
An Agent Architecture to fulfill Real-Time Requirements

Ignacio Soto�

Dpt. Tecnologı́as de las Comunicaciones, Universidad Carlos III de Madrid
c/ Butarque 15, 28911 Leganés, Spain

Mercedes Garijo, Carlos A. Iglesias
Dept. Ing. de Sistemas Telemáticos - Universidad Politécnica de Madrid
ETSI Telecomunicación, Ciudad Universitaria s/n, 28040 Madrid, Spain

Manuel Ramos
Dpt. Tecnologı́as de las Comunicaciones, Universidad de Vigo

Campus Universitario s/n, 36200 Vigo, Spain

isoto@it.uc3m.es, (mga,cif)@gsi.dit.upm.es, mramos@ait.uvigo.es

ABSTRACT
In this paper we present AMSIA, an agent architecture that
combines the possibility of using di�erent reasoning meth-
ods with a mechanism to control the resources needed by
the agent to ful�ll its high level objectives. The architec-
ture is based on the blackboard paradigm which o�ers the

possibility of combining di�erent reasoning techniques and
opportunistic behavior. The AMSIA architecture adds a
representation of plans of objectives allowing di�erent rea-
soning activities to create plans to guide the future be-
havior of the agent. The opportunism is in the acquisi-
tion of high-level objectives and in the modi�cation of the

predicted activity when something doesn't happen as ex-
pected. A control mechanism is responsible for the trans-
lation of plans of objectives to concrete activities, consider-
ing resource-boundedness. To do so, all the activity in the
agent (including control) is explicitly scheduled, but allow-
ing the necessary 
exibility to make changes in the face of

contingencies that are expected in dynamic environments.
Experimental work is also presented.

1. INTRODUCTION
This article deals with agents that must carry out missions

in dynamic and complex environments. This agent domain
takes into account possible relationships between the agents'
missions. These relationships can be causal (doing some part
of a mission in
uences how to carry out other missions) or
due to the usage of common limited resources (it is possible

�This work was partially done while the �rst author was

visiting the �Area de Ingenier��a Telem�atica of the University
of Vigo.

To appear in Fourth International Conference on Autonomous Agents,
Agents 2000. Barcelona, Spain. June, 2000. Permission to make dig-
ital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed
for profit or direct commercial advantage and that copies show this notice
on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works, requires prior specific permission and/or a fee.
2000 @ACM.

that the agent lacks the resources to carry out all its mis-

sions). Missions have as relevant parameters their priority
(importance for the agent) and deadline. We are going to
evaluate the agents not only for accomplishing missions, but
for accomplishing them in time.

The article introduces AMSIA, an agent architecture that

supports real-time requirements, and it is based on the black-
board model since it provides an easy way of integrating
di�erent reasoning techniques and opportunistic behavior.
Planning techniques have been combined with the black-
board model for considering the resources needed by the
agent to accomplish its missions. Planning is a basic tech-

nique for the agent to reason about how to achieve its ob-
jectives. Also, plans are the base to be able to control the
use of resources (if we have not a plan to do something, it
is diÆcult to know if we are going to have resources to do
it). Nevertheless, the use of plans in dynamic environments
has its problems. On the one hand, it is useless to make

detailed plans in advance, it is usually better to delay deci-
sions of how to do certain things until the moment in which
that decision is needed. In other words, hierarchical plans,
which have di�erent levels of abstraction are appropriate for
these environments. Moreover, certain situations can make
a plan invalid, hence it must be easy to extend, modify or,

if nothing better, cancel a plan (and develop another).

Our architecture combines activity guided by plans of ob-
jectives, with opportunism in acquiring high-level objectives
(missions) and in building, modifying, and extending the

plans. Also, all the activity in the architecture is explicitly
scheduled, both reasoning activity (including building plans)
and activity in the environment (actions and perceptions),
with the resources needed to carry it out.

In section 2 we describe AMSIA, the proposed agent ar-

chitecture. In section 3 we present experimental results ob-
tained with an agent built using the architecture. The agent
controls a robot in a simulated environment. In section 4 we
compare our work with related approaches. And, �nally, in
section 5 we summarize our conclusions and propose future



Tasks
blackboard Beliefs blackboard

Objectives

Objective-k

Objective-i

Objective-j

Objective-l

PC A PC A PC AACPCC

CONTROL TASKS
DOMAIN

Predicted
events

Unpredicted
events

Events
Blackboard

t2t1 t4t3 t5 t6

Association
Data
Control

PCC: control task preconditions
A: domain task activity
AC: control task activity

BLACKBOARD

PC: domain task preconditions

Application blackboard

Schedule of activity

tiempo

Figure 1: The AMSIA agent architecture

lines of research.

2. THE AMSIA AGENT ARCHITECTURE
The proposed agent architecture can be seen in �gure 1.
This architecture allows the agent to execute the tasks corre-
sponding to its missions. Tasks can embody computational
activities (as, for example, reasoning activities) or actions
in the real world and/or perceptions of the environment (in

this case, the task is an abstraction of a high level action in
the environment for the architecture, in fact it is a reactive
module to do something in the world)1.

The main components of the AMSIA architecture are the
events blackboard, the objectives blackboard, the knowledge

sources corresponding to tasks, and the schedule of activity.

The motor of activity in the architecture are events (AM-
SIA is event-driven). Events are abstractions that the ar-
chitecture uses to signal opportunities of activity, and they
are stored in the events blackboard. In our architecture an

agent will have KSs interested in the events. When an event
is produced, a task will be created based in the correspond-
ing KS. The events can be created as the result of reasoning
activity (by reasoning KSs, the events signal that there is
symbolic information that the agent can follow), and as the
result of sensor activity (by sensor KSs, the events signal

a contingency in the environment that is relevant for the
agent).

2.1 Plans of objectives in AMSIA
The objectives of the agent are modeled as special objects
in the blackboard. Its creation or modi�cation generates
internal events. Most of the knowledge (the corresponding

1In blackboard terminology, tasks are instances of Knowl-
edge Sources (KSs).

KSs) in the architecture is indexed by the objectives it allows
to achieve. A KS interested in an event associated with
an objective can directly achieve the objective or can be a
planning activity (in the sense that the corresponding task
generates a sub-plan of objectives to progress in achieving
it).

Each objective is speci�ed in the architecture by the follow-
ing information:

1. Name: As any other object in the blackboard, the
objects objective have a unique name that distinguishes
them from any other object. Hence it is possible to
have two or more objectives of the same kind activated

in the architecture, and their names can be used to
distinguish among them.

2. Class: All the objects objective created by applica-
tions are subclasses of the object Objective de�ned in
the architecture. The class de�nes the kind of objec-
tive to which the object refers.

3. UnreacheableP: This attribute allows a task to in-
dicate that, in principle, it is not possible to achieve
this objective, stating that the plan where it belongs

is invalid. This is a useful information for re-planning.
More information about the reason because of it is
not possible to achieve the objective will be left in the
blackboard.

4. The following links (all the links have an inverse
indicated in brackets):

(a) ToParameter (ToObjective): links to black-
board objects that hold information related to
the objective. These objects contain a represen-

tation of the particular situation speci�ed by the



objective, that domain tasks can understand and

analyze.

(b) Need (NeededFor): links to objectives which
must be achieved before it is possible to try to
achieve this one. Hence, this link de�nes a causal
relationship between the objectives pointed by
links with this name and this objective.

(c) Before (After): this kind of link de�nes an or-
der relationship between this objective and those
pointed by links with this name.

(d) ToSubPlan (ToFatherObjective): link to a
plan that, possibly, allows to advance in the achieve-
ment of this objective, i.e., this link de�nes a de-

composition of an objective in a (sub)plan of ob-
jectives. If an objective has several ToSubPlan
links, it is because there are several alternative
plans (OR relationship) to try to achieve it.

Figure 2 shows an example of a structure of a plan of objec-
tives (inverse links are omitted).

The structure of objects objective allows to represent par-
tial order and hierarchical plans. But with these important
singularities:

1. The steps in the plans are not directly activities, but
specify them, because there will be a set of possible
tasks (KS instances) associated with each step (ob-
jective) of the plan. These tasks are alternatives to

achieve the objective or to create sub-plans with the
same end.

2. There is not a �xed algorithm to create the plans.
There is not an algorithm that extends the mentioned
structure until something executable is reached. On
the contrary, all the steps in the plan specify exe-
cutable tasks, but these tasks can have the mission of

generating sub-plans. In this way, di�erent reasoning
algorithms can be combined. The standard structure
of objects objective is what allows the integration of
the di�erent algorithms and the use of the plans to
guide the future activity of the agent. Using the ob-
jective and the objects pointed by ToParameter link,

the planning tasks can understand what a plan means
and how to modify or expand it.

3. It is the control mechanism of the architecture which
is in charge of choosing particular tasks for achieving
an objective (or follow a plan of objectives). It is usual
to have di�erent tasks associated with the same objec-
tive. Di�erent tasks represent di�erent mechanisms of

reasoning or di�erent methods to execute actions in
the environment, usually with di�erent relationships
between response quality and needed resources. The
control mechanism will choose among the possibilities
to maximize the quality considering the available re-
sources.

The representation of the plans is, in fact, a tree of objec-

tives. This has the interesting property that at any point,

the control mechanism can choose between extending an ob-

jective (a plan) or �nishing it, just by choosing the adequate
task, i.e., we can associate emergency tasks with objectives
(at any level of the plan) that do some kind of minimal ac-
tion when there are not resources to extend the objective.
Hence, this tree structure favors an anytime reasoning.

2.2 Control mechanism
2.2.1 Schedule of activity
As it has been told, the control mechanism of the archi-

tecture is in charge of deciding which tasks to execute. It
works on the events that signal opportunities of activity.
These events can mean that a plan/sub-plan has been cre-
ated (or modi�ed) or that a situation has been detected
that represents an opportunity for the agent although not
linked (initially, at least) with its current objectives. The

control mechanism uses the events to create tasks based
in the knowledge sources interested in those events. The
knowledge sources in our architecture have a resource spec-

i�cation, which allows the control mechanism to calculate
the resources needed by the tasks.

The control mechanism works building a schedule of activity
that de�nes the tasks that are going to be executed by the
system and the resources needed by those tasks. In the
current implementation the only resource considered is time
but other resources could be equally considered.

The construction of the schedule is incremental, the control
mechanism incorporates sequences of tasks as the result of
events produced by new plans for the system or new situa-
tions to analyze. It is responsibility of the control mecha-
nism to keep the schedule feasible in the sense that the agent

must have enough resources to carry it out. In the current
implementation, as the only resource considered is time, the
schedule registers the instants before each task must begin
and �nish its execution, and the estimated time of execution
of the tasks. The sequences of tasks are introduced in the
schedule according to the links of its objectives to objectives

of tasks in the schedule (i.e., under application directions if
they exist) or using EDF (Earliest Deadline First) criterion
applied to missions.

The control mechanism doesn't reason about how to achieve
objectives. It only chooses among possible sequences of

tasks. Domain tasks reason and create plans of objectives,
control only translates those plans into sequences of tasks
and introduces them in the schedule. At any point it is easy
to change a task to do something, because the alternatives
are kept associated to the corresponding objective, and the

tasks in the schedule are linked to their objectives.

When there are resource con
icts (i.e., there are not re-
sources to execute the sequences of tasks corresponding to
the objectives of the system), the control mechanism has to
deal with them. The goal of the control mechanism is to

maximize the pro�t of the line of activity of the agent. To
do so, it always tries to favor the sequences of tasks corre-
sponding to more important plans and to use tasks to carry
out those plans which o�er more quality. The control mech-
anism can remove sequences of tasks corresponding to less
important plans to favor the introduction of those corre-

sponding to more important ones. This is not an optimum



Objective-B1 Objective-B2
Need

Objective-A1 Objective-A2

Objective-A3 Objective-A4

Objective (father)

Need

Need
Need

ToSubPlan

ToSubPlan

Figure 2: A plan of objectives in the architecture

process, not all the combinations of remove/introduce tasks
are tried. The priority is to introduce the tasks of the more
important plans removing those of less importance that use
resources needed by the more important plan. Afterwards,
if there are resources, those plans with less importance are
considered to be re-introduced in the schedule. Notice that

the control mechanism has the 
exibility of choosing tasks
that need less resources to follow a plan although it can
mean less quality in the achieved objectives. A more de-
tailed description of how it works can be found in [19].

To decide between sequences of tasks the control mechanism
scores them taking into account both the importance of the
objectives of the plan and the quality o�ered by the tasks
used to follow it.

An important point is that the operations of the control

mechanism cannot be done in a �xed or negligible time.
Hence, the control operations must be scheduled themselves.
To do so, the control operations are divided in tasks (control
tasks that are instances of control knowledge sources). Each
control task analyzes an event or a related set of events (for
example, those associated with the creation of a plan of

objectives).

2.2.2 The short-term scheduler
Some domain tasks (e.g., planning tasks) are speci�ed (its
corresponding knowledge source) as creating events, and so
control tasks can be scheduled (with its needed resources)
with them. But other events cannot be predicted (e.g., a

situation that indicates a new opportunity for the agent as
the reception of a message). Control tasks to deal with these
events must be introduced dynamically in the schedule of
activity of the agent without risking its feasibility. Our agent
architecture uses a short-term scheduler that works with the

algorithm shown in �gure 3

Basically, it tries to introduce control tasks to deal with
unpredicted events while there is time in the schedule or if
the pending events are more important than the tasks in the
schedule. When there are not pending events, it chooses the

�rst task in the schedule for execution.

2.3 Reactivity

Is there any

pending?
unpredicted event

Execute first task in
schedule (if there is one)

Include in the schedule
a task to deal with the event

Is (priority of the
event) > (priority
of first task in 
schedule)?

Is there enough
time to include
the event?

No

Yes

Yes

No

Yes

No

Figure 3: The algorithm of the short-term scheduler

The proposed architecture has limited reactivity because a
contingency that the task being executed is not prepared to
handle, will not be analyzed till the execution of the task
is �nished. By adding a reactive layer, the reactivity is in-

creased giving fast responses to contingencies. Also, this
permits to deal with the continuous activity of a real envi-
ronment translating it to discrete events that our architec-
ture can manage. We have then (see �gure 4) a two-layer
horizontal architecture (only the reactive layer has access to
sensors and actors). This reactive layer will be built as a se-

ries of concurrent skills (as in [1]). The concurrent skills will
be activated and deactivated by the tasks (of our proposed
architecture) in charge of interacting with the environment.
Conceptually, the reactive layer doesn't change the vision
that the architecture presented in this paper has, only it
uses a more suitable interface to the environment (a special-

ized skill of the reactive layer) instead of directly the actors
or sensors.

3. EXPERIMENTAL WORK WITH AMSIA
3.1 The simulated environment
We have implemented the AMSIA agent architecture mod-

ifying BBK [4], a C++ implementation of the blackboard



Skill
SupervisorSkill Skill

SkillSkill
Memory

ENVIRONMENT

Executive
Task

Model
World

Sensor readings
Actions

DELIBERATIVE LAYER

Sensor readings
Actions

REACTIVE LAYER

Blackboard

Skill management
Comands Information

Figure 4: The agent architecture with a reactive
layer

architecture for control [10], and adding the mechanisms

described in this paper. We have applied it to control a
simulated robot (a modi�ed version of the Khepera simula-
tor [15]) that receives requests to carry out missions in the
environment. The missions have the following characteris-
tics:

� A deadline: each mission must be accomplished by the
agent before its deadline.

� An importance: each mission has an associate impor-
tance.

� A destination: the environment presented by the simu-
lator is a collection of rooms. Missions consist of going

to a room (destination) and make a fault diagnosis and
repair there. Information needed by the robot to do
the diagnosis can be obtained only if it is in the desti-
nation room.

First, we identify the factors that can in
uence in the per-
formance of the agent:

1. Dynamism: the dynamism is con�gured in the simu-
lator by two parameters:

(a) missions dynamism: the ratio of appearance of

new missions. Modeled by an exponential distri-
bution with mean �tM .

(b) obstacle dynamism: the ratio of appearance of
obstacles that can make more diÆcult or make

impossible the accomplishment of some missions,
modeled by an exponential distribution with mean
�tO. And the life of those obstacles, modeled by
an exponential distribution with mean �tOD .

Factor values

Missions dynamism high, medium, low

Importance range medium

Deadline big

Obstacle dynamism low

Table 1: Independent variables in the experiment

2. Deadline: how is the deadline associated with mis-
sions. The deadline is modeled by an exponential dis-
tribution shifted to the right tMD and with mean �tMP .

3. Range of importance: the importance of missions is
distributed uniformly between 0 and Imax.

The variables that we use to measure the performance of
our agent in a certain interval of time are:

1. E�ectiveness = S

T
� 100.

where S is the score obtained by the agent and T is
the total score o�ered to it. The score is calculated as
follows:

score =
X

missions accomplished

(importancemission + 1)

(1)

Missions accomplished refers to those accomplished be-

fore their deadlines.

2. Mission e�ectiveness = M

Tm
� 100

whereM is the number of missions accomplished by the
agent and Tm is the total number of missions o�ered
to it.

3. Importance e�ectiveness =
M
h

T
h

� 100

where Mh is the number of missions of the highest
importance accomplished by the agent and Th is the
total number of missions of the highest importance

o�ered to it.

We wanted to measure the performance of the agent in sta-
tionary state, so we did preliminary experiments and use
them to decide the time of the simulation (15000 seconds),
the number of samples in each condition (5), and the sup-
pressed samples to avoid the transitory state. Also we used

the preliminary experiments to determinate interesting val-
ues of the factors that in
uence the performance of the agent
in the experiment. The values chosen for the experiment are
shown in table 1.

The categories in table 1 correspond to the following values

(in tenths of second) of the parameters in the simulator:



Missions dynamism = high) �tM = 275

Missions dynamism = medium) �tM = 600

Missions dynamism = low ) �tM = 925

Importance range = medium) Imax = 5

Deadline = big ) tMD = 3000 and �tMP = 10000

Obstacle dynamism = low ) �tO = 1000 and �tOD = 100

3.2 The experiment
In this section we present the results of comparing the per-
formance of two agents, one built using our architecture and
the other built using BBK2. This last agent uses the abstract
plans of the blackboard architecture for control [10] to favor
the most important missions among those the agent thinks

it has resources to achieve, hence we call it IMP agent. Also,
the IMP agent favors always �nishing an on-going mission
while it thinks it can achieve it (this is a useful strategy in
the conditions of the experiment, see [18]).

To compare two agents that use architectures with the same

style facilitates a fair comparison because both use the same
knowledge, the same knowledge sources. On the other side,
comparing our architecture with others farther from its ar-
chitectural style would be more challenging but would give
more interesting results.

The results of the experiment are presented in �gure 5. We
used t-tests to see the statistic signi�cance of the di�erences
shown in �gure 5 (see table 2). We separate the results by
missions dynamism because this factor has a strong in
u-
ence in the dependent variables (hardly surprising, given the

way in which were de�ned).

The agent built using the AMSIA architecture in this paper
gets a signi�cant better e�ectiveness that the IMP agent.
Our agent and the IMP agent has similar importance e�ec-

tiveness. This is interesting, our agent is able to get the

same performance in the most important missions that the
IMP agent (an agent which is precisely favoring the most im-
portant missions). But, our agent can use the mechanisms
presented in this paper to achieve other missions without
risking the performance in the most important ones (see
that our agent has a better missions e�ectiveness that the

IMP agent for all the range of missions dynamism).

4. RELATED WORK
There are a series of agent architectures developed to face
the problem of interaction with dynamic environments.

Reactive architectures as the subsumption architecture [3]

o�er good performance in the interaction with the environ-
ment but it is not clear how they can adapt their behavior to
great changes in the environment or in their missions. More-
over, it doesn't seem easy, using this kind of architecture,
to build an agent to ful�ll certain real-time requirements of
high level objectives.

2Each sample was taken running an agent and the simulator
in a PC Pentium-II, 233 MHz, 32 MB RAM, using Linux
2.0.30.

Proposed agent architecture
IMP

low highmedium

highmedium

low highmedium

98.05

89.03
87.98

77.84

56.74

48.60
45

Effectiveness
97.23

83.41
82.68

63.28

41.24

32.53

Mission
dynamism

Mission
dynamism

efectiveness
Missions

low

90.17 90.05

97.07
91.47
96.24
98.47

Mission
dynamism

efectiveness
Importance

Figure 5: Results of the experiment

Hybrid architectures such as InteRRaP [16], TouringMa-

chines [5] or Remote Agent [17; 6] use a reactive layer (or
module) to ensure the security of the agent in front of events
in the environment that can mean a risk to the agent. The
reactive layer o�ers actions quickly to ensure the survival
of the agent while the deliberative layer/s make plans to
achieve the high level objectives of the agents, negotiate with

other agents, etc. But deliberative actions are not scheduled
themselves and so it is diÆcult to o�er guarantees of global
real-time requirements (speci�cally, it is diÆcult to adapt
the reasoning to real-time constraints).

IRMA [2; 18] is a deliberative architecture thought to deal

with resource-boundedness in the reasoning of the agent.
The main procedure to do this is to use the plan of inten-
tions that de�nes what the agent intends to do as a guide
for the reasoning of the agent, limiting in that way its possi-
bilities of reasoning. Options for deliberation are �ltered to
avoid loosing much time in deliberation. The idea is that the

less promising options are discarded faster with the �ltering
process than if the agent deliberate about them. Options
incompatible with the current plan of intentions are �ltered
this way. An override process allows that some options in-
compatible (with the current plan) but highly promising

can pass the �lter process and, so, the agent can deliber-
ate about them. Much of the work with IRMA is to show
the advantages of the �ltering mechanism for a resource-
bounded agent. Notice that in our agent architecture the
global schedule e�ectively directs where the agent is going
to spend its reasoning resources. The role of the �ltering-

override processes is played by the scheduler and how it deals
with external events. But reasoning activity is scheduled
and so the agent has the 
exibility of choosing among dif-
ferent reasoning methods according with the circumstances,
of deciding when to deliberate and how about a particular
event, and of integrating several objectives and divide the

resources among them.



Missions dynamism = low

Dependent variable degrees of freedom t p

E�ectiveness 8 14.628 0.000

Missions e�ectiveness 8 15.391 0.000

Importance e�ectiveness 8 5.976 0.000

Missions dynamism = medium

Dependent variable degrees of freedom t p

E�ectiveness 8 8.641 0.000

Missions e�ectiveness 8 14.007 0.000

Importance e�ectiveness 8 0.460 0.658

Missions dynamism = high

Dependent variable degrees of freedom t p

E�ectiveness 8 5.060 0.001

Missions e�ectiveness 8 7.191 0.000

Importance e�ectiveness 8 -0.558 0.592

Table 2: Results of t-tests in the experiment

AIS [11; 12] is an agent architecture based in a blackboard
model that has been modi�ed to deal with real-time require-
ments. The last version of AIS uses two layers: a reactive

layer and a cognitive (deliberative) layer. The deliberative
layer tries to ful�ll real-time requirements by using a satisfy-
ing cycle for the traditional cycle of execution of blackboards
architectures [11]. This cycle is used to identify KSARs use-
ful for the system in the current moment, to determine which
KSAR (task) is going to be executed next and to execute it.

The idea is to limit the time of execution of this cycle making
it work as an anytime algorithm that can be interrupted if
a deadline approaches or if a solution good enough has been
found. Our work is based in this architecture but it must
be noted that our agent architecture allows more 
exibility
because the agent decides when and how to deal with the

events. For example, our agent can follow eÆciently a sched-
ule of tasks while the AIS agent must con�rm its decision of
following the schedule each time it �nishes the execution of
a task.

PRS [13; 9] is a system for reactive planning. A set of pro-
cedures describes the actions to take in certain situations
in the environment or to accomplish objectives. The proce-
dures have a �xed format and they are executed step by step.
Reactivity in PRS is very fast, because several procedures
can be active at the same time, and the PRS interpreter can

choose to execute the step of the most appropriate proce-
dure (according to metalevel knowledge). Plans in PRS, as
in AMSIA, are trees of objectives. But in PRS the only plan-
ning mechanism is script-based. PRS has been used in the
agent architecture Cypress [20] as a robust executor [21] for
a planner, to control the interaction with the environment.

AMSIA is thought for a di�erent cognitive level than PRS,
it sacri�ces reactivity to be able to get involved in complex
reasoning activities. AMSIA also o�ers facilities (speci�ca-
tion of resources needed by knowledge sources and a control
mechanism that deals with them) to manage the resources
needed to accomplish its missions. PRS lacks these facilities

probably because its interest is in reactivity and robust plan
execution.

It is interesting to mention also that techniques such as any-
time algorithms [7] and how to build a solution to a problem

using a number of anytime algorithms [22], and approximate
processing [14] and how to build a solution to a problem
based on di�erent methods of di�erent tasks [8], are easily

integrated in our architecture.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed AMSIA, an architecture for

agents that must combine the use of di�erent arti�cial in-
telligence techniques with the ability to ful�ll real-time re-
quirements associated with its high level objectives.

The blackboard paradigm, in which this architecture is based,
o�ers interesting properties to build agents for dynamic and

complex environments. Namely, because of the division in
knowledge sources we have modularity, being easy to add or
remove them from the system; also because of the knowledge
sources it is easy to combine di�erent reasoning techniques
which is useful in open environments (for example, this al-
lows the use of existing software wrapping it in a knowledge

source); and we have opportunistic behavior which seems
appropriate to operate in dynamic environments.

But this properties are not enough for an agent. First, an
agent is going to reason about what to do, and it is neces-
sary to use the results of this reasoning to guide the behavior

of the agent. Also, the agent must control its opportunism
if it must be sensitive to real-time requirements of its high
level objectives. In AMSIA the applications are given the
possibility of creating objectives to guide the behavior of the
agent. The control mechanism translates them to concrete

activity taking into account resource limitations. All the
activity in the architecture is explicitly scheduled to control
the use of resources. The opportunism is in the acquisition
of new high level objectives; in creating, extending and mod-
ifying plans of objectives; and in dealing with unexpected
contingencies. The time spent in analyzing new opportuni-

ties is managed according to the available resources.

Preliminary experimental results with a simulator gave us
indications that the mechanisms introduced in our archi-
tecture are useful to operate successfully in a dynamic en-
vironment. This environment requires di�erent reasoning

techniques to carry out the missions presented to the agent.



Also, the missions have a deadline after which it is not in-

teresting the achievement of the mission.

Several lines of future research are open. One of the most
interesting is using our simulator to compare agents built
using di�erent architectures. We have presented such a com-
parison in this paper but its interest is limited by the fact

that the two compared architectures are of the same style
(blackboards).

Other line of future research in what we are specially inter-
ested is in using AMSIA to study multiagent collaboration
under real-time requirements.

6. REFERENCES
[1] R. P. Bonasso, D. Kortenkamp, D. P. Miller, and

M. Slack. Experiences with an architecture for
intelligent, reactive agents. In Proceedings of the 1995

IJCAI Workshop on Agent Theories, Architectures,

and Languages, August 1995.
http://tommy.jsc.nasa.gov/er/er6/mrl/projects/arch.

[2] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans
and resource-bounded practical reasoning.
Computacional Intelligence, 4:349{355, 1988.
http://bert.cs.pitt.edu/pollack/distrib/guide.html.

[3] R. A. Brooks. A robust layered control system for a
mobile robot. Technical Report A. I. Memo 864,
Arti�cial Intelligence Laboratory, Massachusetts

Institute of Technology, September 1985.
http://www.ai.mit.edu/people/brooks/papers.html.

[4] L. Brownston. BBK Manual. Knowledge Systems
Laboratory, Stanford University, September 1995.
Report No. KSL 95-70.

[5] I. A. Ferguson. TouringMachines: An Architecture for

Dynamic, Rational, Mobile Agents. PhD thesis,
University of Cambridge, October 1992.

[6] E. B. Gamble Jr. and R. Simmons. The impact of

autonomy technology on spacecraft software
architecture: A case study. IEEE Intelligent Systems,
September/October 1998.

[7] A. Garvey and V. Lesser. A survey of research in
deliberative real-time arti�cial intelligence. Real-Time

Systems, 6(3):317{347, May 1994.

[8] A. J. Garvey and V. R. Lesser. Design-to-time
real-time scheduling. IEEE Transactions on Systems,

Man, and Cybernetics, 23(6), November/December

1993.

[9] A. Haddadi and K. Sundermeyer.
Belief-desire-intention agent architectures. In G. M. P.
O'Hare and N. R. Jennings, editors, Foundations of
Distributed Arti�cial Intelligence. John Wiley & Sons,
1996.

[10] B. Hayes-Roth. A blackboard architecture for control.

In A. H. Bond and L. Gasser, editors, Readings in
Distributed Arti�cial Intelligence, pages 505{540.
Morgan Kaufmann Publishers, 1988.

[11] B. Hayes-Roth. Architectural foundations for real-time
performance in intelligent agents. Real-Time Systems,
2(1/2):99{125, May 1990.

[12] B. Hayes-Roth. An architecture for adaptative
intelligent systems. Arti�cial Intelligence, 72(1-2),
January 1995.

[13] F. F. Ingrand, M. P. George�, and A. S. Rao. An

architecture for real-time reasoning and system
control. IEEE Expert, December 1992.

[14] V. R. Lesser, J. Pavlin, and E. Durfee. Approximate
processing in real-time problem solving. AI Magazine,
9(1):49{61, Spring 1988.

[15] O. Michel. Khepera Simulator Package version 2.0.
University of Nice Sophie-Antipolis, March 1996.
Freeware mobile robot simulator downloadable from

http://diwww.ep
.ch/lami/team/michel/khep-sim/.

[16] J. P. M�uller. The Design of Intelligent Agents, A

Layered Approach, volume 1177 of Lecture Notes in

Arti�cial Intelligence. Springer-Verlag, Berlin, 1996.

[17] B. Pell, D. E. Bernard, S. A. Chien, E. Gat,
N. Muscettola, P. P. Nayak, M. D. Wagner, and B. C.
Williams. An autonomous spacecraft agent prototype.
In W. L. Johnson, editor, Proceedings of the First

International Conference on Autonomous Agents,

Marina del Rey, CA USA, February 1997. ACM Press.

[18] M. E. Pollack, D. Joslin, N. Arthur, S. Ur, and
E. Ephrati. Experimental investigation of an agent
commitment strategy. Technical Report 94-31,
Department of
Computer Science, University of Pittsburgh, June 1994.
http://bert.cs.pitt.edu/~pollack/distrib/tileworld.html.

[19] I. Soto, M. Ramos, and �A. Vi~na. A control mechanism
to o�er real-time performance in an intelligent system.
In E. Alpaydin, editor, Proceedings of the

International ICSC Symposium on Engineering of

Intelligent Systems (EIS'98). ICSC, February 1998.

[20] D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P.
Wesley. Planning and reacting in uncertain and
dynamic environments. Journal of Experimental and

Theoretical AI, 7(1), 1995.
http://www.ai.sri.com/~cypress.

[21] S. Zilberstein. Resource-bounded sensing and planning
in autonomous systems. Autonomous Robots, 3:31{48,

1996. http://anytime.cs.umass.edu/.

[22] S. Zilberstein. Using anytime algorithms in intelligent
systems. AI Magazine, 17(3):73{83, 1996.
http://anytime.cs.umass.edu/.


