceptable for a client. We also performed experiments during which we stressed
the CPU on the client by running additional processes. In this case, both the in-kernel and the user space path
managers are affected. The delay increase due to the user space path managers remains smaller than 37 us.

Page 52 of (89) c© TRILOGY 2 Consortium 2016

Figure 2: Negotiation, forwarding and reward collection
with double incentive forwarding.

Radio / wireless

Internet

A DCB

P2P geoloc. Bitcoin P2P

2. Negotiate forwarding

1. Find forwarders
3. Publish time-locked

Bitcoin rewards

(a) Sender prepares forwarding path

Radio / wireless

Internet

A DCB

P2P geoloc. Bitcoin P2P

C nonce
B secret

B nonce
(C secret)

secret = solution ⨁ nonce ⨁ hash(message) ⨁ hash(prev. node solution)

(b) Sender distributes secrets and nonces

Radio / wireless

Internet

A DCB

P2P geoloc. Bitcoin P2P

1. Message 2. Message
+ ack IP

4. Message
+ ack IP

5. Ack w/C secret3. Ack w/B secret

Send message, ack with secrets

(c) Sender sends message, nodes acknowledge with secrets

Radio / wireless

Internet

A DCB

P2P geoloc. Bitcoin P2P

B solution = B secret ⨁ B nonce ⨁ hash(message)
C solution = C secret ⨁ C nonce ⨁ hash(message) ⨁ hash(B solution)

Collect rewards in serial,
needs public key from

previous reward
1. Collect reward B

2. B reward public
key is revealed

3. Collect reward C

(d) Forwarders reconstruct solutions and collect rewards

2. It has received the full message successfully so that
it can generate a hash

3. The next node in the path has revealed the neces-
sary secret generated by the sender, thus acknowl-
edging that the full message was forwarded.

If the receiver is untrusted, the sender may encrypt
the message with a key derived from the public key of
the final reward to make the message unreadable until
all forwarders have been rewarded.

This mechanism ensures that all nodes have incen-
tives both to forward the message to the next hop (to
obtain the missing secret to unlock the reward) and to
supply the previous hop with its secret (otherwise they
are unable to decode their own reward).

As the reward has a time-lock, the nodes are also
given an incentive to perform the forwarding as fast
as they can, or the encryption may be broken by other
nodes in the Bitcoin network trying to claim the reward
by brute forcing the keys. The node that can most e↵ec-
tively balance high-throughput and low-enough latency
forwarding stands to profit most from solving the ma-
jority of puzzles it sees and claiming the rewards.

2.2.2 All or nothing
Note that in the forwarding model discussed in Sec-

tion 2.2.1, the identity of every forwarder must be re-
vealed to the next forwarder to allow the message to
be acknowledged with the correct secret. In a broad-
cast network this may not be necessary. For example, a
forwarder may be instructed to listen to a specific Wifi
channel in promiscuous mode to receive the message
and then just forward the message as it was received
over another broadcast link. It may not be possible for
the forwarders to reply with an acknowledgment in the
same way if it has a weaker radio than the previous hop.

It is possible to use an alternative acknowledgement
mechanism to avoid revealing the identity of the for-
warders. This forwarding scheme is shown in Figure
3 and assumes a forwarding mechanism that can hide
the Internet address of the forwarder, for example by
using anonymous broadcast [17]. Instead of distribut-
ing secrets in advance, the final receiver acknowledges
the receipt of the message to the sender and the sender
then unlocks the puzzles for all the forwarders. This
scheme requires more coordination between sender and
receiver, but makes it di�cult for the forwarders to col-
lude. It also increases the forwarding risk as none of the
nodes will receive their reward if the message is lost or
delayed along the way, which may a↵ect the forwarding
price.

This forwarding model can be useful in “o↵-the-grid”
mesh networks, where one of the goals is to avoid eaves-
dropping of tra�c by global passive sni�ng of conven-
tional networks.

4
Figure 3.7: Kadupul Forwarders

c© TRILOGY 2 Consortium 2016 Page 53 of (89)

Figure 3: Broadcast forwarding without revealing for-
warder identity to other forwarders.

Radio / wireless

Internet

A DCB

P2P geoloc. Bitcoin P2P

1. Message 2. Message 3. Message

4. Ack to sender

5. B solution

Send message, ack with key - no payment until delivery

6. C solution

2.2.3 Contract forwarding
Kadupul forwarding may also be used without estab-

lishing the forwarding path in advance. In this case the
sender negotiates a forwarding contract with another
node to bring the message to the recipient. It is then
up to the node that accepted the forwarding contract
to deliver the message as fast as possible. This node
may use any number of subcontractors for the message
to reach its final destination. This forwarding model is
potentially simpler to implement and use for the sender,
but the sender is no longer in control of the path the
message travels. It may also increase the forwarding
price as more work is left to the forwarders.

This forwarding model can especially be useful in
combination with the other forwarding models. For ex-
ample, a pull based delivery system can be constructed
by letting the recipient negotiate a contract with the
sender. When the contract has been accepted, the sender
uses another forwarding model to deliver the content to
the recipient.

2.2.4 Competing forwarders
The “all or nothing” model (§2.2.2) can be extended

to create a competition between forwarders along mul-
tiple paths. This can be accomplished by using Ran-
dom Linear Network Coding [8] (RLNC) or fountain
codes [6] to encode partial messages and then forward-
ing the messages along multiple paths at the same time.
RLNC and fountain codes are useful because the orig-
inal message can be reconstructed when enough coded
packets have been received. Fountain codes are end-
to-end, but RLNC also allows recoding at intermediate
nodes. When the recipient has received enough par-
tial messages to reconstruct the original message, re-
wards are distributed to the forwarders depending on
how much innovative information they forwarded.

This forwarding model can be especially useful for
transferring messages that should be distributed to mul-
tiple edge nodes in the same area, such as for multicas-

ting video streams.

2.2.5 Edge node caching
Kadupul naturally creates incentives for edge nodes

to cache content. If an edge node is able to store content
that is delivered frequently, it can volunteer to deliver
the full content during the negotiation process and col-
lect the full reward for the delivery. It would also be
able to deliver the content in much shorter time than
if it would have to be forwarded again, allowing it to
provide a better o↵er than its competitors. Since each
node must pay for its own cost of storing the cached
data in the hope of future requests, they also have an
incentive to develop e�cient prediction and cache evic-
tion algorithms.

3. DISCUSSION AND CONCLUSIONS
We have proposed a mechanism for creating an eco-

nomic incentive for low-latency data forwarding and de-
scribed how the mechanism can be useful for establish-
ing low-latency forwarding paths between edge nodes on
the Internet. The mechanism is decentralised and does
not require latency measurements. We have mainly fo-
cussed on edge networks in this paper, but the mecha-
nism can also be used in other types of networks where
low latency should be rewarded.

An advantage of Kadupul in edge networks is that
forwarding nodes have incentives to avoid congestion
and long processing delays. If an area is congested,
nodes that are able to forward with low latency would
be able to demand a higher price. This increased price
encourages central nodes to invest in special hardware
to reduce the congestion. Two nodes may for example
cooperate and set up long-range, point-to-point links
that increases hop length and reduces interference. Sim-
ilarly, nodes that are near a congested area, may set up
point-to-point links that forward data across the con-
gested area to a node on the other side. Commercial
operators may also take advantage of the system, for
example by selling low latency access using a privately
owned frequency range.

Although all of the pieces needed to implement this
type of forwarding exists today, some technical chal-
lenges remain before it can be fully realised.

For instance, it may take a long time to set up the
initial forwarding path because several potentially slow
tasks must be performed before forwarding can begin.
For example, the reward puzzles can be generated in
parallel, but may still be time consuming to produce if
the puzzle is to be protected over longer time periods.
In addition, if Bitcoin is used, transactions are relatively
slow and it takes a while to publish rewards. Similarly,
it may take some time for the forwarders to collect their
rewards after receiving the solution to the puzzle. These
delays require that additional time must be added to the

5

Figure 3.8: Deferred payment

Netlink PM

PM Library

Subflow controller

Netlink
msgs

Linux kernel

Figure 3.9: The subflow controller and the Netlink path manager

0 1 2 3 4

0
2

4
6

8
1

0

Relative Time (s)

R
e

la
ti
v
e

 s
e

q
u

e
n

c
e

 N
u

m
b

e
r

(1
0

^5
 B

y
te

s
)

Master

Back up

Figure 3.10: The subflow controller detects when the retransmission timer becomes too long and creates the
backup subflow at this time.

Page 54 of (89) c© TRILOGY 2 Consortium 2016

0 2 4 6
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Block completion time (s)

C
D

F

Smart Stream

10% losses

20% losses

30% losses

40% losses

Figure 3.11: CDF of the delay required to deliver a 64 KBytes to the client under different packet loss
conditions.

25 30 35 40 45 50 55

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Completion time (s)

C
D

F

Refresh

Ndiffports

Figure 3.12: By regularly restablishing low-performing subflows, our subflow controller improves network
utilisation

0.2 0.3 0.4 0.5 0.6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Delay between CAPA and JOIN (msec)

C
D

F

Kernel

User space

Figure 3.13: Kernel path manager is slightly faster than user space path manger to open a second subflow

c© TRILOGY 2 Consortium 2016 Page 55 of (89)

4 Operator Control
In this section we present the tools developed in the third and last year of the Trilogy 2 project for the control
of liquidity from the operator perspective.
We first present the control tool available in the Federated Market and Cloud.net. As described in deliverables
D1.3 and D2.4, the Federated Market is a platform developed in the Trilogy 2 project to allow cloud operators
to offer their compute/storage/network resources to clients. Through the platform, the providers and clients
can trade cloud resources. However, in order for this platform to be successful, control of the traded resources
is paramount. In this section, we describe both the incentive and the enforcement mechanisms built in the
platform to provide the required guarantees to all the involved parties.
The other control tool for operators we cover in this section is related to MPTCP. The Trilogy 2 project has
done extensive work on MPTCP as an end-user liquidity tool. Indeed, MPTCP is an end to end protocol
that allows endpoints to pool all the paths available and distribute the traffic load among them. In section 3
we described different tools to allow the end users to control the liquidity created by MPTCP. However, the
use of MPTCP also affects the ISPs offering connectivity to the end user hence, it is natural to ask to what
extent the ISP can control the liquidity created by MPTCP. In this section, we try to answer that question by
modeling the use of MPTCP by the end user and the reaction by the ISP as a game using game theory. We
observe that the ISP can user packet drops as a mean to influence MPTCP behaviour and affect the traffic
distribution among paths. We investigate in which scenarios the ISP can benefit from doing so.

4.1 Federated Market and Cloud.net
4.1.1 Federation
The OnApp Federation has been described in detail in Work Package 1 (WP1). In this Deliverable we describe
some of the incentive and enforcement mechanisms that have been developed in the course of the third year
of Trilogy 2.

4.1.1.1 Enabling Private Federation Via Tokens
A number of customers have requested the ability to enable private resource sharing from the Federation.
This has led to the development of a token based system that allows buyers to acquire resources from ‘hidden’
sellers. Resources can only be traded in this ‘private’ market after a token has been successfully entered in
the UI interface and authenticated by the market. The seller is responsible for generating the tokens and can
then provide these tokens to selected buyers. This allows sellers to control who sees their resources, which
are normally visible to everyone who takes part in the Federation.
When sellers add resource zones to the Federation they decide whether they want to make those resources
publicly accessible or require a token, as seen in Figure 4.1.

4.1.1.2 Users and roles in the Federation
The main control tool used to control the Federation and Cloud.net is access control lists (ACL). Users of the
platform have to be authenticated and are then authorised with certain roles in the platform. The Federated

Figure 4.1: Accessibility of cloud resource zones can be controlled through the UI

Page 56 of (89) c© TRILOGY 2 Consortium 2016

market maintains a list of Cloud sites and the users who are authorised to perform certain roles in those
sites. If an authenticated user makes a valid API request to an authorised cloud then the market will send the
relevant commands to that Cloud site. The set of operations that each of the roles can perform is increased to
match the new functionality allowed in the Federation.
Recently different types of administrator roles have been added who can manage different parts of the Fed-
eration. Support accounts for instance offer one level of administrative functionality that allow support team
members to log into the administrative part of the Federation and view and change permissions on a case by
case basis. There is also an additional observer type role where an administrator can capture the statistics and
then use them for generating reports that show the usage of the Federation.
4.1.1.3 Managing the network for Federated VMs
One of the difficulties with enabling Liquidity for resources is the lack of control of certain types of resources
on a remote site. In particular network resources are more complicated as the underlying network topology
will not be the same and is often not shared between the buyer and seller. Although not complete, certain
network properties can be requested from a remote site and if supported (and allowed) will become part of
the remote configuration. On the Federation, new features added include:

• The ability to set up firewall rules for remote VMs

• Managing remote IP addresses from a set of presented IPs

• Adding certain IP addresses to the whitelist for the Federated account

4.1.1.4 Ensuring that users have credit on the platform
As discussed in D1.4 there is a billing system integrated into the Federation that reports the usage activity
to a third party billing services provider, Zuora. To ensure that only users with sufficient credit can perform
operations the notion of thresholds has been added. The three key thresholds are Positive, Low and Sus-
pended. Buyers and Traders can only create VM resources if their credit balance is Positive. If the credit
balance is Low then certain alert messages are sent to the buyers warning that payment is needed. At the
point that the credit drops below the Suspended level the VMs belonging to that user are stopped. After a
certain time (nominally 30 days, but depends on the type of account) those VMs will be deleted through a
clean-up process that runs on the Market.

4.1.2 Tools to control and manage resources in Cloud.net
Cloud.net as described in WP1 is a centralised management platform that runs on the Federation and enables
the buying, trading and selling of VM resources, CDN bandwidth and edge access points (PoPs).
4.1.2.1 Payment in Cloud.net
As a centralised management platform, Cloud.net utilises a different payment system to the Federation. Two
different payment models are supported under one converged tracking system known as the wallet. The
Pay-as-you-go model allows for VM resources to be paid for from existing credits in the wallet account. To
ensure that users don’t abuse the platform, a VM creation is only allowed if the customer has over 30 days
worth of funds for all existing VMs as well as the new VM. The second billing model is through the credit
system. This works as an up-front payment model where 30 days of VM time are billed for at the time of VM
creation.
For true liquidity of resources the billing systems have to be tightly controlled such that the seller of resources
is assured that they will be paid for the resources used. Currently the 30 day model for billing works from an
administrative level but it does not allow for the quick creation and tear-down of resources that will be needed
for future uses of Cloud.net.
4.1.2.2 Enforcement activities
As more users have started to use Cloud.net there have been more enforcement policies required to ensure an
acceptable level of service for the majority of the customers on the platform.

• Only two IP addresses are allowed on VMs that are not billed to prevent the creation of bespoke
networking systems

• VMs that have not been paid for are automatically stopped after three days of warnings

c© TRILOGY 2 Consortium 2016 Page 57 of (89)

(a) DataStore limits (b) Compute resource limits

Figure 4.2: The OnApp UI shows both the pricing and hard limits on resources

• VMs that have not been paid for are automatically scheduled for deletion after twenty days of warnings

VMs that are stopped or scheduled to be deleted will trigger an admin alert that is then sent to OnApp.
Deletion must be performed by an Administrator. This is to give a chance for the sales team to contact the
VM owner and see if there was a reason for non-payment. A VM that has not been paid for will use CPU,
storage, RAM and network resources until it is stopped. At the interval between 3 days and 20 days of
warnings where a VM is stopped but not deleted it will not use CPU, RAM and network resources but it will
continue to use up disk space.
Some enforcement actions are controlled through the resource pricing system. Resources can have an active
and inactive price as well as a hard constraint. The pricing is managed from both the Buyers and Sellers
through ‘billing plans’. The wholesale billing plan from a Seller is exposed to potential Buyers whom can
then set a billing price for their customers, the end-users. To demonstrate how this appears in the UI an
example Data Store billing plan is shown in Figure 4.2a and an example Compute Resource plan is shown in
4.2b.

4.1.2.3 Incentive activities
The main incentive used by Cloud providers to attract customers on Cloud.net, up until recently has been
offering comparable services at a cheaper rate than competitors. On Cloud.net the pricing model is currently
static with a VM costing the same regardless of whether the VM is idle or running at full capacity and using all
the resources available to it. The pricing model also doesn’t take into account the load of the servers and the
time of day that it is running. Although not currently implemented, dynamic and on-demand pricing models
have been considered that take into account the price of electricity during the day and the higher demands put
on servers by certain types of workloads. These offerings will initially be made for Software-as-a-Service
(SaaS) type services.
Amazon currently does this with spot price instances in a separate model to the rest of AWS. Multiple bidders
state the price they are willing to pay for a certain period of compute time and then the highest bidder at any
given time will get access to those resources. This allows elastic workloads that can take place at any time
to be run on an opportunistic basis. This is mainly suited for large-scale scientific workloads that can be run
in isolation and without a requirement on when the operation takes place. However it’s believe that most
Cloud.net users require high-availability as they generally offer interactive and web-services that need to be
accessible at all times.

4.1.3 Tools to control and manage resources in DRaaS
Disaster Recovery as a Service (DRaaS) is one of the main Trilogy 2 use-cases. It has been developed
during the course of the project and makes use of the principles of Liquidity to provide a valuable service to
customers.

Page 58 of (89) c© TRILOGY 2 Consortium 2016

4.1.3.1 Incentives and Enforcement
DRaaS works by copying data in real time from the original VM to a ‘shadow’ VM on the DR provider’s
cloud. During normal operation this means that the main resource being used is storage (with a small amount
of RAM and CPU used to calculate block hashes, etc.). However once a VM is failed over it then consumes
the same amount of RAM, CPU and network as the original VM did.
To stop users from continuing to use the fail over cloud permanently there is as a combination of SLA
agreements and punitive billing measures. The contractual agreement in the form of an SLA will normally
govern how long a fail over site will continue to provide access to failed over VMs. After this time has elapsed
the DR provider can then decide what course of action to take, normally one of: letting the VMs remain in an
active mode but with significantly greater charges, stopping them or possibly destroying them. Typically the
SLA will allow for a certain period of fail over before the enforcement actions are applied. This incentivises
the original cloud owner to try and resolve the issues as soon as possible.

4.2 Operator games in the age of MPTCP
The MPTCP congestion control algorithm attempts to achieve (i) fairness w.r.t. to other (MP)TCP flows
utilising the same link and (ii) an efficient use of network resources. To this end, MPTCP will favour the
links with the lowest loss rate, pulling traffic away from lossy links as long as the goal to do “no worse than
TCP on any path” is satisfied. At the same time, MPTCP will keep some traffic on other links in other to
probe for speed changes.
While this approach has a lot of known benefits [52], we observe that it can also be exploited by ISPs (Internet
Service Providers): by dropping a fraction of client traffic, an ISP can make MPTCP connections move traffic
to some of its competitors. Using its knowledge of the subflow RTT and its client’s subscription, the provider
can compute a fraction of packets it can drop such that: a) TCP clients’ throughput (or MPTCP clients with
single uplinks) will not be affected, except for reduced buffering in the network (i.e. reduced bufferbloat,
which is a plus), and b) MPTCP clients that have a choice in paths will move their traffic away, thus reducing
the operators’ upstream bandwidth costs.
In this work, we seek to understand what this policy dropping does to the client-provider ecosystem. Will
(m)any providers use policy drop? Will policy drop change the types of subcriptions offered to clients or not?
Finally, which subscriptions will Multipath TCP clients choose?
In order to understand the interaction between (MP)TCP clients and their ISPs, we employ a game-theoretic
approach. We model this interaction as a two-stage game. In the first stage, providers decide on a unique
fixed subscription size, and whether or not they will police traffic (the throughput-altering technique which
will be explained in more detail, below). In the second stage, the client choses a subset of providers whose
offers maximise his/hers utility.
We are interested in answering the following questions: (i) is traffic policing always in a providers’ best
interest? (ii) can policing be beneficial for clients? (iii) how does policing affect subscription sizes and
provider selection in a free market?
To this end, we study a refinement of the Nash Equilibrium for our game, namely subgame perfect equi-
librium [36]. This concept determines: (i) the best provider strategy, given that a client will play a “best
response” — a strategy which maximises utility and (ii) the best client strategy (i.e. the best response to the
providers’ strategy).
More formally, suppose x = (x1, . . . , xn) corresponds to a subscription size xi put forward by each provider
i ∈ {1, . . . , n} and δ = (δ1, . . . , δn) corresponds to a traffic policing decision δi ∈ {0, 1}, for each provider.
The response of m clients, consists in a n × m-dimensional matrix Q, where the element qij ∈ {0, 1}
represents client j’s option for provider i. The matrix Q(x, δ) is a best client response iff:

∀j∀q ∈ {0, 1}n : Uj(x, δ, Q(x, δ)) ≥ Uj(x, δ, Q(x, δ) |j←q)

where Uj(x, δ, Q) is client’s j utility if x, δ and Q are played, and Q |j←q is the matrix Q where column j
has been replaced by q. Thus, a best response for all clients, is a matrix where no client j can switch to a
provider selection q which ensures strictly higher utility.
A pair x, δ is a best provider move iff:

∀i∀xi∀δi : Ui(x, δ, Q(x, δ)) ≥ Ui(x |i←xi , δ |i←δi , Q(x, δ))

c© TRILOGY 2 Consortium 2016 Page 59 of (89)

where Ui(x, δ, Q) is provider’s i utility if x, δ and Q are played, and x |i←xi (resp. δ |i←δi) is x (resp. δ)
where component i is replaced by xi (resp. δi). Thus, a best provider move is one where no provider i can
select a different subscription size xi or policing decision δi such that his/hers utility is maximised given that
clients will play their best response.
A triple x, δ, Q is a subgame perfect equilibrium iff (i) x, δ are best provider moves and (ii) Q is a best client
response to x.δ.
In this section, we build a general (cost-independent) utility model for our game. In the next section, we
instantiate our model starting from observations regarding prices in the Romanian ISP market, and review
our results.
Our utility model relies on the following main ingredients: prices, link availability, and total throughput when
traffic policing is performed.

4.2.1 Prices
Suppose a provider secures a x-Mbps uplink which must be split among potential clients. We denote by c(x)
the cost per Mbps of such an uplink, and by tr(x) — the total traffic cost of carrying x Mbps (at cost c(x)).
We argue that any modelling choice of c must make:

tr(x+ y) ≤ tr(x) + tr(y) ∀x, y ≥ 0 (4.1)

i.e. the transit cost of a bigger x+ y Mbps subscription is at least as expensive as that of two smaller x and y
subscriptions.

4.2.2 Availability
Availability is the ratio between the uptime and the up- and down- times of the Internet link. When a client
owns n subscriptions each offering the same availability α , the availability of the combined links is 1 −
(1− α)n. We argue that a client will be more sensitive to the uptime probability given that one provider link
fails, rather than availability, as defined above. We call the former perceived availability and define it as:
avα : N→ [0, 1], which maps a number n of providers to a value:

avα(n) = 10 · (1− α)(1− (1− α)n−1) + 0.5

Note that (1− α)(1− (1− α)n−1) is the probability of one provider failing (1− α) given that all others do
not fail (1− (1− α)n−1).
4.2.3 Throughput and traffic policing
If a client uses MPTCP while connected to two providers offering x resp. y Mbps subscriptions, it is possible
for the providers to artificially decrease maximum throughput from x + y to max{x, y}. This is achieved
by fixing a dropping rate δ, when traffic exceeds a certain threshold. The effects and traffic distribution are
illustrated in the following table (where x ≥ y).

Provider 1 Provider 2 Max. throughput P1 carried traffic P2 carried traffic
does not police does not police x+ y x y

polices does not police x x− y y
does not police polices x x 0

polices polices x x
δy

δx+δy
x δx
δx+δy

We defer a discussion on δ selection, for the following section. We also note that the throughput of a TCP
client will not be affected by traffic policing: in this case, the perceived throughput will always be equal to
the subscription size.

4.2.4 Client & provider utility
Suppose providers have made the move x, δ in the first stage of the game and that client j has selected a set
S ⊆ {1, . . . , n} of providers. Let tij be the bandwidth which is perceived by client j from provider i. We
note that tij may not be equal to xj for j ∈ S, for MPTCP clients: providers may use traffic policing. The
utility of client j is:

Uj =

{
av(|S|) · β · log(1 + maxi∈S tij)−

∑
i∈S price(tij) type(j) = TCP

av(|S|) · β · log(1 +∑i∈S tij)−
∑

i∈S price(tij) type(j) =MPTCP

Page 60 of (89) c© TRILOGY 2 Consortium 2016

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000

’Romanian ISP 1’
’Romanian ISP 2’
’Romanian ISP 3’

γ ∗ √x

Figure 4.3: Our deduced cost function compared to Internet subscription prices in Romania (on the X axis:
the subscription expressed in Mbps; on the Y axis: the price expressed in RON)

The positive component of the utility captures: (i) client satisfaction from the obtained throughput (the loga-
rithmic expression), (ii) perceived availability, (iii) a weight β which models the clients sensitivity to all the
above. The negative component is the sum of all subscription prices. We shall assume that prices are fixed
at marginal cost, i.e. each provider will charge for throughput t exactly his cost for carrying t (and not the
official subscription x). Note that this cost depends on the number of subscribers as well as the subscription
size. The provider utility Ui simply represents the number of clients which selected provider i.
We use the following functions for estimating c and tr:

c(x) = γ · 1√
x

tr(x) = γ · √x

with γ = 23.05 (fitted using our dataset). The plot in Fig. 4.3 compares the square root function with
subscription costs from Romanian ISPs:

Proposition 4.1. Any type of client will prefer buying two subscriptions instead of more.

We skip the formal definition and give a simple intuition for it: client satisfaction increases logarithmically
with respect to the number of providers, while prices grow linearly with respect to the same number. Also,
the increase in perceived availability is major when going from one provider to two, and small — when
going from two providers to more. Thus, only for a “two-provider” selection, the client satisfaction increase
dominates the increase in price.

4.2.5 Throughput and shaping
In the previous section, we noted that perceived throughput may be different from the actual subscription
size, if providers deploy traffic policing techniques. In [12], the policing upper limit δx, defined w.r.t. to the
RTT and subscription size x, as follows:

δx =
1

2

(
50x2

RTT (RTT − 50x)

)2

was used to successfully deter MPTCP from using a lower-quality link. We have observed via simulation that
the same upper limit δx applies in our case.
We have implemented this game and performed an initial analysis of the results. These are presented next.

c© TRILOGY 2 Consortium 2016 Page 61 of (89)

4.2.6 Initial results
In this section we present an initial exploration of the game between operators and clients in the age of
Multipath TCP. Our aim is to understand what effects Multipath TCP and policy dropping will have on the
Internet ecosystem.
We have implemented a prototype solver for our game model, which exhaustively searches for subgame
perfect equilibria. We have limited subscription sizes to a few discrete alternatives (e.g. 3, 5, and 50 Mbps).
The implementation makes an additional refinement of our theoretical model: it considers that providers have
imperfect information over client types. This is modelled, for each provider i, by a function pi which assigns
to each client j the probability pi(j) that he employs MPTCP.
Thus, when evaluating their best move, each provider will compute the expected client utility, according to
his information over types:

EUj = pi(j) ∗ U type(j)=MPTCP
j + (1− pi(j)) ∗ U type(j)=TCPj

Our initial results show that:

• clients will always choose a high-subscription (HS) provider and a low-subscription (LS) provider, due
to optimal cost distribution. We can view the low-subscription price as a “price for availability”.

• if a HS and LS provider both shape, the effects on traffic (re)distribution are small.

• a LS-provider may use policing to attract clients: by reducing traffic, he/she is giving a cheaper sub-
scription (i.e. a cheaper price for availability).

• HS providers can form an oligopoly and make a joint decision to police traffic — they will still be
selected by clients.

We still have ongoing work regarding how imperfect information may alter the providers’ best move. We
are also considering more elaborate cost models (i.e. by also incorporating a connectivity charge with the
bandwidth cost).

Page 62 of (89) c© TRILOGY 2 Consortium 2016

5 Tools for Understanding Liquidity
Understanding some characteristics of the resources to be pooled is fundamental to properly control them. In
the previous sections we have presented different tools to control liquidity. In this section, we present tools
for understand some key aspects of liquidity.
We start by describing the Web dependency graph analyser. This tool analyses the content of modern web
pages, parsing all its components. The purpose of the tool is to understand whether and how modern web
traffic can benefit from the different liquidity tools. It tries to provide some insight on whether web traffic
would benefit from multipath transport such as MPTCP and if so, what is the correspondence between web
page components and MPTCP subflows. Other liquidity tools, such as compute resource pooling or stor-
age pooling can also benefits from the perspective provided by the graph analyser when trying to distribute
compute or content across multiple servers.
The second tool for understanding liquidity we cover in this section is Symnet, a framework for symbolic
execution of network functions. When widely deployed, liquidity tools such as NFV, make the network
infrastructure a much more dynamic environment. Indeed, through NFV an operator can deploy and compose
different network functions in very short timescales. While this provides a lot of flexibility, it also makes
the network much harder to understand, predict and reason about. Symnet provides a symbolic execution
framework that allows to explore the possible (execution) paths that different types of packets can go through
a network, providing valuable insight about the behaviour of the network.

5.1 Web dependency graph analyser
In their early inception, web pages were simple, text based entities. They have long since evolved into
their modern day form: complex, dynamic and rich in images and media. Today most web pages are still
downloaded using HTTP/1.1 [20], a protocol which has changed little since the late nineties, and was not
designed to deal with the dozens of inter-dependent objects these pages request. Inherently a pull based
protocol operating over TCP, HTTP/1.1 can only download one object at a time over any TCP connection.
Browsers attempt to speed up a page’s overall completion time by opening a larger number of persistent TCP
connections (6 in modern browsers) and using pipelining to download objects. Nevertheless, HTTP/1.1 still
suffers from Head of Line (HOL) blocking, where downloading one object on a slow connection will stall all
subsequent objects until it completes.

Recent years have seen the emergence of next generation web protocols that aim to tackle HTTP/1.1’s
shortcomings, with particular focus on minimising page load times. Of these, HTTP/2[6] (largely based on
Google’s SPDY[5, 48]) has recently been standardised. It provides a multiplexing layer over TCP, where
each HTTP request/response pair forms an independent stream, allowing the browser to download multiple
objects simultaneously over one TCP connection. Google has also experimented with a UDP-based transport
protocol called QUIC[41] which moves the multiplexing mechanics of SPDY into the transport layer in order
to prevent HOL at the transport level.

HTTP/1.1 and HTTP/2.0 were both designed to run over TCP. However, even over single-path TCP, there
is not a good understanding of how the dependencies within a modern web page interact with the transport
protocol. How might such protocols interact with Multipath TCP, when multiple paths are available with
differing bandwidths and latencies? Does it always make sense for MPTCP to use more than one path to gain
additional bandwidth, even if the latencies differ significantly, or are today’s web pages so latency-bounded
that using MPTCP might increase page load times? We have anecdotal evidence that shows this can indeed
be the case. What if the transport protocol (MPTCP) could be aware of the web objects it is transporting - or
conversely, if the web server were MPTCP aware, and could request some parts of the data are more latency-
sensitive than others? Such a server should be able to achieve a much more effective trade-off between
latency and throughput by careful placing of traffic onto subflows, minimizing page-load time. Taking this a
step further, a multipath version of QUIC could perform such optimization on a per-packet basis - how much
of a win might this be compared to TCP or MPTCP?
It is extremely hard to answer these sorts of questions. Ideally we’d just implement our designs and test on
real web pages. Unfortunately, performing this evaluation using physical devices is infeasible. Not only

c© TRILOGY 2 Consortium 2016 Page 63 of (89)

would we need to modify the client, but we must modify all content servers to understand the protocol, a
feat that cannot be realised unless we are the content providers ourselves. Instead, we have built a simulation
framework that will allow us to quickly prototype and evaluate application/transport protocol optimization
using models of the most popular web pages.

It is completely inaccurate to model web pages as a series of consecutive resource requests. The page load
process is much more elaborate: browsers mix the fetching of web resources with parsing and evaluating
JavaScript and CSS. These activities are interrelated and create inherent dependencies amongst themselves.
On a similar note, an accurate web dependency representation is necessary to communicate useful cross-layer
information to the protocol. If the protocol wants to understand which web resources are delay-sensitive,
it must understand the relationships between the various page load activities. To allow us to perform this
analysis of transport protocol dependencies we have implemented a Web Dependency Graph Analyser,
which allows us to correctly model web pages and better understand possible areas of latency improvement
using new protocols that exploit this tradeoff between bandwidth and latency liquidity.

5.1.1 Web Page Load Process
Our goal in building the Web Dependency Graph analyser is to accurately model the inherent dependencies
within web pages. We must therefore understand the underlying activities browsers perform to download and
render these pages. In essence, a web page is a collection of resources, like images, text and media, whose
structure and appearance are concisely specified by the page’s main HTML file. The browser downloads the
resources, and transforms the HTML description into the document object model, or DOM tree. Web page
developers can use CSS and JavaScript to manipulate the DOM dynamically. With the constructed DOM as
an intermediate representation, the browser renders the page for the client to see.
Suppose a client navigates to the website described by the HTML code in Figure 5.1. After the browser sends
the initial request and downloads the main HTML file, its following components work together to display the
web site:

• Parser: reads and tokenises the HTML tags in the main page as well as any iframes enclosed within
the page. The Parser does not wait for the entire page to download, rather it begins operation when the
first chunk of the web page arrives over the network. As it runs through the HTML tags, the parser
builds the DOM tree. If the parser encounters an HTML tag that references an embedded resource,
such as the <link> tag on line 23 in this example, it triggers its download via the Resource Loader.

• Resource Loader: is responsible for requesting and downloading the various resources referenced in
the web page if they are not found in the cache. The resources can have different MIME types, like
images, JavaScript or CSS files, iframes and other media. The Resource Loader requests each resource
using an HTTP variant as the underlying protocol, although new Chrome browsers sometimes use
QUIC.

• Evaluation Core: composed of the JavaScript engine, and CSS evaluator, executes any inline or exter-
nal scripts. After the parser encounters the<script> tag in our example, and requests the referenced
.js file using the Resource Loader, it is the Evaluation Core which executes the script after its down-
load completes. In addition to evaluating inline or external JavaScript code, the core also evaluates
JavaScript events and timer code.

• Renderer: uses the DOM to display the web page progressively in the browser. Since the rendering
process is largely implementation dependent, and does not greatly impact a page’s load time, the rest
of the description will focus on the above three processes.

The activities performed by the Parser, Evaluation Core and Renderer are computation processes, whereas
the Resource Loader performs the only network process. In theory, a browser can possibly execute the
download, parsing and computation processes in parallel, reducing a page’s load time to that of its slowest
activity. Reality, on the other hand, necessitates the execution of some activities before others, therefore
adding dependencies between them. Some dependencies are flow based: the parser, for example, cannot
process an HTML tag until the chunk containing this tag arrives over the network. Others are serialisation

Page 64 of (89) c© TRILOGY 2 Consortium 2016

1

<html> 0

<head> 1

<script> 2

function downloadImage() 3

{ 4

//Create a new Image 5

var anImage = new Image(); 6

anImage.setAttribute("src", "rainbow.jpg"); 7

8

//Append it to the div tag 9

var element = document.getElementById("firstDiv"); 10

element.appendChild(anImage); 11

} 12

function fireTimer(){ 13

setTimeout(downloadImage, 10); 14

} 15

16

function loadFrame() { 17

fireTimer(); 18

} 19

</script> 20

</head> 21

<body onload=loadFrame()> 22

<link rel="stylesheet" type="text/css" href="theme.css"></link> 23

<div id="firstDiv"> 24

<p2> Some Paragraph </p2> 25

</div> 26

<script src="image_create_sea_append.js"></script> 27

<div id="secondDiv"> 28

<p> Some more text </p> 29

</div> 30

</body> 31

</html> 32

Figure 5.1: An example HTML file

artefacts, for example the Parser and Evaluation Core cannot run at the same time, because they both modify
a shared data structure, the DOM tree. To model web page loads correctly, we quantify these dependencies,
and generate a faithful dependency graph between the various browser activities.

5.1.2 Dependency Graph Activities
The following is a formal definition of the web page activities, and how they relate to each other within the
dependency graph. We say a → b when a is the parent of b in the dependency graph, or more concretely b
cannot execute unless all of the activities represented by a have completed. Table 5.1 summarises the type of
activities and their dependency relationships (a → b indicates that a is a parent of b. The expression a ∨ b
indicates that events of type a or b are a possible parent. The expression a∧ b indicates that a and b must both
complete before their child can execute).

• Resource represents a network download activity, where the Resource Loader sends a request for a
particular MIME object to a remote server, and waits for the complete response. A resource download
depends on parsing the specific HTML tag referencing it. Conversely, it may depend on executing a
computation (evaluation, timer or event) which programatically triggers the download. In our exam-
ple, the JavaScript in line 7 creates an image element, which in turn causes the Resource download.
Evaluating CSS scripts may trigger font or image downloads as well.

• Parse Chunk models a unit of computation with duration equal to the parse time until the next re-
source download or inline script declaration. The parser does not usually consume an HTML frame in
one continuous pass, but rather pauses to evaluate inline scripts, or yields to allow other scripts to exe-
cute. Therefore, we can split the parsing of a contiguous HTML file into several logical chunks, whose

c© TRILOGY 2 Consortium 2016 Page 65 of (89)

boundaries occur at HTML tags that trigger downloads, or inline script evaluations. In our example,
Figure 5.1 shows the parse chunks marked with the arrows on the left hand side.
A Parse Chunk’s dependencies are flow based. In order to execute a Parse Chunk, the browser must
download the corresponding HTML file chunk first, and execute the previous Parse Chunk. Any syn-
chronous JavaScript evaluated as the result of the prior Parse Chunk will also block parsing, and there-
fore is a parent.

• Download Chunk represents the download of an HTML file chunk corresponding to a particular Parse
Chunk. A Download Chunk depends on the completion of the pervious chunk.

• Computation is an activity executed by the browser’s Evaluation Core with the ability to modify the
DOM elements dynamically. Like Parse Chunks, we will subdivide computations along the Resource
download boundaries to allow for easier simulation. Four different types of computation activities
exist:

(i) Script Eval: a JavaScript evaluation activity. JavaScript can either be inline, or require the down-
load of an external .js file. Inline JavaScript executes synchronously, blocking the next Parse
Chunk. External JavaScript, on the other hand, cannot execute until its Resource completes
downloading. Developers may set one of three attributes to specify when an external script should
execute: sync, async and defer. The default sync attribute indicates that the JavaScript file should
complete downloading and executing before the parser can continue on to the next tag. JavaScript
marked with the async attribute, allows the resource to load without blocking parsing. Once the
JavaScript’s resource download completes, the browser can evaluate the script asynchronously
when it sees fit. Finally, a developer may choose to use the defer attribute to delay the evaluation
of the JavaScript until the main frame has finished parsing. Because both the CSS and JavaScript
evaluations modify the DOM, most browsers will prevent any future JavaScript from executing
until previous CSS files have completed downloading and have been executed. Script elements
may be created by other JavaScript functions, therefore Timers, Event and other Script Evals can
be parents of the current Script Eval.

(ii) CSS Eval: represents the evaluation of a .css file to generate the style rules applied to the DOM.
Evaluating a .css file depends on downloading it first.

(iii) Timers: are declared within JavaScript functions and schedule a function for execution at a speci-
fied interval in the future. When a timer fires, its evaluated function may trigger further activities,
like Resource downloads. A Timer activity depends on evaluating the JavaScript that registered
it, i.e. either a Script Eval or Event.

(iv) Events represent the evaluation of a JavaScript event handler executed when various events fire
during the web page load process. Typical events include the DOMContentLoaded event, which
fires after parsing of a frame completes. The Load Event fires when a frame has completed
parsing, and has downloaded all of its resources and iframes. Due to the numerous event types
exposed by JavaScript, we will refrain from listing all of the possible JavaScript event types and
which parents they depend on in this document.

5.1.3 Implementation
In the previous sections, we’ve defined the activities performed when a web page loads, and the Web Depen-
dency Graph linking these activities together. This section will describe how we record these dependencies
for real web pages and replay them in our simulator. To record real web page information, we have extended
WProf developed by Wang et. al [51], a profiler for WebKit used by the Chrome browser. WProf inserts
hooks into the open-source WebKit code, and uses them to log resource requests, parsed HTML tokens, and
executed computations. A log entry indicates an activity’s immediate parent, and some timing information,
to allow for the calculation the computation and parse activities’s duration.

We have augmented WProf to give us a more complete picture of the page load process. The following is a
list of the most important changes we’ve incorporated into the profiler:

Page 66 of (89) c© TRILOGY 2 Consortium 2016

Parent Dependency Activity
Parse Chunk ∨ Computation → Resource

Parse Chunk n−1 ∧ Download Chunk n → Parse Chunk nScript Eval ∧ Parse Chunk n−1 ∧ Download Chunk n
Resource → Download Chunk 0

Download Chunk n−1 → Download Chunk n

Resource ∨ Parse Chunk ∨ Timer ∨ Event ∨ Script Eval → Script Eval
CSS Eval ∧ (Resource ∨ Parse Chunk ∨ Timer ∨ Event ∨ Script Eval)

Resource → CSS Eval
Script Eval ∨ Event → Timer

Event specific → Event

Table 5.1: Summary of dependency graph activities and their possible parents

• Logging inline JavaScript executions.

• Logging programatic DOM elements created from JavaScript. The change allows for more accurate
logging of all the resources downloaded from within JavaScript executions.

• Recoding all activities even after the page Load Event fires. A crucial change, since many resource
loads actually occur as a result of executing the Load Event, and its children.

• Logging Timers registered from JavaScript functions, and when the timer fires.

• Recording Events and when their handlers are executed. We log the event names, in addition to their
targets. An Event target can either be an HTML tag, for example a load event called from an image
tag, indicates that the load event’s parent is the downloaded image Resource. The target may also be
the JavaScript Document or Window objects, as is the case for the page load event.

• Distinguishing between parsing activities generated by the parser itself, or by programatically evaluat-
ing Document.write() in a JavaScript function. The distinction allows us to discount programatically
generated tokens from the Parse Chunks.

• Attaching frame identifiers to each activity. Computations, resources and parse tag may belong to the
page’s main frame, or any one of the downloaded iframes within the page. Therefore these activities
depend on loading the frame itself.

With the modified Chrome browser, we obtained logs for 60 of the Alexa top 500 websites [3], using the
following procedure: for each web page, we navigate to that particular page and then wait 20 seconds after
the page loads to capture any activities that occur after the load event, then navigate to the next page. We
passed the raw logs to a post-processing python script, which iterates through each traced activity and
generates the dependency graphs in JSON format. The script also generates a pdf representation of the graph,
shown here in the figures.

Recall our example web page in Figure 5.1. After profiling the web page and constructing its dependency
graph using the mechanism above, we have obtained the result in Figure 5.3. We can see that the graph
matches our expectations and the dependency rules we have outlined in section 5.1.2. For example, the inline
JavaScript depends on the Parse Chunk containing its <script> tag. The .js and .css resources depends
on their respective Parse Chunks, and they trigger the evaluation of their content.

Figure 5.2 shows the result of applying our analysis tool on Amazon’s home page. The figure is a 100 foot
view, intended only to illustrate just how complex modern web pages and their dependencies have become.
Amazon relies heavily on events and timers to download the images displayed in the website, which appear
in the figure as the side graph branching off from the vertical main page.

c© TRILOGY 2 Consortium 2016 Page 67 of (89)

Figure 5.2: Zoomed out view of dependency graph of www.amazon.com.

With the dependency graphs in hand, we use the ns-3 network simulator [35] as the framework for
reproducing a web page load, and examining its behaviour with different underlying web protocols. We’ve

Page 68 of (89) c© TRILOGY 2 Consortium 2016

�������������������
�����������������

��������������
���������

��������

�����������

����

���

������

������ ��������

��������������
��������

����������

�����������

����

��

����

������� ��������

�����������

���������

��������������
���������

����������

�����������

����

���

������

�������� ��������

������������������
��������������

��������������
��������

����������

�����������

���

��

����

�������� �������

�������������������������
�������������������������������

����������
�����������������������������

��������

�����������

��������

�����������

��������

��������������������
������������������

�����
�����������

��������

�����
�����������

��������

��������������������
����������������

��������

��������

�����������

�����������

�����������

Figure 5.3: Dependency graph resulting for analysing the example HTML page. Grey boxes indicate a single
frame, or a computation consisting the several sub-computations. Parse Chunks show their size, and the start
and end HTML (row, column) pairs for the chunk. Computations display their duration.

added a Web Dependency module to ns-3, which simulates a web client communicating over a single switch
with multiple servers (corresponding to the unique domains logged in our graphs). The web client consumes
a profiled web page’s dependency graph, and performs the correct actions: it waits the recorded time for
each computation or parse chunk, and issues the requests for resource activities as necessary. Each time an
activity in the graph completes, the client attempts to execute all of its children. A child is only executed

c© TRILOGY 2 Consortium 2016 Page 69 of (89)

when all of its parents have completed. The simulation uses plugable web and transport protocols to issue
the resource requests and receive responses over the network, such that we can substitute in prototype web
protocols with ease.

Going back to our example from Figure 5.1, after simulating its dependency graph running over HTTP/1.0,
with links of 1ms delay and 10 Mbps bandwidth, we obtain the waterfall plot shown in Figure 5.4. Since
HTTP/1.0 creates a new TCP connection for every resource request, it incurs the overhead of the 3-way
handshake, shown in the figure as grey wait times. The figure also shows that the activity labeled comp 3,
corresponding to the page load event, cannot execute until the final resource, in this case “sea-small.jpg”,
completes downloading.

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Time (s)

rainbow.jpg

comp_4_1

comp_4_0

comp_3

pchunk_0_3

sea-small.jpg

comp_2_1

comp_2_0

comp_1

image_create_sea_append.js

pchunk_0_2

theme.css

pchunk_0_1

comp_0

pchunk_0_0

example.html

Figure 5.4: Waterfall diagram of downloading example.html over HTTP/1.0. Wait times are shown in grey.

To sum up, we’ve developed an accurate Web Dependency Graph Analyser, composed of a profiler and
simulation framework. The analyser allows us to accurately model the activities involved in the page load
process for real web sites. Furthermore, it provides a framework with which we can simulate loading these
web sites over new multipath web protocols, in order to understand their behaviour in the context of the
Liquid Net. Our code and some generated dependency graphs will be available as open source software for
other researchers to use to evaluate web performance.

5.2 Symbolic execution for networks with Symnet
Modern networks deploy a mix of traditional switches and routers alongside more complex network functions
including security appliances, NATs and tunnel endpoints. Understanding end-to-end properties such as TCP
reachability is difficult before deploying the network configuration, and deployment can disrupt live traffic.
Static analysis of network dataplanes allows cheap, fast and exhaustive verification of deployed networks for
packet reachability, absence of loops, bidirectional forwarding, etc. All static analysis tools take as input a
model of each network box processing, the links between boxes and a snapshot of the forwarding state, and
are able to answer queries about the network without resorting to dynamic testing [53, 27, 31, 32, 39].
What is the best modeling language for networks? If possible, we should simply use the implementation of
network boxes (e.g. a C program), as this is the most accurate and is easiest to use. If we view packets as
variables being passed between different network boxes, static network analysis becomes akin to software
testing. This is a problem that has been studied for decades, and the leading approach is to use symbolic
execution [9].
Symbolic execution is powerful: it explores all possible paths through the program, providing possible values
for each (symbolic) variable at every point. For static network analysis, the power of symbolic execution lies
in its ability to relate the outgoing packets to the incoming ones: even if all the incoming packet headers are
unknown, a symbolic execution engine can detect which parts of the packet are invariant through the network,

Page 70 of (89) c© TRILOGY 2 Consortium 2016

and can tell how the modified headers depend on the input when they are changed. Unfortunately, symbolic
execution scales poorly: its complexity is roughly exponential in the number of branching instructions (e.g.
“if” conditionals) in the analyzed program. Applying symbolic execution to actual network code quickly
leads to untenable execution times, as shown in [17]. To cut complexity, we must run symbolic execution
on models of the code, rather than the code itself. It is natural to program the models also in C, as previous
works do [17, 2].
In this section we show how we can run symbolic execution on a snapshot of the network to understand
a range of network properties that considerably simplify the job of network operators. The key novelty in
our work is SEFL, a language we have developed to model network processing in a way that is amenable
to fast symbolic execution. We have also developed Symnet, a tool that performs symbolic execution on
SEFL models of network boxes, rather than their actual code. By relying on SEFL our tool can scale to large
networks.
The remaining challenge is to accurately model network functionality in SEFL; this process is not trivial,
and requires expert input. We have manually modeled a large subset of the elements from the Click modular
router suite [28]. Our click models are particularly useful to third parties: they allow static verification of
any modular router configurations built using existing Click elements. Finally, we have developed a testing
tool that takes SEFL models and their runnable counterparts and checks that the model conforms to the actual
implementation.
To evaluate Symnet, we have applied symbolic execution to understand a series of documented middlebox
interactions[29, 25] and the Stanford backbone. Our results show that Symnet is more powerful than existing
static analysis tools, captures most real-life interactions in networks with runtimes in the order or seconds.

5.2.1 Motivating examples
Static analysis tools are enticing because they can help network operators understand the operation of their
deployed networks and they can inform the correct deployment of updates. Static network analysis is ma-
turing: tools such as Header Space Analysis [27] and Network Optimized Datalog [31] have evolved from
research and are now being rolled into production. However, all existing tools have limitations, as they choose
different points in the tradeoff between the expressiveness of the policy specification language, the network
modeling language, the ease of modeling and the checking speed. Furthermore, existing tools can’t model
widely used functions such as dynamic tunneling and encryption.
In this section we discuss three examples of network functionalities we want to statically analyze and high-
light the difficulty in using existing tools for this purpose.
Modeling tunnels. Various forms of tunnelling are in widespread use in networks today, sometimes deployed
by different parties. Can we statically analyze such networks? We provide a simple example below, where
E1 and E2 perform IP-in-IP encapsulation and D1 and D2 the corresponding decapsulation.

A→ E1→ E2 −→ D2→ D1→ B

Consider Header Space Analysis [27] (HSA), the most mature network static analysis tool today. With
HSA, the packet header is modeled as a sequence of bits, where each bit can take values 0.1 or ∗ (don’t
care). Network functions are modeled as transformations of the packet header. For instance, the IP-in-IP
encapsulation will be modeled as a 20 Byte shifting of existing bits to the right and adding the new IP header
in the remaining space; the decapsulation will perform the inverse operation. Beyond reachability, we want to
statically answer the following basic question: are packet contents invariant across this tunnel? The answer is
obviously yes, but HSA cannot capture it: if the input header contains only * bits, the output will also contain
∗ bits, but this does not imply that individual packet contents may not change. We can always feed a specific
packet to the model and check it is not modified, but to ensure the invariant holds in general we must try
all possible packets—this won’t scale. A symbolic packet is needed instead—if the symbolic packet doesn’t
change, the property holds regardless of its value.
We have also modeled the simple tunnel using the newer Network Optimized Datalog tool [31]. NOD can
compute the invariant, but modeling is cumbersome and limiting in many ways. First, the models for D1 and
D2 differ, despite the fact they are running the same operation. D2 takes a packet with six header fields (to
“remember” the two layers of encapsulation): we cannot reuse the D1 model for D2, nor the one from E1
for E2: we need to create a new model instead. In fact, network models in NOD depend not only on the
processing of the box, but also the network topology and the processing of other boxes. Additionally, models

c© TRILOGY 2 Consortium 2016 Page 71 of (89)

int crt = 0;
while (crt>=0 && crt<length &&

options[crt]){
switch(options[crt]){

case 1:
crt++; break;

case 2://MSS
case 3://WINDOW SCALE
case 4://SACK PERMITTED
case 8://TIMESTAMP

crt += options[crt+1]; break;
default:

//unknown options, scrub
int len = options[crt+1];
for (i=crt;i<crt+len;i++)

options[i] = 1;
crt += len; break;

}
} Figure 5.5: TCP Options processing code for a middlebox that drops unknown options.

for boxes operating at a lower stack level must also include higher level protocol headers: for instance, a
router will model not only its use of the layer 3 fields, but also the upper layer protocols such TCP, UDP or
ICMP. In summary, NOD modeling is extremely cumbersome when network topologies are heterogeneous
and run multiple protocols; this may not be an issue for datacenters where NOD’s usage is targeted, but it
will be a major issue in the wider Internet.
In Section 5.2.6 we show how symbolic execution can be used to model dynamic tunneling. However, the
following examples show the limitations of running standard symbolic execution on C code.
IP Router. Dobrescu et al [17] show that symbolically executing an IP router implemented in C quickly
becomes intractable: when a packet with a symbolic destination address reaches the router, the branching
factor is at least as large as the number of prefixes. Such branching is prohibitive when analyzing core routers
that have hundreds of thousands of prefixes in their forwarding tables.
To make symbolic execution tractable, we would like the branching factor to depend on the number of links
of the router instead; this is feasible, but we must write an optimized router model for symbolic execution
(see Section 5.2.6).
Parsing TCP Options. Assume a network operator has deployed a middlebox and wishes to know what
options are allowed through in its current configuration; in particular, it wishes to understand whether a new
IETF transport protocol might work in its network.
In Figure 5.5 we show a C code snippet that processes the TCP options header field. The options field is
accessible via the options character array, and contains length bytes. The middlebox allows a number
of widely used TCP options, and drops all other options by replacing them with padding.
HSA or NOD can’t model this example, but the operator could run klee on the middlebox code instead,
providing a symbolic options field. By examining all the paths resulting from the symbolic execution
engine, the operator can tell, in principle, which options are allowed through and which not. In the table
below we present the number of resulting paths and runtime of klee, as we vary the length parameter. The
results below show just how costly symbolic execution on C code is, even on fairly simple code snippets.

Length 1 2 3 4 5 6
Number of paths 4 67 140 464 1095 3081
Runtime (s) 0.3 8 20 420 1500 9120

Towards a Solution
When applying symbolic execution to C code, the number of branches in the code exponentially increases
the number of paths to be explored. To make symbolic execution feasible, we need to drastically simplify
the code being symbolically executed. Unfolding loops and executing both branches of an “if” instruction
are techniques that reduce the complexity of symbolic execution at the cost of increased runtime [50]. Such
techniques, together with simpler data structures allow verifying small pipelines of Click modular router
elements (ten or less) in minutes, as shown by Dobrescu et al. [17]. Our target scale is two orders of
magnitude higher: we aim to verify networks containing hundreds or more elements in seconds.

Page 72 of (89) c© TRILOGY 2 Consortium 2016

Instruction Description
Allocate(v[,s,m]) Allocates new stack for variable v, of size s. If v is a string, the allocation is handled as

metadata and the optional m parameter controls its visibility: it can be global (default)
or local to the current module. If v is an integer it is allocated in the packet header at
the given address; size is mandatory.

Deallocate(v[,s]) Destroys the topmost stack of variable v; if provided, the size s is checked against the
allocated size of v. The execution path fails when the sizes differ or there is no stack
allocated for variable v.

Assign(v,e) Symbolically evaluates expression e and assigns the result to variable v. All constraints
applying to variable v in the current execution path are cleared.

CreateTag(t,e) Creates tag t and sets its value e, where e must evaluate to a concrete integer value.
DestroyTag(t) Destroys tag t.
Constrain(v,cond) Ensures that variable v always satisfies expression cond. The execution path fails if it

doesn’t.
Fail(msg) Stops the current path and prints message msg to the console.
If
(cond,instr1,instr2)

Two execution paths are created; the first one executes instr1 as long as cond holds. the
second path executes instr2 as long as the negation of cond holds.

For (v in
regex,instr)

Iterates through all variables that match the name given by regex, executing instruction
instr.

Forward(i) Forwards this packet on exit port i. Used in the context of Click elements.
InstructionBlock(i1,...)Groups a number of instructions that are executed in order.
NoOp Does nothing.

Figure 5.6: SEFL instruction set.

Ideally, the number of paths explored by symbolic execution should be comparable to the number of paths in
the network; in other words, the model of any network box should not produce more paths than the number
of outgoing links from that box; for instance, in the middlebox code parsing TCP options in Figure 5.5, we
should have one or two paths at most. This property would make symbolic execution tractable even on very
large networks.
To achieve such scalability, a path in network symbolic execution must be tied to an active packet passing
through the network: if a codepath does not result in packets, it should not be symbolically executed. Also, it
follows that models of network boxes should only focus on the paths that decide the fate of packets, leaving
out any logging, reporting, system checks, and so forth. Note that the C language does not have this property:
a packet is just one of many variables handled by the program, and dropping a packet does not stop the
execution of the box. Another fundamental problem is the poor handling of data structures, as shown in our
TCP options example.

5.2.2 Design Overview
We take a radically different approach to enable large scale symbolic execution. We need a new verification-
driven modeling language that is imperative —thus easier to program with, especially by network admins—
and that allows us to harness networking domain knowledge to simplify, as much as possible, the task of
the symbolic execution engine. To this end, we have designed a novel language called SEFL that makes it
possible to consider symbolic execution as part of modeling rather than seeing it as a retrospective verification
and validation activity.
A major design question regards the way packets are modeled. With Header Space Analysis, headers have a
fixed size, and all possible layers have to be present at all time. This is fine for L2 boxes (such as Openflow
switches), but won’t work in large, heterogeneous networks. Network Optimized Datalog models packets
as a collection of independent “variables”; it can capture tunnels to some extent, but it does not capture the
physical layout of packets, and the problems that encapsulation may bring (e.g. interpreting the wrong part
of the header, not knowing the higher level protocol, etc.).
SEFL models packet headers as variables too; however, each packet header has an absolute offset at which
it is allocated. All SEFL allocation and deallocation commands include the explicit size of the header field;
no symbolic sizes are allowed to ensure tractability. As header fields have predictable sizes, this is not a
limitation in practice.
Packet encapsulation and decapsulation is performed by allocating more headers in front of the existing ones,
or by deallocating existing headers. Each packet has a number of tags defined, pointing to the start and end
of the packet. Other tags may be defined dynamically, pointing to addresses where layer two, three and four
headers start. To get or set a header field, the programmer will use indexed addressing based on the existing

c© TRILOGY 2 Consortium 2016 Page 73 of (89)

tags and a fixed offset. Tags are also variables, but they always have concrete values. Allowing symbolic
values for the tags would create huge branching for no real benefit.
For instance, the IP source address field can be accessed by adding 12 bytes to the layer three tag. In Symnet,
tunneling is very natural to implement: one simply needs to change the current layer three tag, making room
for the new headers, allocate and assign the new headers. Decapsulation is the inverse process.
All header field accesses are only allowed if they refer to the beginning of a header field. In this way, Symnet
offers a cheap and effective form of memory safety for packets, preventing creation of headers over existing
ones, deallocation of inexistent headers, and unaligned access to allocated fields. This allows Symnet to catch
buggy implementations of tunneling (e.g. wrong decapsulation applied) as we show in §5.2.7.
One last major decision is to offer native support for a map datastructure in the symbolic execution engine:
SEFL programs can create or retrieve values based on string keys. This avoids the need to implement complex
data structures in the models (such as those shown in Fig. 5.5) and their associated branching factor. Accesses
to the map are only allowed with concrete keys (no symbolic accesses). This allows SEFL code to access
and iterate over fields in the map without any branching, as shown by our model of the TCP options parser in
Figure 5.9.

5.2.3 SEFL Language
In table 5.6 we list all the instructions provided by SEFL, together with their list of parameters and description.
Every instruction implicitly takes as parameter the current execution state and outputs a new execution state.
The state includes header variables and metadata together with their values and constraints.
The Allocate and Deallocate instructions create both header fields and metadata, depending on the
parameter provided. If v is a string, the variable is metadata and is not aligned in any way, and memory
safety checks do not apply. v acts as a key in a Map managed by the symbolic execution engine. If v is
an integer (or an expression that evaluates to an integer), it is treated like a header field, and the associated
memory checks are performed. SEFL also offers instructions to create and destroy tags. New tags can be
created at absolute values (used when the packet is created), or relative to other tags (used for encapsulation
of an existing packet).
Below is a code snippet that adds an IP header to an existing L4 header.

CreateTag("L3",Tag("L4")-160)
Allocate(Tag("L3")+96,32) //IP src
Assign(Tag("L3")+96,ipToNumber("192.168.1.1"))
Allocate(IpDst,32) //IP dst
Assign(IpDst,ipToNumber("8.8.8.8"))

The notation to access the IP source address field is rather wordy. To make programming easier, we have
defined shorthands for all header fields that we work with: Tag(‘‘L3’’)+96 becomes IpSrc. The code
to initialize the destination address field uses this shorthand, and is also easier to read. The decapsulation
code does the opposite: first, header fields are deallocated then the L3 tag is destroyed.
SEFL includes two instructions that constrain the execution of the current path, that have no direct corre-
spondent in C. Fail stops the current execution path and prints an error message. Constrain applies a
constraint to a variable, stopping the current path if the constraint does not hold. Constrain allows pro-
grammers to model filtering behaviour without branching. Below we show the SEFL and C code to drop
non-HTTP packets.
Constrain(TCPDstPort,==80) if (p->dst_port==80)

free(p);

The C code results in two execution paths if the dst port field is symbolic, while SEFL only adds the
dst port==80 constraint to the current path.
If forks the current execution state. On one path, it applies the constraint and executes instr1. On the “else”
branch is applies the negated constraint and executes instr2. If more than one instruction must be executed on
any branch, an InstructionBlock should be used that groups more instructions into a single compound
instruction. If any branch is empty, NoOp can be used instead.
For iterates over all variables that match the given regular expression. The match is computed when the for
starts, and the loop in unfolded before it is executed, and creates no branches by itself.
SEFL properties. SEFL models (programs) are inherently bounded in space - there is no recursion or heap
allocation - and are also bounded in time. All SEFL programs have bounded execution by construction.
Loops can appear as a result of the network topology, but these are captured by Symnet.

Page 74 of (89) c© TRILOGY 2 Consortium 2016

Path 1 Path 2

1.Allocate("a") b c
2.Assign("a", SymbolicValue()) b bv1c c
3.If(Constrain("a", >10, b bv1c c , v1 > 10 b bv1c c , v1 ≤ 10

4. Allocate("a"),

⌊
b c
bv1c

⌋
, v1 > 10

5. Assign("a",5))

⌊⌊
5
v1

⌋⌋
, v1 ≤ 10

6.NoOp

1

Figure 5.7: Symbolic execution with Symnet. The tool
keeps a per-path value stack and assignment history for
each variable.

Ethernet	
 IP	
 TCP	
 PAYLOAD	

0	
 160	
 -­‐112	

Ethernet	
 IP	
 TCP	
 PAYLOAD	

-­‐160	
 0	
 -­‐272	

IP	

Figure 5.8: Symnet packet modeling uses the
same physical layout as real packets.

5.2.4 Symbolic execution with Symnet
Our symbolic execution tool is called Symnet and takes as inputs programs written in SEFL. We have imple-
mented a Symnet prototype in 13KLOC of Scala. The prototype also includes a frontend that parses Click
modular router configurations and outputs the associated SEFL code.
Symnet execution starts by creating an initial execution path that contains an empty state (no variables are
defined). Symbolic execution begins with this unique path and proceeds sequentially through the SEFL
program. The execution path includes the state associated to all the variables.
As in other symbolic execution tools, Symnet instructions take as input an execution path and can modify its
associated state, spawn new execution paths or both. However, Symnet is considerably more lightweight than
existing symbolic execution tools such as Klee [9]:

• Symnet does not use heuristics to prioritize paths to explore because our target is finding all the possible
execution paths through the network, not just covering all instructions of the network model with at
least one execution path. Each path is explored until either an unsatisfiable condition was reached or
there are no more instructions to execute.

• Symnet (via SEFL) only supports simple expressions (referencing, subtraction, addition, negation), and
this greatly reduces state representation complexity.

Symnet differs from existing general purpose tools in two major ways. First, the state contains a map that
stores variable names (or memory addresses) as keys and their associated value stacks, instead of simple
values. Allocation and deallocation instructions push and pop a whole value stack. This allows programmers
to quickly “mask” the current value of a variable and restore it later with ease. Secondly, Symnet keeps
a complete trace of the values associated with a symbol which allows to check for field invariance across
network hops.
Values in Symnet can be concrete or symbolic; each value has a unique identifier. For each value, on each
path, Symnet holds a list of constraints that apply to that value. When these constraints cannot be satisfied,
the path becomes invalid and is no longer explored. Assignment operations modify the top of the current
value stack.
To better Symnet execution, let’s look at the toy example in Figure 5.7. Execution starts with Path 1, and
variable a first gets allocated a value stack and then assigned a symbolic value. At this point a new uncon-
strained symbolic value is created (v1) and is pushed on the empty value stack. The If instruction then
creates another execution path:Path 2. All the state of Path 1 is replicated to Path 2 (in fact, it is shared with a
copy-on-write mechanism). Next, Path 1 gets a constraint added (v1 > 10) which is checked by a constraint
solver (Z3 [13], in our case). The constraint is satisfiable, so Path 1 is propagated further to the allocation
instruction which creates a new empty stack for a. Path 1 is now done and Symnet will return to Path 2, first
adding the negated constraint v ≤ 10 and then asking the solver if it is satisfiable. Next, it assigns a constant
value to a, finishing exploration; a complete history of variable a was kept on both paths.

5.2.5 Network Verification with Symnet
Reachability. It is straightforward to check reachability in a network modeled with SEFL. A symbolic packet
is injected at the desired source node, and this packet is then propagated through the network by Symnet. At
each node reached by the symbolic packet, we can inspect the values of and constraints on the header variables

c© TRILOGY 2 Consortium 2016 Page 75 of (89)

to discover which packets are allowed, what input packets can reach the output, and how the packets look like
at the output, on all the execution paths that reach that node.
In the example in Figure 5.7, two paths reach line 6, and variable a can be unassigned (on path 1) or have
value 5 (path 2). If we take the union of the constraints of Path 1 and Path 2, it follows that line 6 is always
reachable, regardless of the initial value of a.
Loop detection. The loop detection algorithm relies on the reachability algorithm with a twist: when a new
node is visited, we save the current execution state. When the same node is revisited, the current state is
compared to all previous states. A loop is detected when the current state is included in a previous state. State
A is included in state B if every symbol in state A either a) has the same concrete value as the same symbol
in B or b) the range of possible values in state A is a subset of those in state B.
The algorithm is generic and can capture different kinds of loops. If we apply it to the entire state (including
header fields and metadata), the algorithm will not capture traditional forwarding loops because the TTL field
will always decrease and thus the state will be different. To capture such loops, we apply the same algorithm
but only consider destination and source IP addresses in the header.
Invariants. By checking the value stack of the destination address field, we find that it is bound to the same
symbolic value that was set by the client. If the destination address were a constant value, invariance holds
only if the variable was bound to the same constant at the origin.
Header visibility. By analyzing the value stack of a header field at an intermediate point, we can understand
whether the value read is the same as that set by the source or seen by the destination. Such visibility tests
allow us to check whether firewalls work on the correct fields.
Header memory safety. When creating or destroying header fields, accesses are indexed through tags. If the
tags are set incorrectly, of if the program wrongly assumes the location of headers, the execution path will
automatically fail. This allows us to catch various tunnel configuration problems or buggy network models.

5.2.6 Modeling networks with SEFL
We have modeled in SEFL a large subset of the elements of the Click modular router. This exercise has served
two main purposes: first, it allowed us to understand whether SEFL’s limited instruction set is sufficient to
model a wide range of functionality. Second, we use the Click elements to implement more complex network
boxes, ranging from routers, switches, firewalls, NATs etc. We use the models of individual Click elements
to automatically derive SEFL models for entire Click configurations which are then used by Symnet.
Before we describe actual models, we present in more detail the way we model packets, shown in Figure 5.8.
At the top of the Figure a TCP packet is encapsulated with IP and Ethernet headers. Packets always have the
Start and End tags set; all the other tags are set as packets move through the (modeled) stack. Layer tags are
always allocated relative to other tags; the start and end tags start at 0 by convention when a symbolic packet
is first created.
The code below models a packet received from an Ethernet network interface; it first sets the L2 tag, and only
IP packets are allowed through. Once the L2 tag is set, the L3 tag can be set by adding 112 bits to the L2 tag:

CreateTag("L2",Tag("Start"))
Constrain(EtherProto,==0x0800)
CreateTag("L3",Tag("L2")+112)

The bottom packet in Figure 5.8 is an IP-in-IP encapsulated packet. Note how the L4 tag is not set in this
case; this will be set only in the IP decapsulation code. Any accesses to L4 fields before the L4 tag will fail,
stopping the associated execution path.
SEFL network models support protocol layering natively, shielding lower layer models from the need to
incorporate semantics from higher layers. This is in contrast to NOD, where lower layer models depend on
higher layers, and even on the position of the box in the network.
Modeling switch behaviour. To model hardware switches, we have written a parser that takes a snapshot of
CISCO switch forwarding tables and creates a SEFL model. The forwarding tables contain an output port and
a destination MAC address. To reduce branching, our model simply groups all MAC addresses that should
be forwarded on the same output port as follows:

If (Constrain(EtherDst==MAC11 |
EtherDst==MAC12 | ...),

Page 76 of (89) c© TRILOGY 2 Consortium 2016

Forward(port1),
If (Constrain(EtherDst==MAC21 |

EtherDst==MAC22 | ...),
Forward(port2),
Fail("Mac unknown"))

When run with a symbolic EtherDst, the model will result in as many execution paths as the number of output
ports of the switch, which is optimal.
Modeling an IP Router. At first sight, it seems we should be able to use the same approach to model an IP
router, but this is not true in the following forwarding table:

Prefix Output Interface
192.168.0.1/32 → If0

10.0.0.0/8 → If0
192.168.0.0/24 → If1
10.10.0.1/32 → If1

If we simply group the rules per output interface and apply them using If instructions in the order above,
the resulting forwarding will not use longest prefix match for destination address 10.10.0.1, which will be
forwarded wrongly on If0. The most obvious solution is to have one If instruction for each prefix and
ensure that for all overlapping prefixes, more specific matches are checked first. However, this creates as
many branches as the number of prefixes in the routing table. In our example we would have four branches,
but for core routers this means hundreds of thousands of branches.
A better algorithm is the following. If prefix a is more specific than prefix b, create the following constraint
for b: !a & b. This ensures that the more specific prefix a does not match. We can now group all rules that
have the same output interface as in the switch case; the number of resulting paths drops from the number of
prefixes to the number of links of the router, which is again optimal.
Modeling TCP options parsing. Our models for routers and switches are exact—there is no simplification
compared to the real code. To make the options parsing code symbolic-execution friendly though, we need
to simplify it. The main problem is the for loop with an unknown number of iterations, and the code has
branches in the loop body.
We first observe that the order in which options are placed in the options field does not matter for this box—
all it does is to allow some known options and kill everything else. This suggests that we can modify the list
data structure with Symnet’s in-built map.
More concretely, each possible TCP option x (where x is in between 2 and 255) will have a corresponding
metadata variable called “OPT-x” that can take values 1 or 0, modeling whether that TCP option is enabled
or not.The option length and body will be held in metadata variables “OPTL-x” and “OPTB-x” respectively.
In a sense, our model pre-parses the byte representation of the options and stores it in the packet metadata,
allowing middleboxes to quickly access the options.
The options parsing code is given in Figure 5.9. First, the code allocates the options that it wants to allow
through; if these options exist and are set, the allocation will “save” the existing values by pushing a new
value on top of the stack associated to those symbols. Next, the middlebox can clear all options present in
this packet by setting their “OPT-x” variables to 0. The last step is restoring the original values for the allowed
TCP options by “popping” the top of the value stack with the Deallocate instruction. Note that this code
does not branch at all, regardless of the values of the options, and is thus optimal from a symbolic execution
viewpoint.
Modeling a Network Address Translator. NATs are ubiquiously deployed as operators come to grips with
the IPv4 address space shortage. NATs modify the source IP address and source port for outgoing packets
and apply the reverse mapping for incoming packets.
NATs are harder to model: they keep per flow state to ensure incoming traffic is only allowed if it is related
to outgoing traffic the NAT has seen. In addition, the list of available ports at a NAT is a global variable, and
the port assigned to a new connection will depend on many external factors, such as the number of active
connections, the random number generator, and so forth.
To model the NAT we first observe that the exact port number assigned by the NAT is quasi random, and
network operators treat it as such. Therefore it makes no sense to model the algorithm used to choose a port

c© TRILOGY 2 Consortium 2016 Page 77 of (89)

//push new stacks for options we like
Allocate("OPT-2")
Allocate("OPT-3")
Allocate("OPT-4")
Allocate("OPT-8")
//disable all options
for (x in "OPT-*", Assign(x, 0))
//revert old values for allowed options
Deallocate("OPT-2")
Deallocate("OPT-3")
Deallocate("OPT-4")
Deallocate("OPT-8")

Figure 5.9: TCP options parsing code in SEFL; no new execution paths are created.

for a new connection; this would simply not scale. Instead, the newly mapped port will be a symbolic variable
with allowed values in the NAT’s port range. In the code below we assume for simplicity that the NAT always
has available ports in the 0-10000 range; this assumption can be removed easily.

//only do TCP
Constrain(IPProto,==6)
Allocate("orig-ip",32,local)
Allocate("orig-port",16,local)
Allocate("new-ip",32,local)
Allocate("new-port",16,local)

Assign("orig-ip",IpSrc)
Assign("orig-port",TCPSrc)

//perform mapping
Assign(IpSrc,ipToNumber("..."))
Assign(TcpSrc, SymbolicValue())

Assign("new-ip",IpSrc)
Assign("new-port",TcpSrc)
Constrain(TcpSrc,<10000)

On the return path, the code restores the original mappings only if the metadata is present and matches the
mapping the NAT has assigned to this flow:

Constrain(IPProto,==6)
Constrain(IpDst,=="new-ip")
Constrain(TcpDst,=="new-port")
Assign(IpDst,"orig-ip")
Assign(TcpDst, "orig-port")

The NAT uses local metadata to ensure that multiple instances of the code can be run cascaded. Local
metadata will ensure each NAT instance stores and retrieves its own values. Our NAT does not create any
branches - the return packet is allowed if it contains the mapping, or dropped otherwise. The NAT code is a
faithful model of the real thing.
The technique we used to model the NAT—storing per flow state inside the packet—we also used to model
other similar boxes including stateful firewalls and firewalls that randomize the initial sequence number of
TCP connections. The same technique can be applied wherever the per-flow state is independent across
flows. Under this (admittedly strong) assumption, symbolic execution can verify large networks with stateful
middleboxes without state explosion.
Modeling Encryption. Encrypted tunnels are being deployed more and more. We need to capture two
properties:

• Once encrypted, no network box can read the original contents of the payload.

• If we decrypt using the same key that was used to encrypt, we will retrieve the original payload

As in the NAT case, predicting the way the ciphertext will look is not important for our model. All that
matters is that the original content is not available after encryption. We could use the following code snippet
to encrypt with key K, where K is a parameter.

Page 78 of (89) c© TRILOGY 2 Consortium 2016

Allocate("Key")
Assign("Key",K)
Allocate(TcpPayload)
Assign(TcpPayload,SymbolicVariable)

The decryption only proceeds if the key matches:

Constrain("Key",==K)
Deallocate(TcpPayload)

Despite its simplicity, the code above has the two properties we seek. Any box reading the TCP payload
after encryption will only see a novel unbounded symbolic variable, not the original contents. Only using the
proper decryption will retrieve the original contents.
Are SEFL models valid?
SEFL models can be checked very quickly, but they are only useful as long as they accurately reflect the
processing performed by the baseline code they mimic. As modeling is manual, inadvertent errors may be
introduced.
To catch such bugs, we have developed a simple automated testing framework that relies on Symnet and
compares the model to the actual implementation (be it a Click configuration or a hardware appliance). Our
automated tool is similar in principle to ATPG [56] and proceeds in the following steps:

(i) We run a reachability test over the SEFL model, with a TCP/IP packet with symbolic fields. The output
is a series of paths, where each path places a number of constraints on the header fields of the injected
packet.

(ii) Pick a random execution path and use Z3 and the path constraints to generate concrete values for all
the header fields, resulting in a concrete packet p; goto step 4.

(iii) Pick random values for the header fields to generate concrete packet p.

(iv) Packet p is used as input packet to the SEFL model and output packet(s) are generated via Symnet
execution.

(v) Packet p is also injected into the real implementation and the outputs are saved.

(vi) If the two outputs of Symnet and the implementation match, repeat from steps 2 or 3, chosen randomly.
Otherwise, report the error.

Our testing procedure aims to explore all paths, and it will be more accurate if it is left to run for longer. By
using the symbolic execution paths, we aim to quickly cover most cases that might result in errors, but this is
a heuristic. We have applied this testing tool to our models of Click elements and found it very useful. For
instance, it helped us uncover the problem with grouping prefixes per output port in our IP router.

5.2.7 Evaluation
We ran experiments using Symnet on a quad-core Intel i5 machine with 8GB of RAM. Our evaluation seeks
to understand whether Symnet scales symbolic execution to realistic networks, and compare its runtime to
that of HSA. Next, we apply Symnet to real world scenarios to understand its usefulness in practice.
Performance micro-benchmarks. We first examine the number of execution paths resulting after injecting
a purely symbolic packet into the previous examples (tunnel, switch, router and TCP options parser). We
found that in all cases, the number of paths was equal to the number of outgoing links of the box, and thus
optimal. The execution time of the tunnel and the TCP options parser was around 100ms. Compared to Klee,
the TCP options parser runs 5 orders of magnitude faster. The execution time of Symnet grows linearly with
the number of execution paths, the number of instructions per path and the complexity of the path constraint.
In the case of a switch, the path constraint is simple; to explore 1000 paths only takes Symnet around 0.7s.
Symbolic execution of a backbone router from the Stanford network that has 190.000 prefixes in its routing
table takes around 15s. The number of execution paths here is very small (around 40), but the bulk to the
execution time is used by Z3 to check the path constraints. If we disable per-port batching of prefixes, the
number of paths jumps to 190.000, Symnet uses more than the available memory of our machine and starts
swapping; the execution was still running 20mins later, at which point we stopped it.

c© TRILOGY 2 Consortium 2016 Page 79 of (89)

HSA [27] HSA local Symnet
Generation Time 2.5min 3.2min 8.1min
Runtime 18.6s 24s 37s

Table 5.2: Symnet vs HSA runtime comparison

Exit	
 router	

R2	

Redirec.on	
 router	

R1	
 Internet	

Split	
 TCP	
 	

Proxy	
 P	

Client	

C	
 AP	

Figure 5.10: Split TCP Deployment, sideband mode [29].

Next, we seek to understand how Symnet compares to HSA, the most efficient static analysis tool today. We
use the Stanford backbone network data [27] run reachability from an access router to all core routers with
both Symnet and HSA. The results are given in table 5.2 and show that Symnet is within 50% of the execution
time of HSA, despite its power. In comparison, NOD is reported to be 20 times slower than HSA [31] on the
same benchmark.

Functional Evaluation
In this section we seek to understand what type of properties Symnet can verify that are useful in practice. To
this end, we have selected two papers that report on various issues that are difficult to debug in live networks.
The first paper describes operation experiences learned while deploying a Split TCP middlebox in ten enter-
prise networks serving thousands of users [29]. We have modeled the network topology that Split TCP uses
and we show it in Figure 5.10. The Split TCP Proxy is deployed adjacent to router R3 which is configured to
redirect traffic coming from both directions to P by rewriting the destination MAC address of the packet.
We model each box as a separate Click configuration composed of standard Click elements, and a separate
file describes how the boxes are interconnected. Our model faithfully mimicks packet processing along the
whole path, including Ethernet header encapsulation and decapsulation at each hop, routing and filtering. We
now discuss how Symnet can be used to discover each of the issues observed in the paper.
Asymmetric routing. We run a reachability check from C to R2, and at R2 we use IPMirror to send the
traffic back to C. Symnet shows that all execution paths from C to R2 and reverse cross via P, thus the setup
is correct.
MTU issues. Router R1 is configured to drop all packets with size large than 1536B. We inject a symbolic
packet at C with a symbolic IP length field. At R2, the IP length field has a constraint attached: length <
1536.
Next, we use IP-in-IP tunneling for traffic between R1 and P. This further reduces the available MTU, and
was creating difficult to debug performance problems in the actual deployment: ping and TCP connection
setup worked fine, but subsequent full MTU traffic from the client was blackholed because they exceed the
MTU after encapsulation [29]. Running reachability on this new setup, the new constraint applied to length
becomes: length + 20 < 1536, thus the client’s maximum length must be smaller than 1516 for packets to
go through.
Missing VLAN tagging. In one setup, P was removing VLAN tags before processing packets, and was
not adding them back before pushing packets back ro R1. This caused R1 to drop those packets because it
was expecting VLAN tagging [29]. A simple reachability check quickly highlights this problem: when R1
attempts to remove the VLAN tagging it finds the wrong EtherType and drops the packet.
Security Appliance. In one deployment, R2 acted as a DHCP server too, and it filtered packets where the

Page 80 of (89) c© TRILOGY 2 Consortium 2016

Ethernet source address, IP source address tuple was not in its assigned leases. We modeled the DHCP
assignment by using two metadata variables set by C: “origIP” and “origEther”. Both were set by the source
to have the same symbolic value as the Ethernet and IP source address fields in the symbolic packet. R2
filters all packets where origIP6=pSrc or origEther6=EtherSrc. We then ran reachability again, and found that
all packets were dropped by R2 because the source MAC was being modified by P and the second constraint
didn’t hold.
Extending TCP. Next, we wish to replicate the active testing performed by Honda et al. [25] to measure
whether TCP extensions are possible. We have implemented a simple model of two TCP endpoints. We
model the three way handshake, then the client sends a single data segment of unspecified size which is
acked by the server and then a FIN exchange follows.
We first use this model to check whether the option negotiation mechanism is sound when middleboxes exist
on path that strip TCP options: after the three-way handshake both endpoints must agree on whether the new
option is enabled or not. We tested this setup with asymetric paths where the option stripping middleboxes
are on one path, both or none. The results confirm the findings in [25]: the standard TCP options negotiation
mechanism when paths are asymmetric, and the option must also be echoed on the third ACK for correct
negotiation.
Next, we want to understand whether TCP works through a box that randomizes initial sequence numbers by
adding a arbitrary offset to sequence numbers of outgoing packets and subtracting it from the ACK values.
We model this by setting the offset to a symbolic value and saving it in the packet metadata. The ISN box
adds offset to the sequence number field of outgoing packets, and subtracts the metadata from the ACK
field. The verification is simple: at the TCP active opener, ACK = SEQ + 1 must always hold. This
model can be extended to show that Multipath TCP is resilient to sequence number rewriting, while other
TCP extensions are not.

5.2.8 Conclusions
Symbolic execution is a powerful tool for network verification, but applying it to production networks is
challenging.To allow scalable network symbolic execution we have proposed SEFL, a novel, minimalist,
imperative language tailored by design for network symbolic execution. We have built Symnet — a fast
symbolic execution tool for SEFL code.
To understand the expressiveness of SEFL, we have modeled many networking devices ranging from switches
and routers to middleboxes that parse TCP options or rewrite sequence numbers. We have also modeled a
large subset of the elements of the Click modular router, which allows us to verify Click configurations out-
of-the box. Our evaluation shows that all our models have near-optimal branching factors per box and that
Symnet seamlessly scales to large networks.
Finally, we have applied Symnet and SEFL to capture a number of middlebox behaviours described in the
literature. Our experience shows that Symnet catches many interesting network properties and is very fast.

c© TRILOGY 2 Consortium 2016 Page 81 of (89)

6 Conclusions
This deliverable described the tools for controlling liquidity developed by the Trilogy 2 project in its third
and final year.
We started by describing the Trilogy 2 Information Model that is used to describe the different resources
being pooled in the liquid network. This allows proper characterization of the resources involved. We then
described the tools used for controlling liquidity from the end user side. We presented a new mechanism
for encrypting web traffic, namely HTTPCrypt, motivated by a large feasibility analysis of deployment of
encryption on the Internet. We also presented Kadupul, an incentive framework for users to create liquidity
at the edge of the network and the MPTCP subflow manager, to assist the end user in the subflow creation
strategy.
We then moved on to describe the tools for controlling liquidity from the operator’s side. We described the
incentive and enforcement tools we built in the Federated Market and then we described how operators can
play with packet drops to affect the liquidity created by users using MPTCP.
Finally we presented two tools for understanding liquidity, a web dependency graph analyzer, to understand
how modern web pages can benefit from liquidity tools, such as MPTCP and Symnet, a symbolic execution
framework for network functions, to help reasoning about deployed network function and predict network
behavior when network functions are dynamically deployed.

Page 82 of (89) c© TRILOGY 2 Consortium 2016

7 Appendix
7.1 DRaaS use-case listing
List of DRaaS entities (systems and users)

(i) Source Cloud (or Client Cloud) - the cloud that is running applications and virtual machines (Source
VMs) of End Users. Once a replication is enabled for any of Source VMs the Source Cloud starts
to stream any data changes happening on Source VMs to Provider Cloud. Source Clouds has to be
configured before it could be used for DRaaS

(ii) Provider Cloud - the cloud that is running Shadow VMs - tiny helper VMs the single purpose of
which is to receive data streamed from Source Cloud and save it locally. Each Source VM enabled for
replication has corresponding Shadow VM on the provider side. Provider Cloud has to be configured
before it could be used for DRaaS

(iii) Dashboard - a server that is controls and monitors replication between Source and Provider Clouds.
Dashboard stores API credentials for all clouds it has access to and uses them to setup/teardown repli-
cations, provision VMs, create/remove disks and other VM resources via OnApp CP API.

(iv) Cloud Owner - the person that manages one or more Clouds. Cloud Owner can have an account in the
Dashboard, and also user account on the Clouds that he manages

(v) End User - a user with an account on the Source Cloud, who is using the Source VMs running on the
same Cloud.

(vi) Cloud Owner Dashboard access role - users with this role can manage the clouds that are owned by
them in the dashboard, all vms that belong to those clouds and any End Users owning those VMs

(vii) End User Dashboard access role - user with this role can only manage VMs that are owned by them.

Workflow 1: Initial configuration When a Cloud Owner decides that he wants to provide DRaaS services for
his End Users, he needs to go through process of configuration of his Cloud.

(i) A new Dashboard account with access rights of Cloud Owner is created for him by a member of
Dashboard staff. Once a Dashboard account is ready, Cloud Owner recieves an email with a prompt to
set up a password for his Dashboard account and start cloud configuration

(ii) Cloud Owner logs in to the Dashboard, and launches a Cloud Registration Wizard to register his Cloud
within the Dashboard. Wizard prompts Cloud Owner to fill some description fields for the cloud (like
name and description and subdomain - see more about subdomains below) and API access details
(which can be obtained from the CP). Once those are entered (and verified to work), Dashboard gener-
ates a Dashboard API key/token pair and inserts those into the Cloud, so that the Cloud will be able to
make authenticated API requests to the Dashboard

(iii) Next step for Cloud Owner is to specify which exact Zones on his Cloud will be available for DRaaS.
This is done via Hypervisor Zone Registrations Wizard, which fetches list of all Hypervisor Zones from
the Cloud. Once User selects a Zone, he needs to choose one of Provider Hypervisor Zones (which are
previously registered by Dashboard staff), so that he has some control on where does he want the data
of his End Users to flow. Once this Wizard is complete, Dashboard inserts an identifier token to the
Hypervisor Zone on CP via CP API.

(iv) All VMs on the Clouds that have the identifier set for their Hypervisor Zones now have the ability to
enable DRaaS replication.

Workflow 2: End user initiates replication of his VM

(i) Once a Source Cloud has the DRaaS enabled for it (as per Workflow 1), End Users of the same Cloud
are now able to initiate the replication for any VMs that belong to them and run in the Hypervisor
Zones that were configured for DRaaS.

c© TRILOGY 2 Consortium 2016 Page 83 of (89)

(ii) Once End User presses “Enable DR” for a specific VM, several API queries are made by the Source
Cloud to the Dashboard.

(iii) First API query creates a new Dashboard user account with End User access rights role. Once the
account is ready the user will recieve an email with invitation to log in to the Dashboard and check the
progress of DR of his VMs.

(iv) Second API query registers the VM within the Dashboard.

(v) Once the Dashboard successfully registerd the VM, it performs a set of CP API queries to the Source
Cloud to get VM metadata (like ram, os type, disk size, networks, ips etc).

(vi) Once VM metadata is collected, the Dashboard builds a VM with similar metadata on the Provider
Cloud side (it uses the Provider Hypervisor Zone that was associated with Source Hypervisor Zone
that runs the VM on registration). This VM becomes a Shadow VM, e.g. even it has all the Source VM
metadata, like 16GB of RAM, 5 networks etc, it is running currently in “shadow” mode, with only a
little ram actually allocated, and a single public network.

(vii) Once the Shadow VM is ready on Provider Cloud side, Dashboard makes an API call to Source Cloud
to prepare keys that are going to be used to initiate data streaming tunnel between the clouds

(viii) Once Dashboard has the tunnel keys, it make an API call to Provider Cloud to insert those keys into
the Shadow VM, so that the VM will accept the tunnel. The Shadow VM is launched afterwards

(ix) Once the keys are prepared and the Shadow VM is running, Dashboard makes CP API calls to the
Source Cloud to initiate the replication for each of the disks of the Source VM.

(x) Once previous step is complete the replication is considered to be established, and the Source CP
periodically sends replication progress data to the Dashboard.

(xi) Once replication progress reaches 100% Dashboard enables the VM to be failed over to Provider side.

Workflow 3: VM failover

(i) When a Source VM is being replicated at 100%, Dashboard allows Failover, i.e. any user that can
access the VM on the Dashboard (like Cloud Owner of the Source Cloud, or End User that owns the
VM) can login to Dashboard and initiate VM failover.

(ii) Once Failover is initiated, Dashboard makes a series of API calls that perform the failover:

API call to Source Cloud to teardown the replication

API call to Provider Cloud to stop the Shadow VM

API call to Source Cloud to stop the Source VM

API call to Provider Cloud to remove the “Shadow” status fo the VM. Shadow VM now becomes
Failover VM

API call to Provider Cloud rebuild network on the Failover VM

API call to Provider Cloud to start the Failover VM

(iii) After those operations the VM is considered to be failed over and running on the Provider Cloud

Workflow 4: VM failback

(i) When a VM is running in Failover mode, any user that can access the VM on the Dashboard can decide
its time to Failback the VM.

Page 84 of (89) c© TRILOGY 2 Consortium 2016

(ii) Once Failback is initiated, Dashboard makes a series of API calls that move the VM back to Source
Cloud

API call to Source Cloud to add the Shadow status to Original VM

Series of API call that copy any data collected in Failover VM back to original VM - this is the
same as decribed in Workflow 2, only the direction of replication is now from Failover VM to Original
VM, which is now running in Shadow mode

Once replication progress reaches 100

API call to Source Cloud to power off the Original VM (in Shadow mode)

API call to Source Cloud to remove the Shadow status of the VM

API call to Source Cloud to rebuild the network of the VM

API call to Source Cloud to launch the Original VM

(iii) After those operations the VM is now again running on the Source Cloud

(iv) Replication to the Provider Cloud is now re-established as per Workflow 2

c© TRILOGY 2 Consortium 2016 Page 85 of (89)

Bibliography
[1] Uci cloud owl ontology, February 2009.

[2] Scalable Testing of Context-Dependent Policies over Stateful Data Planes with Armstrong. http:
//arxiv.org/abs/1505.03356, 2015.

[3] Alexa top 500 global sites. http://www.alexa.com/topsites.

[4] Darko Androcec, Neven Vrcek, and Jurica Seva. Cloud computing ontologies: a systematic review. In
Proceedings of the third international conference on models and ontology-based design of protocols,
architectures and services, pages 9–14, 2012.

[5] Mike Belshe and Roberto Peon. SPDY protocol: Draft 3.2. http://dev.chromium.org/spdy/
spdy-protocol/spdy-protocol-draft3-2.

[6] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext Transfer Protocol Version 2 (HTTP/2).
RFC 7540, May 2015.

[7] Luca Boccassi, Marwan M. Fayed, and Mahesh K. Marina. Binder: A system to aggregate multiple
internet gateways in community networks. In Proceedings of the 2013 ACM MobiCom Workshop on
Lowest Cost Denominator Networking for Universal Access, LCDNet ’13, pages 3–8, New York, NY,
USA, 2013. ACM.

[8] Antonio Brogi, Ahmad Ibrahim, Jacopo Soldani, José Carrasco, Javier Cubo, Ernesto Pimentel, and
Francesco D’Andria. Seaclouds: a european project on seamless management of multi-cloud applica-
tions. ACM SIGSOFT Software Engineering Notes, 39(1):1–4, 2014.

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008.
USENIX Association.

[10] Peter Pin-Shan Chen. The entity-relationship modeltoward a unified view of data. ACM Transactions
on Database Systems (TODS), 1(1):9–36, 1976.

[11] M. Coudron. Mptcp netlink. https://github.com/teto/mptcpnetlink, Feb 2014.

[12] Andrei Croitoru, Dragos Niculescu, and Costin Raiciu. Towards wifi mobility without fast handover. In
12th USENIX Symposium on Networked Systems Design and Implementation, NSDI 15, Oakland, CA,
USA, May 4-6, 2015, pages 219–234. USENIX Association, 2015.

[13] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[14] G. Detal and S. Barré. Flexible path managers for MPTCP. http://www.tessares.net/
path-manager/.

[15] CIM DMTF. Schema, 2015.

[16] Anhai Doan et al. Crowdsourcing systems on the world-wide web. ACM, 2011.

[17] Mihai Dobrescu and Katerina Argyraki. Software dataplane verification. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation, NSDI’14, pages 101–114,
Berkeley, CA, USA, 2014. USENIX Association.

[18] E. Dumazet and Y. Cheng. TSO, fair queuing, pacing: three’s a charm. Presented at IETF’88, Nov.
2013.

Page 86 of (89) c© TRILOGY 2 Consortium 2016

http://arxiv.org/abs/1505.03356
http://arxiv.org/abs/1505.03356
http://www.alexa.com/topsites
http://dev.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-2
http://dev.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-2
https://github.com/teto/mptcpnetlink
http://www.tessares.net/path-manager/
http://www.tessares.net/path-manager/

[19] Philip Eardley. Survey of MPTCP Implementations. Internet-Draft draft-eardley-mptcp-
implementations-survey-02, IETF Secretariat, July 2013.

[20] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June 1999. Updated by RFC 2817.

[21] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for Multipath Operation with
Multiple Addresses. RFC 6824, January 2013.

[22] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick McKeown. Repro-
ducible network experiments using container-based emulation. In Proceedings of the 8th International
Conference on Emerging Networking Experiments and Technologies, CoNEXT ’12, pages 253–264,
New York, NY, USA, 2012. ACM.

[23] Mark Handley. Why the internet only just works. BT Technology Journal, 2006.

[24] Seppo Hätönen, Aki Nyrhinen, Lars Eggert, Stephen Strowes, Pasi Sarolahti, and Markku Kojo. An
experimental study of home gateway characteristics. In IMC, pages 260–7, New York, New York, USA,
2010. ACM Press.

[25] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Handley, and Hideyuki
Tokuda. Is it still possible to extend tcp? In Proceedings of the 2011 ACM SIGCOMM Conference on
Internet Measurement Conference, IMC ’11, pages 181–194, New York, NY, USA, 2011. ACM.

[26] A. Huttunen, B. Swander, V. Volpe, L. DiBurro, and M. Stenberg. UDP Encapsulation of IPsec ESP
Packets. RFC 3948 (Proposed Standard), January 2005.

[27] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis: Static checking for
networks. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDI’12, pages 9–9, Berkeley, CA, USA, 2012. USENIX Association.

[28] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The click modular
router. ACM Trans. Comput. Syst., 18(3):263–297, August 2000.

[29] Franck Le, Erich Nahum, Vasilis Pappas, Maroun Touma, and Dinesh Verma. Experiences deploying a
transparent split-tcp middlebox in operational networks and the implications for nfv. HotMiddlebox’15,
2015.

[30] Yeon-sup Lim, Yung-Chih Chen, Erich M. Nahum, Don Towsley, and Richard J. Gibbens. How green
is Multipath TCP for mobile devices? In Proceedings of the 4th Workshop on All Things Cellular:
Operations, Applications, & Challenges, pages 3–8. ACM, 2014.

[31] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and George Varghese. Check-
ing beliefs in dynamic networks. In Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, NSDI’15, pages 499–512, Berkeley, CA, USA, 2015. USENIX Associa-
tion.

[32] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten Godfrey, and Samuel Tal-
madge King. Debugging the data plane with anteater. In Sigcomm, 2011.

[33] Francesco Moscato, Rocco Aversa, Beniamino Di Martino, Teodor-Florin Fortis, and Victor Munteanu.
An analysis of mosaic ontology for cloud resources annotation. In Computer Science and Information
Systems (FedCSIS), 2011 Federated Conference on, pages 973–980. IEEE, 2011.

[34] Andreas Müller, Florian Wohlfart, and Georg Carle. Analysis and topology-based traversal of cascaded
large scale NATs. In HotMiddlebox, pages 43–48. ACM Press, 2013.

[35] Ns-3 network simulator. https://www.nsnam.org.

c© TRILOGY 2 Consortium 2016 Page 87 of (89)

https://www.nsnam.org

[36] M. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

[37] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure. Exploring Mobile/WiFi Handover
with Multipath TCP. In ACM SIGCOMM CellNet workshop, pages 31–36, 2012.

[38] Christoph Paasch, Sebastien Barre, et al. Multipath TCP in the Linux Kernel. available from http:
//www.multipath-tcp.org.

[39] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker. Verifying Isolation
Properties in the Presence of Middleboxes. Tech Report arXiv:1409.7687v1.

[40] Qiuyu Peng, Minghua Chen, Anwar Walid, and Steven Low. Energy efficient Multipath TCP for mobile
devices. In Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc Networking and
Computing, MobiHoc ’14, pages 257–266, New York, NY, USA, 2014. ACM.

[41] QUIC, a multiplexed stream transport over udp. http://www.chromium.org/quic.

[42] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley. Improving Datacenter
Performance and Robustness with Multipath TCP. In ACM SIGCOMM 2011, 2011.

[43] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov. Linux Netlink as an IP Services Protocol. RFC
3549 (Informational), July 2003.

[44] M. Scharf and A. Ford. Multipath TCP (MPTCP) Application Interface Considerations. RFC 6897,
March 2013.

[45] Philipp S. Schmidt, Theresa Enghardt, Ramin Khalili, and Anja Feldmann. Socket intents: Leveraging
application awareness for multi-access connectivity. In Proceedings of the Ninth ACM Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’13, pages 295–300, New York, NY,
USA, 2013. ACM.

[46] Stelios Sotiriadis and Nik Bessis. An inter-cloud bridge system for heterogeneous cloud platforms.
Future Generation Computer Systems, 2015.

[47] Stelios Sotiriadis, Nik Bessis, and Euripides GM Petrakis. An inter-cloud architecture for future internet
infrastructures. In Adaptive Resource Management and Scheduling for Cloud Computing, pages 206–
216. Springer, 2014.

[48] SPDY: An experimental protocol for a faster web. http://www.chromium.org/spdy/
spdy-whitepaper.

[49] Yeon sup Lim, Yung-Chih Chen, E.M. Nahum, D. Towsley, and Kang-Won Lee. Cross-layer path
management in multi-path transport protocol for mobile devices. In INFOCOM, 2014 Proceedings
IEEE, pages 1815–1823, April 2014.

[50] Jonas Wagner, Volodymyr Kuznetsov, and George Candea. Overify: Optimizing programs for fast
verification. In Proceedings of the 14th USENIX Conference on Hot Topics in Operating Systems,
HotOS’13, pages 18–18, Berkeley, CA, USA, 2013. USENIX Association.

[51] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David Wetherall. Demystify-
ing page load performance with WProf. In Proc. of the 11th USENIX symposium on Networked Systems
Design and Implementation (NSDI ’13), 2013.

[52] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design, implementation and
evaluation of congestion control for multipath TCP. In Proceedings of the 8th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2011, Boston, MA, USA, March 30 - April 1,
2011, 2011.

[53] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert Greenberg, Gisli Hjalmtysson, and
Jennifer Rexford. On static reachability analysis of ip networks. In Proceedings of Infocom, 2005.

Page 88 of (89) c© TRILOGY 2 Consortium 2016

http://www.multipath-tcp.org
http://www.multipath-tcp.org
http://www.chromium.org/quic
http://www.chromium.org/spdy/spdy-whitepaper
http://www.chromium.org/spdy/spdy-whitepaper

[54] Sami Yangui. Service-based applications provisioning in the cloud. PhD thesis, Evry, Institut national
des télécommunications, 2014.

[55] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Toward a unified ontology of cloud computing. In
Grid Computing Environments Workshop, 2008. GCE’08, pages 1–10. IEEE, 2008.

[56] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Automatic test packet gen-
eration. In Proceedings of the 8th International Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’12, pages 241–252, New York, NY, USA, 2012. ACM.

c© TRILOGY 2 Consortium 2016 Page 89 of (89)

	Executive Summary
	List of Authors
	 List of Figures
	List of Tables
	Introduction
	Information Model
	Introduction
	Constructing the Information Model
	Deriving a simple Information Model
	The Trilogy 2 Information Model
	Actors
	Operations
	Systems
	Software
	Context
	Business

	Example of applications of the information model
	Transparent Migration Example
	DRaaS
	Multi-WIFI
	Applying the Information Model to Openstack

	Alternatives to the Trilogy 2 Information Model
	Conclusion

	User Control
	MPTCP security feasibility measurement
	Deployability analysis of the proposed MPTCP security extensions
	Methodology
	Results
	Discussion

	HTTPCrypt - Low Latency Opportunistic Encryption
	Design Goals
	Latency and performance
	Integration with the existing code
	Protocol Description
	Deriving a session key
	Request structure
	Chunked encoding
	Cryptographic primitives
	Security Analysis
	Operating System Optimizations
	Embedded usage
	Evaluation

	Kadupul - incentive based enforcement liquid control
	Kadupul Design

	Managing Multipath TCP sufblows
	Introduction
	The subflow controller
	Sample use cases
	Smarter long-lived connections
	Smarter backup
	Smarter streaming
	Smarter exploitation of flow-based LB
	User space path manager performances

	Operator Control
	Federated Market and Cloud.net
	Federation
	Enabling Private Federation Via Tokens
	Users and roles in the Federation
	Managing the network for Federated VMs
	Ensuring that users have credit on the platform

	Tools to control and manage resources in Cloud.net
	Payment in Cloud.net
	Enforcement activities
	Incentive activities

	Tools to control and manage resources in DRaaS
	Incentives and Enforcement

	Operator games in the age of MPTCP
	Prices
	Availability
	Throughput and traffic policing
	Client & provider utility
	Throughput and shaping
	Initial results

	Tools for Understanding Liquidity
	Web dependency graph analyser
	Web Page Load Process
	Dependency Graph Activities
	Implementation

	Symbolic execution for networks with Symnet
	Motivating examples
	Design Overview
	SEFL Language
	Symbolic execution with Symnet
	Network Verification with Symnet
	Modeling networks with SEFL
	Evaluation
	Conclusions

	Conclusions
	Appendix
	DRaaS use-case listing

	References

