
Building an IP-based Community Wireless Mesh
Network: Assessment of PACMAN as an IP Address

Autoconfiguration Protocol

Carlos J. Bernardosa,∗ Maria Calderona Ignacio Sotoa

Ana Beatriz Solanaa Kilian Weniger

aDepartamento de Ingenierı́a Teleḿatica
Universidad Carlos III de Madrid

Abstract

Wireless Mesh Networks are experiencing rapid progress andinspiring numerous appli-
cations in different scenarios, due to features such as autoconfiguration, self-healing, con-
nectivity coverage extension and support for dynamic topologies. These particular charac-
teristics make Wireless Mesh Networks an appropriate architectural basis for the design
of easy-to-deploy community or neighbourhood networks. One of the main challenges in
building a community network using mesh networks is the minimisation of user interven-
tion in the IP address configuration of the network nodes. In this paper we first consider the
process of building an IP-based mesh network using typical residential routers, exploring
the options for the configuration of their wireless interfaces. Then we focus on IP address
autoconfiguration, identifying the specific requirements for community mesh networks and
analysing the applicability of existing solutions. As a result of that analysis, we select PAC-
MAN, an efficient distributed address autoconfiguration mechanism originally designed for
ad-hoc networks, and we perform an experimental study – using off-the-shelf routers and
assuming worst-case scenarios – analysing its behaviour asan IP address autoconfiguration
mechanism for community Wireless Mesh Networks. The results of the conducted assess-
ment show that PACMAN meets all the identified requirements of the community scenario.

Key words: Community networks, Wireless Mesh Networks, Experimentalevaluation,
PACMAN

Preprint submitted to Computer Networks July 31, 2009

1 Introduction

Wireless Mesh Networks (WMNs) have emerged as a key technology for next-
generation wireless networking [1], [2]. WMNs can have two types of nodes: mesh
routers and mesh clients. Mesh routers – which present minimal or no mobility –
constitute the backbone of the WMN, and some of them may have gateway func-
tionality to connect the WMN with external networks (e.g., the Internet). Both mesh
routers and mesh clients can forward packets on behalf of other nodes.

WMNs are dynamically self-organised and self-configured, with the nodes in the
network automatically establishing a multi-hop ad-hoc network and maintaining
the mesh connectivity. Autoconfiguration is an important feature from a deploy-
ment perspective, avoiding the need for manual intervention. Another interesting
feature is its capability for self-healing, that is, the WMNis able to autonomously
react to address a harmful, unexpected situation without the need for user inter-
vention. Self-configuration and self-healing are two key features required to build
WMNs that are both easy-to-deploy and robust.

There exist diverse application scenarios for WMNs, resulting in different WMN
architectures. A WMN can consist of only mesh clients – commonly referred to
as a Client WMN – only mesh routers – a Backbone WMN – or a combination of
mesh routers and mesh clients – a Hybrid WMN [2]. One of the most promising
application scenarios ofBackbone WMNstoday is what is known ascommunity
networks, where several users in a building or in a neighbourhood set up a WMN
to communicate among themselves and share a number of accesslinks (typically
DSL or cable) to the Internet.

The community scenario demands a set of features that are naturally provided by a
Wireless Mesh Network, namely:

• Self-configuring and self-healing capabilities.A community network should be
able to bootstrap with little or no user intervention and to recover from certain
failures.

• Decentralised and unmanaged nature.A community network should not rely

∗ Corresponding author.
Email addresses:cjbc@it.uc3m.es (Carlos J. Bernardos),maria@it.uc3m.es

(Maria Calderon),isoto@it.uc3m.es (Ignacio Soto),
anabeatriz.solana@alumnos.uc3m.es (Ana Beatriz Solana),
kilian.weniger@googlemail.com (Kilian Weniger).
1 The research of UC3M authors leading to these results has received funding from the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment no 214994 (CARMEN project).
2 The work of UC3M authors was also partially supported by the Spanish Government
under the POSEIDON (TSI2006-12507-C03-01) project.

2

on any centralised entity that might potentially become a single point of failure.
Since the devices that form the mesh network belong to different users, assuming
a common management authority is not feasible.

• Radio coverage extension ability.The use of a multi-hop wireless network fa-
cilitates connectivity at locations where there is no Internet access infrastructure
available.

A community Wireless Mesh Network consists of a set of fixed mesh routers pro-
viding connectivity to clients, and therefore it can be considered a Backbone WMN.
This type of WMN is probably the most efficient and easy-to-deploy WMN, since
it is not affected by routers’ mobility and energy consumption constraints, because
mesh routers are expected to be connected to a reliable powersource at a fixed
location.

In this paper, we first study how wireless interfaces of mesh routers can be config-
ured in order to create community WMNs, highlighting the advantages and disad-
vantages of each possible configuration scheme. Then we select the best one from
a deployment point of view, taking into consideration existing technologies and
currently available devices on the market. The resulting architecture is used as the
basis for our study of the IP autoconfiguration mechanisms incommunity WMNs.

Then, we identify and analyse the requirements that an IP address autoconfigura-
tion solution aimed at a community WMN should meet. The results of this study
are used in a subsequent analysis of the applicability of existing solutions [3], [4]
– proposed within the area of Mobile Ad-hoc Networks (MANETs) – to the com-
munity scenario. One of these proposals is PACMAN (Passive Autoconfiguration
for Mobile Ad-hoc Networks) [5]. PACMAN has all the featuresrequired for an
efficient address autoconfiguration in the community WMN scenario. In particular,
PACMAN is distributed, adapts to dynamic topologies, introduces very low proto-
col overhead, provides self-healing capabilities, and works in IPv4 networks3 .

Since PACMAN meets all the identified requirements for a solution aimed at work-
ing in a community WMN, we have performed an experimental analysis of a real-
life implementation of PACMAN. Although a lot of effort has been devoted to
propose solutions for the IP address autoconfiguration issue, little experimentation
has been done with these protocols. Consequently, there is aneed for analysis of
the behaviour of these kinds of mechanisms in real test-bedsin order to get a bet-
ter insight into their behaviour. The main goal of this experimental evaluation is to
analyse how areal autoconfiguration solution performs under different conditions
in the community WMN scenario. All the experiments have beenperformed us-
ing off-the-shelf residential routers4 which accurately represent real deployment
environments.

3 In this paper we focus on community networks that should be easily deployed nowadays.
Therefore, we only consider IPv4 address autoconfigurationmechanisms.
4 Linksys WRT54GSv4.

3

The rest of the article is organised as follows. In Section 2 we provide background
information regarding community Wireless Mesh Networks, and analyse two key
aspects that must be considered in their deployment: how to properly configure the
wireless interfaces of the mesh routers and legacy clients to create a community
WMN, and how to manage the IP address space used within the network. Sec-
tion 3 tackles the IP address autoconfiguration, by first introducing a set of key
features that should be provided, and then analysing whether existing proposed so-
lutions meet the identified requirements or not. Section 3 also describes in detail
the PACMAN protocol. Next, Section 4 is devoted to an experimental evaluation
of PACMAN using off-the-shelf routers. Finally, we summarise the conclusions of
our work in Section 5.

2 Wireless Mesh solutions for Community scenarios

It is not clear when the concept of community Wireless Mesh Networking appeared
for the first time, since WMNs are closely related to Mobile Ad-Hoc Networks
(MANETs). It is however clear that the area of mesh networking is now receiving
quite a lot of attention, not only from the research community (e.g., Microsoft Self-
Organizing Neighborhood Wireless Mesh Networks5 , Champaign-Urbana Com-
munity Wireless Network6 , roofnet7), but also from users and companies that are
already building the first community mesh networks (e.g., Meraki 8 , Open-Mesh9).
In order to deploy usable community WMNs, there are many challenges that need
to be tackled, such as routing, self-configuration and healing, radio planning, ca-
pacity handling, etc.

In this section we describe in detail the scenarios for community mesh networks
looking at the configuration in layer 2 and how to manage the addressing at layer 3.
The resulting architecture is the basis of the study of IP autoconfiguration require-
ments and solutions carried out in this article.

We assume a community scenario like the one depicted in Figure 1. The current
model to provide Internet access from homes consists of individual users having
their own access router that is equipped with an Internet interface (through xDSL,
cable, etc.) and an interface to connect with user devices (e.g., laptops). This latter
one is typically a wireless IEEE 802.11.

A WMN solution allows increasing the flexibility and functionality of the previous
scenario. With a WMN, the mesh routers can connect among themselves, improv-

5 https://research.microsoft.com/mesh/
6 http://www.cuwireless.net/
7 http://pdos.csail.mit.edu/roofnet/doku.php
8 http://meraki.com/oursolution/mesh/
9 http://open-mesh.com/

4

ing the communication inside the community, and enabling the sharing of Internet
access links among its users. In fact, with this solution we do not need an access
link (xDSL, cable, ...) per router/home, since available links in different homes can
be shared by all community users.

2.1 Layer-2 architectures to create community WMNs

One important design consideration in community WMNs is theconfiguration of
the involved layer-2 technologies, since this aspect has animpact on the type of
devices (hardware) required to set up the WMN, the efficiencyin the use of radio
resources and the resulting layer-2 topologies. A deployment requirement is that
the hardware complexity for the WMN scenario should not increase significantly
in comparison with the current home Internet access scenario. So, we assume that
only IEEE 802.11 technology will be used for communicationsinside the WMN. In
addition, all or part of the mesh routers will be connected tothe Internet using some
technology such as xDSL or cable. Depending on the number andconfiguration
mode of the IEEE 802.11 wireless interfaces we have identified the following four
main backbone mesh deployment options:

(1) Mesh routers equipped with only one wireless interface,operating in ad-hoc
mode. Wireless interfaces of both mesh routers and conventional end devices
are configured to operate in ad-hoc mode. We should note that even with this
approach, we do not want end-user devices to take part in the mesh routing
operations, and therefore an additional mechanism is required at layer-3 to al-
low end-user devices to identify and configure a mesh router as their Internet
gateway. The main advantage of this approach is the reduced cost of the mesh
routers, since they only are required to have one wireless interface. In fact,
this allows the use of currently available access routers for residential appli-
cations. On the other hand, the drawback is that the radio resources are used
inefficiently, because only one of the available radio channels can be used in
the WMN.

(2) Mesh routers equipped with two wireless interfaces, oneoperating in ad-hoc
mode and the other in infrastructure mode. In this case, meshrouters config-
ure one wireless interface in infrastructure mode, as an Access Point10 (AP)
serving conventional clients that might attach to it, whilethe other wireless in-
terface is configured in ad-hoc mode to be part of the community WMN. This
approach does not restrict the possible mesh topologies, but as in the previous
case, it comes at the price of suboptimal use of the availableradio channels.

(3) Mesh routers equipped with two wireless interfaces, both operating – prefer-
ably in two different non-overlapping channels – in infrastructure mode. As

10 Another analogous configuration – easier to achieve from thepoint of view of today’s
available devices in the market – is to use a router with one wireless interface, and one
wired interface, to which a simple Access Point (in bridged mode) is connected.

5

before, one interface is configured in AP mode to provide connectivity to other
devices – both conventional clients and mesh routers – whilethe other is con-
figured in station (STA) mode, to connect to other mesh routers. This approach
provides better use of available radio channels, while limiting the flexibility
of the community network (i.e. the number of potential network topologies is
restricted by the fact that a wireless interface configured in STA mode cannot
be simultaneously connected to more than one AP). It is also worthwhile men-
tioning that a WMN configured in this way would likely requiresome layer-2
autoconfiguration mechanisms to setup optimal – or at least efficient – mesh
network topologies.

(4) Mesh routers equipped with more than two wireless interfaces, one configured
in infrastructure mode and the others in ad-hoc mode. The interface working
in infrastructure mode is configured as an AP to provide connectivity to con-
ventional user devices. The rest of the wireless interfacesworking in ad-hoc
mode are used for connections to other mesh routers. Having more than one
ad-hoc interface allows the creation of links in different channels achieving
a more efficient use of the radio spectrum, while still being able to connect
any pair of mesh routers by configuring them with a common channel in one
of their interfaces. The advantage of this solution compared with the previous
one is a better flexibility in the creation of mesh topologies. The disadvantage
is an increase in hardware requirements. This solution and the previous one
share the disadvantage of requiring a complex configurationfor setting up the
layer-2 topology.

Those previous configurations that involve the use of more than one wireless inter-
face can be achieved using a recent solution offered by some commercial products
allowing the creation of more than one virtual interface from just one network card.
For example, this can be used to have one STA and one AP using the same wire-
less physical interface. These solutions represent a trade-off between efficiency and
cost, and do not change the conclusions of the analysis in this section.

In this article we have selected the second deployment option, since it provides
a reasonable trade-off between network topology flexibility and use of radio re-
sources, while keeping layer-2 configuration complexity low – which is an im-
portant concern in this scenario–. It is easy to build community networks of this
type today using for example Linksys WRT54GSv4 devices and additional Access
Points (if it is required to provide wireless access to conventional clients). No par-
ticular layer-2 configuration mechanism is needed to set up amesh topology, since
the routers will be able to communicate with any other mesh routers within their
radio coverage using the ad-hoc interface.

6

2.2 IP address space management

Once a layer-2 mesh topology is available, we have to consider the management of
the IP address space in the mesh. We basically need IP addresses for:

(1) the user devices, that connect to a mesh router to obtain network access.
(2) the interfaces used by the mesh routers to communicate among them. Mesh

routers – forming the backbone WMN – use these addresses and run a routing
protocol – probably an ad-hoc routing protocol – to enable the communication
among them.

(3) the communications with devices outside the mesh (i.e. on the Internet). These
pose the need for globally reachable addresses.

Globally reachable addresses will be provided by the Internet Service Providers,
one per each access link to Internet. But we cannot expect to have global addresses
for covering the other needs of the scenario. A solution to solve this issue is to use
the IPv4 private address space.

One possible approach is the utilisation of the same IPv4 address space both for the
user devices and for the mesh routers interfaces (points 1 and 2 above). However,
this presents the disadvantage of making the user devices’ addresses configuration
dependent on a community-wide address space management. Such a management
would require coordination at the community network level for the configuration
of the IPv4 address of a user device.

A better approach is to separate the end-user devices private address space from
the mesh routers address space (see Figure 2), that is, use two different address
spaces. The IP addresses of the end-user devices can be configured locally with the
support of each mesh router, by running a DHCP server. This isa straightforward
solution because it is the currently deployed approach for single-hop scenarios (i.e.
a gateway providing IP connectivity to directly attached clients). Besides, it has
the important additional advantage of not requiring any changes in the end-user de-
vices. Every mesh router must run a Network Address Translator (NAT) to translate
from the private addresses used by the conventional IP devices attached to it, to the
private addresses used in the WMN. In order to configure the IPaddresses used
in the backbone, an IP address autoconfiguration mechanism is required, to ensure
that there are no duplicated addresses in the backbone mesh.Consequently, both
address spaces are managed independently and the IP addresses of the end hosts do
not affect the address autoconfiguration of the mesh routersin the WMN.

Finally, a mesh router with an access link (e.g., DSL or cable) to an external net-
work (i.e. an Internet Gateway – IGW), will have a NAT functionality performing
the following translations (see Figure 2):

(1) from the end-user devices IP private addresses to the backbone WMN private

7

IP address. This type of translation is performed by all meshrouters, including
those that do not have a direct connection to the Internet.

(2) from the WMN IP private addresses to the public IP addressconfigured in the
mesh router (assigned by its Internet Service Provider – ISP), and

(3) from the end-user devices (conventional IP terminals) IP private addresses to
the mesh router public IP address (assigned by its ISP).

Translation 3 is the one performed by most residential gateways nowadays, whereas
the first two are specific to the community WMN scenario. Translation 1 takes
place when traffic from a device attached to the mesh router isrouted towards its
destination through the WMN (i.e. either the IGW functionality for this traffic is
performed by another mesh router within the community network, or the traffic is
intended for a node locally attached to the same community network). Translation
2 is performed when the mesh router is acting as an IGW for IP traffic from another
node within the community mesh network.

In this scenario, the remaining configuration challenge is to provide mesh routers
with the IPv4 addresses required to communicate among themselves, ensuring the
uniqueness of the configured private addresses. This must bedone through an au-
tomatic procedure requiring little (if any) user intervention.

3 IP address autoconfiguration for community WMNs

This section focuses on the problem of IP address autoconfiguration for community
WMNs, using as a reference the community mesh scenario defined in the previous
section, both in terms of layer 2 configuration and IP addressmanagement. We
identify the requirements for an IP address autoconfiguration mechanism, review
existing proposals, and select a candidate solution meeting all the requirements of
our scenario.

3.1 IP address autoconfiguration required features

We have identified the following key features that should be taken into consider-
ation when designing/evaluating an IP address autoconfiguration mechanism for
community WMNs:

(1) Support for dynamic topology. In general, community WMNs have a dy-
namic topology, since the routers can be connected or disconnected unexpect-
edly (i.e. the owner/administrator switches nodes off/on), or new nodes are
added/removed.

(2) Self-healing.A community WMN should be able to autonomously react and

8

solve harmful, unexpected problems without the need for user intervention.
This is a key feature in order to build robust WMNs. In the particular case of
IP address autoconfiguration schemes, the network should beable to detect
and solve duplicated addresses (i.e. two nodes using the same IP address).
These conflicts could appear due to two main reasons:
(a) Network merging. Even with an IP address autoconfiguration mechanism

to ensure that each mesh router initially autoconfigures a different IP ad-
dress, this uniqueness needs to be continuously checked during the WMN
lifetime, since it might happen that two isolated networks join to form a
single one (this situation is commonly referred in ad-hoc literature as net-
work merging). To illustrate an example of WMN merging, we might
think of a community network formed by equipment belonging to several
neighbours of a 10-stories building. In this scenario, depending on the
availability of the neighbours’ routers, it is possible that several isolated
WMNs networks are formed (e.g., a WMN cloud formed by routerson
1st to 5th floor and another one formed by routers on 7th to 10thfloor).
These isolated networks may merge if a router on the 6th floor is switched
on, and it could happen that the two initially isolated networks had some
common IP addresses configured, resulting in an address conflict after the
merging.

(b) User misconfiguration. Address conflicts might also appear as a conse-
quence of manual configuration mistakes. In an environment so open and
unmanaged as a community network scenario, it is not unlikely that a user
decides to manually configure its own router. The user may choose an IP
address that is already in use in the WMN, and therefore the autoconfig-
uration mechanism used by the WMN routers should detect the address
duplication and fix it (by changing the address of the WMN router that is
running the autoconfiguration protocol).

(3) Scalability. The scalability with respect to configuration time (and alsopro-
tocol overhead) when the number of nodes increases is an important concern.
Community WMNs topologies range – in terms of dimension and number of
nodes – from small to large (i.e. from several tens to hundreds of nodes).

(4) Low overhead.An IP address autoconfiguration solution may use some con-
trol signalling (e.g., message flooding). Given the wireless nature of com-
munity WMNs, this protocol overhead may have a significant impact on the
performance. Thus, low protocol overhead is considered a key feature of the
IP address autoconfiguration protocol. Processing overhead should be kept
reasonably low, since protocol operations are implementedin mesh routers
that should be low-cost devices, although not necessarily extremely limited
devices.

9

3.2 Applicability of existing solutions

In this section, we describe and briefly analyse some existing IP address autocon-
figuration proposals that could be applied to the community WMN scenario.

Since WMNs and MANETs share several key characteristics, some of the solutions
proposed for IP address autoconfiguration in the field of MANETs may be also ap-
plicable to community WMNs. There is a plethora of existing proposals of MANET
IP address autoconfiguration solutions [4], but not all of them are suitable for com-
munity scenarios. For example, a significant number of the proposed solutions so
far only support IPv6, which is unacceptable for community WMNs nowadays.
Even the IETF AUTOCONF Working Group, chartered in 2005 to tackle the prob-
lem of IP address autoconfiguration for MANETs, is only aiming at standardising
IPv6 mechanisms.

We next review existing IPv4 address autoconfiguration solutions, analysing the
capabilities they provide and their basic operation. Thereare solutions (such as [6],
[7], [8]) that require a node to perform a particular procedure – calledpre-service
Non-Unique Address Detection [9] – before configuring a new IP address on one
interface, to ensure that a candidate address (that is typically chosen randomly from
a known pool) is not being used by other nodes within the same network. Most com-
monly, pre-service Non-Unique Address Detection mechanisms consist in sending
some messages asking if the candidate address is in use or not, and waiting for
a potential reply (if such a reply is not received, that is interpreted by the send-
ing node as a hint that the candidate address is not being usedby any node of the
network and therefore the candidate IP address can be assigned to one of its inter-
faces). This kind of solution presents several disadvantages, specially when applied
to community WMNs, since it requires additional signalling(that might be signifi-
cant depending on the scenario) and it makes use of timeouts while message delays
cannot be bounded in an ad-hoc network (even if it is possible, determining the
delays is non-trivial).

On the other hand, there are some solutions (such as [10], [11], [12]) that ensure (to
a certain extent) that addresses are unique when they are assigned to an interface.
This can be done by using other means, such as statistical properties or use of
disjoint address pools, etc.11 .

Ensuring that IP addresses are unique at the moment of their assignment is not
enough for all WMN scenarios, and in particular it is not for community WMNs.
As we have already mentioned, an IP address conflict might appear, for example,
as a result of a network merging or a user misconfiguration. Because of that, mech-
anisms that detect and solve duplicated IP addresses not only initially, but in a con-

11 Meraki for example uses the following addressing scheme: nodes configure IP addresses
that are the static hash of the MAC address onto the entire 10.0.0.0/8 private network.

10

tinuous way, are also needed. These mechanisms are commonlyreferred to asin-
serviceNon-Unique Address Detection. There are basically two mainways of per-
forming in-service Non-Unique address detection: actively – for example by means
of periodic messaging [8] – or passively, by means of detecting address conflicts
from routing protocol anomalies. Solutions intended for community WMNs can
benefit from the use of passive in-service Non-Unique Address Detection mecha-
nisms in order to save wireless bandwidth.

Another important characteristic is the centralisation degree of the solutions. Some
solutions may assume the existence of a centralised infrastructure/entity or assign
a special role to certain nodes [11], while others can be completely distributed, not
relying on any special node/infrastructure to carry out theautoconfiguration task.
Since a community WMN is clearly an decentralised and unmanaged environment,
it seems more appropriate to make use of a distributed solution.

In conclusion, an IP address autoconfiguration solution intended to be deployed in
a community WMN should have the following features:

• IPv4 support:since community networks are meant to be easily deployed nowa-
days, an IP autoconfiguration solution must be able to provide IPv4 addresses.

• In-service Non-Unique Address Detection:community networks must be able
to self-heal from any potential address conflict that might appear, for example
because of network merging or user misconfiguration. Therefore, solutions only
performing pre-service Non-Unique Address Detection are not suitable for the
community scenario.

• Passive nature:due to the scarce wireless bandwidth that is likely to be available
in community WMNs, it is better to minimise bandwidth waste due to the use of
active signalling to detect IP address conflicts.

• Distributed nature:since community networks are clearly decentralised and un-
managed, an IP address autoconfiguration solution must not rely nor assume the
existence of any kind of centralised infrastructure.

As it is described in Section 3.3, PACMAN fulfils all these four requirements, mak-
ing it an appropriate candidate protocol for community scenarios.

3.3 Passive Autoconfiguration for Mobile Ad-hoc Networks (PACMAN)

PACMAN [5] is a fully distributed address autoconfigurationmechanism for ad-
hoc networks that aims to guarantee unique IP12 addresses in the network even
in the presence of network merging. It uses cross-layer information from ongoing
routing protocol traffic. The basic idea is that a router joining the mesh network
assigns an address to itself by randomly picking one from theset of yet unassigned

12 Although we focus on IPv4, PACMAN works both for IPv4 and IPv6.

11

addresses according to the router’s local knowledge, and relying on the Passive
Duplicate Address Detection (PDAD) concept to detect conflicts originating from
this optimistic address assignment or from network merging. The mesh router may
learn about already assigned addresses by monitoring the routing protocol traffic or
by requesting a list of addresses that are known to be assigned in the network from
a neighbour router.

The components of PACMAN are the following. A routing protocol packet parser
that extracts information from incoming routing protocol packets and hands them
to other PACMAN components for further processing. Since PACMAN is routing
protocol dependent, the protocol parser is itself modular to support different routing
protocols.

An address assignment component that selects an IP address using a probabilistic
algorithm. It also maintains an allocation table containing addresses that are already
assigned to other mesh routers. The assignment component considers the allocation
table to minimise the conflict probability. The table is passively updated based on
incoming routing protocol packets.

A Passive Duplicate Address Detection (PDAD) component that detects potential
address conflicts, e.g., occurring after two networks merged. A difficulty for the
passive detection of address conflicts based on routing protocol packets is that a
mesh router typically also receives routing protocol packets that contain the router’s
own address, e.g., packets that were forwarded by other meshrouters and originated
by the receiver. Hence, if a router receives a routing protocol packet containing its
own address, it is difficult to figure out whether this addressis unique and used by
the receiving router only or whether it is duplicate and use by another router in the
mesh network as well.

PDAD is a core functionality of PACMAN and defines a set of rather simple algo-
rithms that allows mesh routers to detect address conflicts in the network based on
routing protocol anomalies. The basic idea of PDAD is to exploit the fact that some
protocol events occur in case of duplicate addresses in the network, but (almost)
never in case of unique addresses. PDAD does not send any control packets. In-
stead, each mesh router analyses incoming routing protocolpackets for anomalies
and detects a conflict, if the packet contains a duplicate address.

A specific combination of algorithms is used to detect all conflicts in the network
running a specific routing protocol. More than ten PDAD algorithms are proposed
in [13] and [5], which in combination are able to detect conflicts in MANETs run-
ning various routing protocols, in particular Optimized Link State Routing (OLSR),
Ad-hoc On-Demand Distance Vector Routing (AODV), and Fisheye State Routing
(FSR).

An example of a PDAD algorithm is the PDAD-Neighbourhood History (NH). The
basic idea of this algorithm is to exploit the bidirectionality property of link-states

12

in link-state routing protocols like OLSR. If a mesh router receives a routing pro-
tocol packet with its own address as part of the set of bidirectional link-states of
the originator, the originator must have been a neighbour ofthis router recently.
Otherwise, another mesh router has the same address and the address is duplicated
in the network. This algorithm requires that all routers have to record their recent
neighbourhood history in an NH table.

Another example of a PDAD algorithm is the PDAD-sequence number (SN) al-
gorithm, which uses sequence numbers in the routing protocol packets to detect
duplicate addresses in the network. In most routing protocols, each mesh router
originating routing protocol packets uses a sequence number only once (except for
sequence number wrap-arounds) and each node increments itsown and only its own
internal sequence number counter. Under these assumptions, if a router receives a
routing protocol packet originating from its own address and with a sequence num-
ber higher than its internal sequence number counter, the originator must be another
router in the mesh network which has the same address as the receiver.

In case a mesh router detects a conflict of another router’s address, the conflict res-
olution component notifies the respective router, which canthen change its address
to resolve the conflict.

PACMAN meets all the requirements in the community WMN scenario: it pro-
vides an efficient distributed IPv4 address autoconfiguration mechanism, able to
cope with the sources of dynamism in this environment (addition/deletion of nodes,
network merging), scalable with the number of routers, thatprovides self-healing
capabilities against misconfiguration by users or network merging, and that has
both very low protocol and reasonable low processing overhead.

There are other proposed IP address autoconfiguration mechanisms that follow a
passive approach, such as [14] and [15]. Since these solutions are based on the same
passive approach, it is expected that they could also be applicable to the community
scenario. In this paper, we have chosen PACMAN as the solution to be evaluated
because it was a pioneer solution among passive approaches,and because there was
an open source implementation available. This software could be modified to be run
in our community WMN test-bed setup – using off-the-shelf routers, and then used
in our experimental evaluation.

4 Experimental evaluation

In this section we present the results of an experimental evaluation of PACMAN as
IP address autoconfiguration mechanism for community networks – running OLSR
as routing protocol within the community mesh network –, andusing low cost off-
the-shelf devices.

13

4.1 Experimental setup

The PACMAN version used in this experimental evaluation is an open source im-
plementation for Linux13 . It implements PDAD for OLSR and parser modules for
multiple OLSR routing protocol implementations. This allows the use of PACMAN
with an unmodified UniK OLSR14 routing daemon. The PDAD module intercepts
received routing protocol packets using the Linux netfilterhooks.

To perform our experiments we built a test-bed composed of 30Linksys WRT54GSv4
routers. This small residential router is equipped with a 200 Mhz processor, an
IEEE 802.11g WLAN interface and an IEEE 802.3 Ethernet interface connected
to a VLAN capable 5-port switch. This is a very popular low-cost router, which
provides a suitable platform for creating and testing community WMNs, since its
firmware is released under the GNU GPL and so it can be easily modified15 .

In the experiments, we made use of one of the wired interfacesof the router to per-
form management operations, such as local time synchronisation of all the routers,
remote execution of tests and results retrieval for off-line processing. This avoids
the impact of these operations on the network interfaces being autoconfigured by
PACMAN during the experiments.

4.2 Experimental results

4.2.1 Single-hop

We first analyse the time required by a community WMN to be globally configured
when it is initially bootstrapped (this is the most stressful case that can be con-
sidered in a real-life scenario, since all the involved nodes are activated and try to
configure their IP addresses at the same time). The convergence time of the network
after bootstrapping is the time required by the last node in the network to configure
a unique IP address.

In this first set of experiments, we used the scenario shown inFigure 3, which
involves a variable number of nodes (from 2 to 30), while keeping the number of
IP addresses that are available for use fixed (the 192.168.0.0/27 pool16). In all the

13 It can be obtained fromhttp://pacman-autoconf.sourceforget.net/.
Our work was performed withpacman v1.32.
14 http://www.olsr.org/. Our work was performed witholsrd v0.4.9-1, config-
ured as proposed in the OLSR specification [16].
15 For these tests, we used the open sourceOpenWRTWhiteRussian RC 3 distribution
(available athttp://www.openwrt.org/).
16 With this address pool size, the number of valid IP addressesis equal to the maximum
number of devices that we might have on the network: 30. This is obviously the worst-case

14

experiments described in this article, a minimum of 30 executions were performed
for each test, in order to obtain statistically meaningful results.

Convergence time results are illustrated in Figure 4. We observe that the number of
nodes has an impact on the results, showing an increase in convergence time as the
number of nodes gets larger. This is an expected result, mainly because the proba-
bility of two or more nodes randomly choosing the same IP address increases with
the number of nodes, since in our test-bed the number of available IP addresses is
fixed. The worst-case situation is that of 30 nodes, with no free IP address avail-
able after the convergence of the network, but even in that case, the convergence
time is about 12 seconds (this is the time required by the lastnode in the network
to configure a unique IP address). In addition to this, the average time required by
a node to configure a unique IP address was also measured (thisis basically the
elapsed time that a node waits until it obtains IP connectivity), being about 300
milliseconds when the network consists of 2 nodes and 2.5 seconds for the case of
30 nodes (see Figure 5).

A mesh router running PACMAN may try different addresses before getting a non-
duplicated one that can be used to gain IP connectivity. Figure 6 shows the average
number of IP addresses that a node tries before getting a unique one. We observe
that – on average – a node needs less than two attempts to get a valid IP address.
We also measured the average maximum number of configurations attempts of the
IP address that a node does (see Figure 7), and we observe thatthis number is close
to 6 for the worst-case scenario (30 nodes with only 30 IP addresses available for
the whole community network).

Related to the previous two metrics, there is a third performance metric that might
have an impact on the overall scalability of a WMN, namely thefraction of nodes
that require to be reconfigured before a steady state is reached. This metric reflects
how stable the autoconfiguration mechanism is (see Figure 8). As expected, the
probability of a node to reconfigure its IP address is relatedto the address collision
probability, which depends on the number of nodes and the available address pool
size.

It is important to highlight that all these tests have been conducted considering a
bootstrapping scenario in which all the participant nodes boot at the same time.
This is obviously a worst-case scenario, that reflects how the solution performs and
scales under extreme conditions. During the steady operation of an already config-
ured community WMN, the most common situation involving anychange on the IP
autoconfiguration, will consist of WMN routers joining and leaving (e.g., because a
mesh router is switched on/off by its owner). Thus, the previously analysed results
are worse than those that would be obtained when nodes just occasionally join and
leave the network.

possible scenario.

15

4.2.2 Multiple-hop

Besides analysing how PACMAN performs when the number of nodes (and the rel-
ative ratio of nodes divided by available IP addresses) increases, it is also important
to evaluate how it behaves as the size of the network – in termsof its diameter (i.e.
number of hops) – is augmented.

The deployment of an experimental real-life test-bed to perform such an evalua-
tion would require a very large physical area, in order to ensure that multiple-hops
are used to communicate several mesh routers. Because of that, we adopted the
following approach:

(1) A two-hop wireless set-up. This scenario basically involves two end mesh
routers, initially configured with the same IP address (192.168.0.1). They can-
not reach each other directly, but through a third router within their radio cov-
erage. Using this 3-node WMN (see Figure 9), we measured the time required
to solve the initial IP address conflict after bootstrappingthe network (this
time includes the time OLSR needs to bootstrap the network).Again, we are
analysing a worst-case scenario, to actually evaluate the usability of PAC-
MAN under stressing conditions. The results show that the time required by
PACMAN to detect and solve an IP address conflict in this scenario is about
4.5 seconds. The same experiment using a single-hop set-up (that is, the two
nodes are directly reachable without traversing any intermediate node) results
in a conflict resolution time close to 2.6 seconds.

(2) Due to the large area that would be required to perform experiments involving
several real wireless hops, we could not replicate the previous experiments in
a test-bed involving more than 2 hops. In order to gather somequalitative in-
sight about the behaviour of PACMAN in multi-hop environments with more
than 2 hops, we set up a test-bed like the one shown in Figure 10, where two
different 1-hop wireless mesh clouds are interconnected bymeans of a set
of wired-connected routers (these routers use IP addressesfrom a different
address space than the wireless mesh routers within each cloud). It should
be noted that this scenario differs from the one considered in this article for
community WMNs in several ways: it requires mesh routing protocols to run
on multiple interfaces (for example, this may have an impacton the OLSR
performance), wired links are used (therefore not suffering from the typical
radio issues) and PACMAN cannot be run on the intermediate hops, due to a
limitation on the software implementation used17 . Despite these differences,
conducted tests provide us with some initial results. The goal of these exper-
iments is twofold: first, by performing the tests, it is possible to check the

17 By not running PACMAN in all the nodes, some of the PDAD algorithms defined to
detect IP address conflict cannot be used, and basically onlythe conflicting nodes would
become aware of address conflicts, since intermediate hops are not running PACMAN. This
adversely impacts the measured performance.

16

correct operation of PACMAN in relatively large (in terms ofdiameter) net-
works. Second, we get some results that, given the aforementioned experiment
limitations – such as the impediment of running PACMAN on allnodes – can
be considered as worst-case scenario results. Using this set-up, we measured
the time required by two nodes initially configured with the same IP address,
to detect and fix that address conflict, when the WMN is bootstrapped. This
experiment was repeated several times, increasing the number of intermediate
hops. The results show that less than 20 seconds are requiredto detect and
solve the initial IP address conflict within WMNs with a diameter of up to 20
intermediate hops.

4.2.3 Network Merging

In this section we experimentally analyse how PACMAN performs – in terms of
recovery time – on situations of network mergers. We considered a scenario con-
sisting of two independently formed and configured WMNs which are isolated from
each another (see Figure 11). These two unconnected clouds (composed of 14 and
15 nodes) are then merged by introducing a new node that is within radio coverage
of both clouds. The same IP address pool (192.168.0.0/27) was used in all the nodes
of the scenario and we forced one node at each isolated network to have the same
IP address configured (192.168.0.1) so we ensured that an address conflict always
occurred when the two networks merged.

The correct behaviour of PACMAN was checked under this extreme scenario, com-
posed of 30 nodes after network merging, while the total amount of available ad-
dresses is also 30. Therefore, no IP address will remain available after the merging
and this forces the network nodes to change several times theIP address they are
trying to configure to avoid duplication. Results indicate that that the time required
to completely configure the network (that is, no duplicated address used by any
node) is around 100 seconds (on average, each mesh router needs 12 seconds to be
configured with a unique IP address). This long delay is caused by the fact that the
analysed scenario severely limits the number of available IP addresses. Results also
show that about 33% of the nodes changed their IP address before getting a unique
one, and that some of them had to change it more than twice before succeeding.

Based on these results, we conclude that PACMAN provides good self-healing ca-
pabilities, being able to recover from massive IP address duplications even in ex-
treme scenarios.

17

5 Conclusion and future work

The design of appropriate IP address autoconfiguration mechanisms is the first step
required to allow community WMNs to became a reality. There exist a plethora of
proposals that tackle the autoconfiguration problem from the classical point of view
of ad-hoc networking. It is important to revisit this problem from the particular
perspective of community WMNs, paying special attention tothose features that
are critical for this kind of environment.

In this article we have analysed the deployment of WMNs usingcurrent residential
routers. In this context, we have investigated the ability of PACMAN – a mech-
anism developed for IP autoconfiguration in ad-hoc networks– to satisfy the re-
quirements that an IP address autoconfiguration protocol for community WMNs
should meet. Our investigation was performed based on experiments using a real
life test-bed that have given us insight into the behaviour of PACMAN under ex-
treme conditions (e.g., during bootstrapping of the network, when the available
address space is small relative to the number of nodes in the network, etc.), using
resource-limited off-the-shelf devices. The obtained results show that PACMAN
provides self-healing capabilities, while supporting dynamic topologies and keep-
ing the protocol overhead very low (almost null, due to its passive nature). The
protocol has been shown to scale well in our experiments. Although our test-bed
did not involve a large number of devices, given that we conducted the tests under
extreme conditions in terms of available IP addresses and that PACMAN presents
a very low overhead, we are confident that the solution will also work in larger
deployments.

More extensive experiments, including a test-bed with realusers and more complex
mesh topologies, are the focus of our future research.

Acknowledgements

The authors would like to thank Pablo Serrano, Alberto Garc´ıa-Martı́nez and Jose
Felix Kukielka for their helpful comments that contributedto the improvement of
this paper.

References

[1] S. Faccin, C. Wijting, J. Kneckt, A. Damle, Mesh WLAN Networks: concept and
System Design, IEEE Wireless Communications 13 (2) (2006) 10–17.

18

[2] I. Akyildiz, X. Wang, W. Wang, Wireless mesh networks: a survey, Computer
Networks 47 (4) (2005) 445–487.

[3] Y. Sun, E. Belding-Royer, A study of dynamic addressing techniques in mobile ad hoc
networks, Wireless Communications and Mobile Computing 4 (3) (2004) 315–329.

[4] C. J. Bernardos, M. Calderon, H. Moustafa, Survey of IP address auto-configuration
mechanisms for MANETs, Internet Engineering Task Force, draft-bernardos-manet-
autoconf-survey-04.txt (work-in-progress) (November 2008).

[5] K. Weniger, PACMAN: passive autoconfiguration for mobile ad hoc networks, IEEE
Journal on Selected Areas in Communications 23 (3) (2005) 507–519.

[6] C. E. Perkins, J. Malinen, R. Wakikawa, E. M. Belding-Royer, Y. Sun, IP Address
Autoconfiguration for Ad Hoc Networks, Internet Engineering Task Force, draft-ietf-
manet-autoconf-01.txt (work-in-progress) (November 2001).

[7] N. H. Vaidya, Weak Duplicate Address Detection in MobileAd Hoc Networks, in:
MOBIHOC’02, 2002, pp. 206–216.

[8] J. Jeong, J. Park, H. Kim, D. Kim, Ad Hoc IP Address Autoconfiguration,
Internet Engineering Task Force, draft-jeong-adhoc-ip-addr-autoconf-06.txt (work-in-
progress) (January 2006).

[9] H. Moustafa, C. J. Bernardos, M. Calderon, Evaluation Considerations for IP
Autoconfiguration Mechanisms in MANETs, Internet Engineering Task Force, draft-
bernardos-autoconf-evaluation-considerations-03.txt(work-in-progress) (November
2008).

[10] H. Zhou, L. M. Ni, M. W. Mutka, Prophet Address Allocation for Large Scale
MANETs, in: Proceedings of INFOCOM 2003, 2003.

[11] A. Misra, S. Das, A. McAuley, S. Das, T. Technol, Autoconfiguration, registration,
and mobility management forpervasive computing, PersonalCommunications, IEEE
8 (4) (2001) 24–31.

[12] M. Mohsin, R. Prakash, IP address assignment in a MobileAd Hoc Network, in:
Proceedings of MILCOM 2002, Vol. 2, 2002.

[13] K. Weniger, Passive duplicate address detection in mobile ad hoc networks, in:
Proceedings of the IEEE Wireless Communications and Networking (WCNC), 2003.

[14] E. Baccelli, OLSR Passive Duplicate Address Detection, Internet Engineering Task
Force, draft-clausen-olsr-passive-dad-00.txt (work-in-progress) (July 2005).

[15] K. Mase, C. Adjih, No Overhead Autoconfiguration OLSR, Internet Engineering Task
Force, draft-mase-manet-autoconf-noaolsr-01.txt (work-in-progress) (April 2006).

[16] T. Clausen, P. Jacquet, Optimized Link State Routing Protocol (OLSR), Internet
Engineering Task Force, RFC 3626 (Experimental) (October 2003).

19

Figure 1. Community Wireless Mesh scenario

20

Figure 2. Community WMN IP addressing approach

Figure 3. Single-hop scenario

21

 0

 2

 4

 6

 8

 10

 12

 14

 0

 2

 4

 6

 8

 10

 12

 14
Network convergence time

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
)

number of nodes

 100 83 67 50 33 17

 5 25 30 10 20 15

number of nodes / number of available addresses (%)

Figure 4. Average network autoconfiguration convergence time (single-hop bootstrapping
scenario)

 33 17 50 67 83 100
number of nodes / number of available addresses (%)

 5 10 15 20 25 30 5 10 15 20 25 30
number of nodes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

 3
Average node configuration time

A
ve

ra
ge

 c
on

fig
ur

at
io

n
tim

e
(s

ec
)

Figure 5. Average node configuration time (single-hop bootstrapping scenario)

22

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 33 17 50 67 83 100
number of nodes / number of available addresses (%)

 5 10 15 20 25 30
number of nodes

Average number of configured addresses
A

ve
ra

ge
 n

um
be

r
of

 c
on

fig
ur

ed
 a

dd
re

ss
es

Figure 6. Average number of configured IP addresses (single-hop bootstrapping scenario)

 33 17 50 67 83 100
number of nodes / number of available addresses (%)

 5 10 15 20 25 30 5 10 15 20 25 30
number of nodes

 0

 1

 2

 3

 4

 5

 6

 7

 0

 1

 2

 3

 4

 5

 6

 7
Average maximum number of configurations of a node IP address

A
ve

ra
ge

 m
ax

im
um

 n
um

be
r

of
 c

on
fig

ur
at

io
ns

Figure 7. Average maximum number of configurations of the IP address of a node (sin-
gle-hop bootstrapping scenario)

23

 0

 20

 40

 60

 80

 100

 0

 20

 40

 60

 80

 100
%

 r
ec

on
fig

ur
ed

 a
dd

re
ss

es
Percentage of nodes that reconfigure their IP addresses

 17 33 50 67 83 100

 5 10 15 20 25 30

number of nodes / number of available addresses (%)

 5 10 15 20 25 30
number of nodes

Figure 8. Percentage of nodes that needed to reconfigure their IP address (single-hop boot-
strapping scenario)

Figure 9. 2 wireless hops scenario

24

Figure 10. Multiple-hop scenario

Figure 11. Merging of two networks

25

