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Abstract

Agentsfor applicationsn dynamicervironmentsrequireartificial intelligencetechniquego solve problemsto achieve

their objectives. For example,they mustdevelop plansof actionsto carry out missionsin their ervironment,in other
words,to achieze somestatein theworld. But also,theagentamustfulfill real-timerequirementshatarisebecaus¢he

characteristicef the applicationsandthe dynamismof the ervironment.In this papemnwe analyzethe useof a schedule
of activity in anagentarchitectureo controltheresourcegtime) neededy agentdo accomplisitheir objectives.

1 Intr oduction

An agentmustachiere objectivesin dynamicand com-
plex ervironments. To achieve theseobjectivesit must
carry out a seriesof tasks. We call taskto a schedulable
andexecutableprocedure.A task canbe computational,
i.e., onethattriesto find out othertaskswhich onceexe-
cutedwill eventuallylet the agentachieve its objectves.
Or ataskcanembodyactionsin therealworld and/orper
ceptionsof theervironment.

On the otherhandthe actvity of the agentis condi-
tionedby real-timerequirements:

1. Theapplicationcanhave real-timeconstraintsthe
agentmustfulfill eachobjectivebeforeits deadline.

2. The agentmust be reactize in front of eventsin
theervironment.Somewill needanimmediatere-
sponseby the agentto guaranteets own security
otherswill allow for deliberationto dealwith them
(to find out which tasksto executeassociatedvith
them).

3. The behaior of the agentmust be robust in the
senseof always doing usefulwork. If it hasnot
resourcego fulfill all its objectives,it musttry to
fulfill its mostimportantoneswhile notbeingdis-
tractedby objectivesit cannotachiere.

Requiremen® hasbeenthe mainaim for agentarchi-
tecturesthat have beenusedto build agentsthat needto
interactwith arealworld environment(for example,con-
trolling robots). Lesseffort seemgo have beenmadeto
dealwith requirementd and3 (but seesection5 in which
we compareour work with otherapproaches).

In section2 we describean agentarchitectureo ful-
fill therequirementsnentionedabove. This agentarchi-
tectureis basedon the blackboardmodel. We identify
the characteristicshatthis modeloffersthat, we believe,
areusefulfor building intelligentagentghatcombinethe
useof differentartificial intelligencetechniquesvith real-
time requirements.And then, we proposemaodifications
to thebasicmodelthatareneededo fulfill theserequire-
ments. In particular we proposethat, to be ableto deal
with resourceconstraintsof high level objectives (mis-
sions)of theagenttheagentarchitecturecanbenefitfrom
having an scheduleof the predictedactity to achiere
thoseobjecties. In section3 we describetherole of the
scheduleof tasksthatdefinegheactivity of theagentand
how canbe built underreal-timeconstraintsin section4
we presenexperimentakesultsaboutthe behaior of the
architecturaisingthe scheduleln section5 we compare
therole of the schedulen our agentarchitecturewith the
rolethatplansplay in otheragentarchitecturesandcom-
menton otherrelatedwork. And finally, in section6 we
summarizeour resultsand give directionsfor future re-
search.

2 Agent Architecture

Our researchgroup hasbeenworking in developingan
agentarchitectureo fulfill therequirementsnentionedn
theintroduction.This architecturds calledAMSIA.
AMSIA is basedon the blackboardmodel (Corkill,

1991;CarerandLesser1992;Hayes-Roth1988;Pfleger
andHayes-Roth1997). Using this model,we candivide
the knowledge of our agentsin a seriesof Knowledge
SourcegKSs). This division hasseveraladvantages:



1. Distribution: first, of course,we aredividing the
activity neededo solveaproblem.Thepartsshould
beeasietto build thanthecompletesolution.More-
over, incrementaland/or hierarchicalreasoningis
naturalin this model.

2. Software reuse eachpart solves a problemand
S0, it canbe reusedin different situationswhere
theproblemappearsnd/orin differentapplications
(Hayes-Rothet al., 1995). Application program-
mers can take the basicarchitectureand bring or
build knowledgesourcego dealwith their domain
problems.

3. Flexibility : it allowstheagentto usedifferentrea-
soningmethods. Eachknowledgesourceis inde-
pendentfrom the othersand can be built in ary
form neededby the application. The knowledge
sourcesloesnt communicatalirectly. Theonly re-
strictionis thataknowledgesourcanustbecapable
of understandindhe representatiorof the knowl-
edgein whichit isinterestecindthatwill havebeen
left in the blackboardoy otherknowledgesources.

4. Estimation of resource requirements the divi-
sion of the activity neededto solve a problemin
partsmakeseasielto estimateesourcgequirements.
Theagentcandothis estimationseparatelyor each
part,andit cancompensat¢heresourcauseof dif-
ferentparts. Also, real-timeatrtificial intelligence
techniquessuchasanytime algorithmsor approxi-
mateprocessing¢anbeintegratedsmoothlyin knowl-
edgesources.

In AMSIA, we haverefinedthetraditionalblackboard
modelwith two new properties:

1. All the actvity in the systemis explicitly sched-
uled. With thetermactiity we referbothto actions
in therealworld andto actionsinternalto theagent
(i.e. reasoningactvities including planning). This
is thebaseto controlthe useof resources.

2. We make independenin theagentthefollowing of
a line of actwity which, at the sametime, gener
atespossibilitiesof activity for thefuture,from the
decisionof whatline of activity mustbefollowed.

We believe that the secondproperty definesan im-
portantdivision neededo achieve real-timeperformance.
The line of activity of anagentrepresentits committed
resources.t definesa behaior with someprofit for the
agent. Choosingfuture lines of actionis the actof com-
mitting resourcedo achieve someprofit. The separation
of thesetwo actuities allows the agentto controlits op-
portunism.

In the pastwe have explored achieving this division
using a multiprocessomarchitecturefor our agent(Soto
etal., 1997,1998). We useda processoto follow aline

of activity andoffer new ones;andanotherto analyzethe
possibilitiesthat were createdby the agentby following

its line of actvity, and to choosethe future line of ac-
tivity of the system. We continueworking in this archi-
tecturebut, in this paper we explore anotherapproacho

the problem,namelywe studyhow AMSIA achiesesthe
mentioneddivision in time, and not with the useof two

processors.In this architecturehe own scheduleof fu-

ture actity of the agentmustinclude time to consider
and chooseamongpossibilitiesof future activity. This

is noteasybecauseherearesituationsn whichtheagent
doesnt know whenpossibilitiesfor futureactiity arego-

ing to beopenedWe studyhow to dealwith this situation
in next section.

To predict future activity the agentmust use plan-
ning techniques.ln AMSIA, reasoningaskscancreate
plansof objectives; andcontrol taskscantranslatethose
to plansof tasks(to achieve the objectives),assignthem
resourcesandintroducethemin the schedule Decisions
can be delayedsimply by using a reasoningaskto de-
cide whatto do aboutan objective in the right moment,
perhapsextendit in a seriesof sub-objecties. Changes
in the plan of objectvesare easybecausehey arein the
blackboardandcanbe accessethy any task. Changesn
the method(task) to achiese an objective are also easy
becausehe alternatve tasksarekeptassociateavith the
correspondingbjective.

Figurel showsthe conceptuamodelof AMSIA. No-
tice:

1. Controlandexecutionareindependendctivitiesac-
cordingwith propertytwo above, but both of them
getits time of executionfrom the schedulghatde-
finesthe actiity of thesystem.

2. Bothcontrolanddomainactionshave preconditions.
This is a checkto ensurethat the conditionsex-
pectedoy thetaskto beexecutedarereally sowhen
it is goingto be executed.If they arenot, thetask
is not executedand an external (seebellow) event
is generatedSotoetal. (1998)presenta morede-
taileddiscussiorof thisissue.

3 SchedulingTasksin AMSIA

3.1 Construction of the Schedule

To have a scheduleof activity allows AMSIA to control
the use of resources.The problemis how to build this
schedule.

In AMSIA, actiity istriggeredby events.Theseavents
signalthatsomethingnterestinghashappenedThey rep-
resentchangesn theblackboardhatcanbe consequence
of areasoningactiity or of perceptionsn abroadsense:
we considerperceptiongeadingsfrom sensorshut also
messagefom otheragentr atimer thatexpires.



Sub-plans to
achieve an objectivg
Control: it choosed lief Execution:
future activity Beliefs domain actions

Schedule of activity

[P] A [pcd ac | [P A
1 ©2 B "

5 time

PC: domain preconditions
A: domain actions

PCC: control preconditions
AC: control actions

Figure1l: The ConceptuaModel of the Agent Architec-
ture

For eacheventtherewill be a numberof KSswhose
knowledgecanbeusefulin thatsituation. Theagentden-
tifies thoseKSs, createdaskshasedon them, builds pos-
sible sequencesf thosetasksto do the work neededn
front of the event, and thenit mustadd one of the se-
guenceso theglobalschedulehatdefinedts (of theagent)
future actity. Differentsequencesvill make different
trade-ofs in resourceusageand quality of expectedre-
sults. Thescheduleegisterstheresourcesllocatedo the
tasks.In ourimplementatiortheonly resourceconsidered
istimeandso, it is keptin theschedulegheinstantsbefore
which the executionof eachtaskmustbegin andend.

The actvity neededto deal with an event (identify
KSs,createtasks build sequencesf tasks,andintroduce
onein the schedulejs too complex to be donein afixed
or nggligible time. Instead,this activity mustbe sched-
uled itself, i.e., a taskto dealwith the event, to do that
activity, mustbe includedin the schedule.To do so,we
divide theeventsin two differentkinds:

e internal: eventsinternalto thereasoningdlow of the
agent;

e external: eventsexternalto thatflow.

Internal eventsare createdby the reasoningactivity
of theagent.They showv theneed/possibilityf usingnew
tasksto develop the reasoningwork in which the agent
is involved. For example,the executionof a taskin cer
tain level of abstractiorcandiscover thatit is neededhe
executionof severaltasksin alower level of abstraction.
So, internaleventscanbe anticipatedby the agentandit
mustincludein the scheduleof activity ataskto dealwith
them.

But therearealsoeventsthatarent producedby the
reasoningactiity of the agent. We call them external
events. Examplesare certainsituationspercevedin the
ervironment,or a messagdérom otheragent. The situa-
tion is thesameasbeforein thesensdhattheagentneeds

to executea taskto dealwith the events. The difference
is that the agentcannotanticipatetheseeventsandso, it

cannothave in the scheduldasksto dealwith them. The
solutionis that,whenan externaleventis recevedby the
agentasynchronouslyt mustincludeataskin its sched-
ule to dealwith it.

The agentcan control its opennessand reactvity in
front of eventsbecausét decidesvhenandhow it is go-
ing to dealwith them.

Thescheduleworkswith the algorithmthatis shovn
in figure2.

Is there any
unpredicted event
pending?

Is (priority of the
eve.nt%> Ergonty
of first task in

schedule)?

Include in the schedule
a task to deal with the eve|
Yes

Execute first task in
schedule (if there is ong) ( No

Figure2: Algorithm of thescheduler

Is there enough
time to include
the event?

The scheduleris non-preemptie (it works between
tasks,notwhenaneventis recevved,which is reasonable
in deliberatie tasksbut seesection6 conclusionsandfu-
ture work) and dynamic (of courseit doesnt know the
futuretime of arrival of new eventsto theagent).

3.2 Example of ScheduleConstruction

In figure 3 it is shovn anexampleof thealgorithmwork-
ing. We begin with anemptyschedule An externalevent
is receved and, hence,the scheduleraddsa taskto the
scheduleto dealwith it. To assigntime to this taskthe
schedulerasthe information of the kind of eventand
(possibly)the time that has spentin tasksto deal with
the samekind of eventsin the past(moreon this later).
This taskis thenexecutedresulting(in this example)in
theschedulingof two new tasks.Theschedulegrlgorithm
is run, asthereis no new externalevents,the next taskin
theschedulgtasknumbertwo in thefigure)is run. Thisis
adeliberatie taskandasa resultof its reasoningactivity
internaleventsaregenerated.

Thereare not external eventsand so next task (task
three)is executed.Thistaskis in thescheduldo dealwith
theinternaleventsgeneratedby tasktwo. As aresult,new
tasksareaddedo theschedule.

Taskfour is againa deliberatie task that generates
internal events. A point to noticeis that the agentcan
predictthetime thatis goingto needto executenot only
task four but also the tasksthat task four identifies for
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Figure3: An exampleof aschedule

execution.Thisis usefulbecausés aresene of resources
that allows to know early if the agentis going to have
resourcegnoughto executethe plan,andit simplifiesthe
work of schedulingthe tasksidentified by the execution
of taskfour.

3.3 Estimations of Execution Time of Tasks

An importantproblemis how to assigrtimeto thetasksin

the schedulemainly becausanostof themaredelibera-
tive or representomplex actionsin the environment(not
a primitive actionbut a reactve moduleto achieze some
statein theervironment).We arenottrying to answethis
guestionhere.Our architectureoffersthe meango apply
the solutionsproposectlsavhere.For example:

e Anytime algorithms:they canbeinterruptedatary
momentand they guaranteeo offer a result, al-
though more time of executionwill meanresults
with more quality. They have associategerfor
manceprofilesthatindicatethe expectedjuality of
resultsin function of the time of execution. Tasks
canbeconstructe@sanytimealgorithmsgiving the
tasksthat add themto the schedulethe flexibility
of assigningthemtime to getcertainquality. And
tasksto dealwith externaleventscanbeanytimeal-
gorithmssothey canbeexecutedheavailabletime.

e Approximateprocessingourarchitecturentegrates
very easilythe possibility of having several meth-
odsto do the samething. The taskthatdealswith
the event will chooseaccordingto resourcecon-
straintsandquality requirementsWe canalsohave
several methodsto deal with external eventsand
usean heuristicin the scheduleto chooseamong
them.

Thecontrolmechanisnof AMSIA schedulesequences

of tasks(andnotindividual tasks)andso, real-timeartifi-

cialintelligence(Muslineretal.,1995;Garwey andLesser,
1994)techniquesanbeapplied.

Usuallywewill useestimationgor theexecutiontime
of tasks.Theseestimationswill bebasedn thehistory of
theagentandcanbe changedlynamically Thisis neces-
saryboth becausdhe dynamismof the ernvironmentthat
can conditionthe time neededo do sometask, and be-
cause,using learningtechniquesthe agentcanlearnto
do certaintasksfaster

Of courseestimationscan be wrong. Therearetwo
protectiongto errorsin the estimationsof time of execu-
tion of tasksin our architecture:

1. Little deviationscanbecompensatedith available
timein thescheduler with executiontime of other
tasksof the sameplan.

2. Greaterdeviations canbe dealtby usingmonitor
ing. A greatdeviation will be detectecandan ex-
ternaleventwill begeneratedbo repairtheschedule.
Currentlywe do monitoringbetweertasksbecause
we do not considerpreemption. The tasksthem-
selvesmustbe build sothatthey have a maximum
executiontime (but seefuturework in section6).

Moreover, AMSIA supportsan hierarchicalapplica-
tion of knowledgeusinginternaleventsto identify tasks
to work in otherlevel of abstraction.This is interesting
alsobecausevhentheagenthasaplanatacertainlevel of
abstractionit hasresourcegtime) assignedo it. Theex-
ecutionof thetasksatthatlevel generatesasksin alower
level that definemore exactly the resourceneeds(possi-
bly insidethe resourcegpreviously resened, seetasks4,
4.1,4.2,4.3in figure 2, althoughperhapswith somekind
of adjustment).Then,asthe agentspendsanoretime in a
plan,it hasmoreexactideaof theresourceequirements
of thatplanand,so, it is lessprobablethatthe agenthad
to abortthe plan dueto underestimatiorof resourcere-
guirements.

Also it is importantthat the reasoningmodel of the
agentis incrementalthe agenthasa plan (scheduleland
it worksaddingandremoving piecego thatschedule Re-
sourceestimationsrenotglobal,hencethey areeasierto
do andto compensatén caseof error.

3.4 Conflictsin ResourcesAssignment

It is possiblethat, whenthe control mechanisnof AM-
SIA triesto introducea sequencef tasksin theschedule,
thereare not resourcegtime) enoughto do it. To solve
theseconflicts,the controlmechanisnmof AMSIA scores
all the sequencesf tasks.The scoredepend®n theplan
the sequencef tasksis trying to achieve, and the par
ticular tasksthat are part of the sequence.Whenthere
is a conflict, the control mechanisntries to freetime in
the scheduldy removing the sequencesf taskswith the
smallesscoreandthatarein conflictwith theonethatit is
beingintroduced.Externaleventsaregeneratedo signal



the removing of thesesequencesf tasks,andso, later it
canbeconsideredheirre-introduction.This is anheuris-
tic processput it only happensvhenthereareresource
conflictsandit favorsthe mostimportantplans.

4 Experimental Work

In this sectionwe aregoing to showv theresultsof an ex-
perimentdevelopedto studythe robustnesf our agent
in front of errorsin the estimationsof the durationof the
tasksof theschedule.

We haveimplementedheproposedigentarchitecture
modifying BBK (Brownston,1995), a C++ implemen-
tation of the blackboardarchitecturefor control (Hayes-
Roth,1988),andaddingthemechanismsdescribedn this
paper We have appliedit to control a simulatedrobot
(a modified version of the Kheperasimulator (Michel,
1996))thatrecevesrequestgo carry out missionsin the
ervironment. The missionshave thefollowing character
istics:

e A deadline:eachmissionmustbeaccomplishedby
theagentbeforeits deadline.

e An importance:eachmissionhasanassociatem-
portance.Not all the missionsare of the sameim-
portancedo theagentjn caseof resourceshortaget
is betterfor theagentto abandommissionswith low
importanceo favor the accomplishmenin time of
missionsof higherimportance.

e A destination: the ervironmentpresentedy the
simulatoris acollectionof rooms.Missionsconsist
of going to a room (destination)and malke a fault
diagnosisandrepairthere. Informationneededoy
therobotto do the diagnosiscanbe obtainedonly
if it is in thedestinatiorroom.

To operatdn this ervironmentandto successfullyac-
complishits missionsthe agentneedsto implementser-
eral functionalities. It mustbe ableto act: to move (us-
ing its two motors),andto repairfaults. It mustbe able
to sense:obstaclesn its path, the stateof a fault, and
messageselling the agentthe missionsthat it mustac-
complish. It mustbeableto reason planninghow to ac-
complishits missions pathplanningfor discoseringhow
to goto its destinationsanddiagnosisof faults(usingan
expert system). All this functionality is implementedas
knowledgesourcesn our architecture.For example,the
agenthasa knowledgesourcefor goingfrom onepointto
anothey this knowledgesourcecontrolsthe speedof the
motorsof therobotandattenddo its sensorsRobotsen-
sorsoffer raw datathat mustbe processedby the knowl-
edgesourceto deliver symbolicinformation.

First, we identify the factorsthat caninfluencein the
performancef theagent:

1. Dynamism:thedynamismis configuredn thesim-
ulatorby two parameters:

(a) missionsdynamism:the ratio of appearance
of new missions.Modeledby anexponential
distribution with meant ;.

(b) obstacledynamism: the ratio of appearance
of obstacleghat can make more difficult or
malkeimpossibleheaccomplishmendf some
missions,modeledby an exponentialdistri-
bution with meanto. And the life of those
obstaclesmodeledby an exponentialdistri-
bution with meantop.

2. Deadline:how is thedeadlineassociatedvith mis-
sions. The deadlineis modeledby an exponential
distribution shiftedto theright ¢ ,; p andwith mean
tvp.

3. Rangeof importance:the importanceof missions
is distributeduniformly betweerD and Z,,, 4 -

Thevariableghatwe useto measurehe performance
of ouragentin acertaininterval of time are:

: Scoe obtainedby the agent
1. Effectiveness- Total score offeredto the agent 100.

where,

score = E (importancemission + 1)
missionsaccomplished

Missionsaccomplishedefersto thoseaccomplished
before their deadlines.

2. Missioneffectiveness= 1‘}’—“: x 100

where,M,, isthenumberf missionsaccomplished
by the agent,andT,, is the total numberof mis-
sionsofferedto theagent.

3. Importanceeffectiveness= Jeebi » 100

where, M q; is the numberof missionsaccom-
plishedby the agentof the highestimportanceand
T,qn; is thetotal numberof missionsofferedto the
agentof the highestimportance.

We wantedto measurehe performanceof the agent
in stationarystate sowe did preliminaryexperimentsand
usethemto decidethetime of the simulation(15000sec-
onds),the numberof samplesn eachcondition (5), and
the suppressedamplego avoid thetransitorystate.Also
we usedthe preliminaryexperimentdo determinaténter-
estingvaluesof thefactorsthatinfluencethe performance
of theagentin the experiment.The valueschoserfor the
experimentareshown in tablel1.

The cateyoriesin table1 correspondo thefollowing
values(in tenthsof second)f the parameterin the sim-
ulator:



| Factor | values
Mission dynamism high, low
Importance range medium
Deadline big
Obstacledynamism low
Time estimation high, medium,low, very_low

Tablel: Independentariablesin the experiment

Missionsdynamism= high = tyr = 275
Missionsdynamism= low = tpr = 600
Importanceange= medium = Iaz = 5

Deadline= big = tprp = 3000 andiarp = 10000
Obstacledynamism= low = to = 1000 andtpop = 100

Time estimationmediummeanghatthe averageexe-
cutiontime of eachtask(measuredn the preliminaryex-
periments)s usedasestimatiorof theexpectedexecution
time of thattask. Time estimationhigh meansthat esti-
mationsl5%overtheaveragevaluesareusedjow means
15% underthe averagevalues,andvery_low 25% under
theaveragevalues.

Theresultsof theexperimentareshovn graphicallyin
figure 4, wherewe have separatedhe situationwith dy-
namismhigh andlow. An analysisof varianceshows that
the factortime estimationhassignificantinfluencein the
threedependentariables:effectivenesgfor missionsdy-
namism=lav F=4.5673,P=0.0171;andfor missionsdy-
namism=highF=4.4002,P=0.0194),missionseffective-
ness(for missionsdynamism=lev F=5.2067,P=0.0031;
andfor missionsdynamism=high-=4.0605,P=0.0253),
andimportanceeffectivenesgfor missionsdynamism=lev
F=7.0520,P=0.0031;and for missionsdynamism=high
F=7.9768P=0.0018).

The shapeof the curvesin figure 4 is what we ex-
pected. The architectureachievesa profit of its time es-
timations,hence the effectivenesameasurementsave a
maximumat onepoint, andgo down at both sidesof that
point. If time estimationsaretoo high, this resultsin that
missionswhich could have beentried are not, because
the agentthinks thatit hasnot enoughresources.If es-
timationsaretoo low, the agenttries missionsthatfinally
arenotachievedbecaus®f lack of resourcegor they are
achievedaftertheir deadlines).

However, when the missionsdynamismis low, the
maximum of effectivenessand mission effectivenessis
notachievedusingastime estimationgheaverageime of
executionof tasks,but alower value. Thereasorfor this
is theflexibility thattheagentarchitecturénasto dealwith
errorsin time estimations.If missionsdynamismis high
the agentarchitecturéhasmoreproblemsto dealwith er
ror in time estimationstherearefew time availablein the
scheduleand the missionsin it are of high importance.

Effectiveness Missions
effectivenesg
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Figure4: Resultsof the experiment

Theonly solutionleft is to usetaskswith lessquality (but
thatneedlesstime) to achieve the missions.Theproblem
is thatthesetaskssometimesregoingto fail preventing
theachiezementof the mission.

We canconcludethefollowing from this experiment:

1. The estimationof executiontime of the taskshas
influencein the performanceof the agentarchitec-
ture. Hence,a betterestimationimprovesthe per
formance. However, errorsin estimationsdoesnt
provoke an abruptfall in performancéecausehe
mechanismshat the architecturehasto dealwith
thesesituations.

2. Asthemissiongddynamismthenumberof missions
thatthe agentis facing)is decreasedt is betterto
be optimisticin time estimations Theseallows the
agentto try moremissionsandit hasenoughflexi-
bility to dealwith situationsof errorin thetime es-
timations. If missiondynamismis increasedtime
estimationamustbe more exactto get higher per
formance. Notice that the agentarchitecturecan
calculatedynamicallytheestimation®f thetime of
executionof its tasks;for example,it canbe more
or lessconserative accordingo thepercevedmis-
sionsdynamism.

5 RelatedWork

Plansor scheduledave differentrolesin differentagent
architectures.

Reactve architecturesas the subsumptiorarchitec-
ture (Brooks, 1985), don't useplans,andso, it doesnt



seemeasy using this kind of architecture,to build an
agentto fulfill certainreal-timerequirementsf highlevel
objectives.

Hybrid architectureasinteRRaRFischeretal., 1995;
Miller,1996),TouringMachinegFeilguson,1992),or Re-
moteAgentGambleJr. andSimmons,1998),useareac-
tive moduleto ensurethe security of the agentin front
of eventsin the ervironmentthat canmeana risk to the
agent. The reactve layer offers actionsquickly to en-
surethesurvival of theagentwhile thedeliberatve layer/s
males plansto achieve the high level objectves of the
agents hegotiatewith otheragentsetc. Theseplansare
built off-line and, afterwards,executed.But deliberatve
actionsare not scheduledhemselesand so it is diffi-
cult to offer guaranteesf global real-timerequirements
(specifically it is difficult to adaptthe reasoningo real-
time constraints)Nonethelesgheideaof areactvelayer

to managehedirectinteractionwith theernvironmentseems

agoodone(seefuturework in section6).

IRMA (Bratmanetal., 1988; Pollacket al., 1994)is
a deliberatve architecturehoughtto dealwith resource-
boundednesén the reasoningof the agent. The main
procedureto do this is to usethe plan of intentionsthat
defineswhat the agentintendsto do as a guide for the
reasoningof the agent,limiting in thatway its possibili-
ties of reasoning.Optionsfor deliberationarefilteredto
avoid loosingmuchtime in deliberation.Theideais that
the lesspromisingoptionsare discardedfasterwith the
filtering procesghanif the agentdeliberateaboutthem.
Optionsincompatiblewith the currentplan of intentions
arefilteredthis way. But, to keepopennes# front of ex-
ternal events,an override processallows optionsincom-
patiblewith the currentplanbut highly promisingto pass
thefiltering procesdo let the agentdeliberateaboutthen
(aboutchanginghecurrentplan). Much of thework with
IRMA is to showv the advantage<of the filtering mech-
anismfor a resource-boundedgent. Notice thatin our
agentarchitecturethe global scheduleeffectively directs
wherethe agentis goingto spendts reasoningesources.
The role of the filtering-override processess playedby
the schedulelandhow it dealswith externalevents. But
reasoningactvity is schedulecand so the agenthasthe
flexibility of choosingamongdifferentreasoningmeth-
odsaccordingwith the circumstancespf decidingwhen
to deliberateandhow abouta particularevent,andof inte-
gratingseveralobjectvesanddivide theresourceamong
them.

Our work differs from recentadvancesin planning
and scheduling(as for examplein Chien et al. (1998))
in thatour mainaimis in the integrationof planningand
execution. In fact, in our system,planningis an actiity
asary otherand mustcompetefor the resourceof the
agent,the resultof this actiity are plansthatguidethe
futurebehavior of the system Planskeepits causaktruc-
tureandcanbe analyzedor modifiedat ary time, but the
schedules highly committedto simplify control opera-
tionsandbecauseeplannings basedntheplans,noton

the schedule.AMSIA canadaptits planningactiity to
thecircumstanceffor exampleit canchoosea predefined
planbecausehereis nottime to generatea betterone).

As it wasmentionedbefore,techniquesuchasary-
time algorithms(Garwey and Lesser,1994) and how to
build a solutionto a problemusinga numberof arytime
algorithms(Zilberstein,1996),andapproximaterocess-
ing (Lesseret al., 1988) and how to build a solutionto
a problembasedon differentmethodsof differenttasks
(Garwey andLesser,1993),are easilyintegratedin AM-
SIA.

6 Conclusionsand Future Work

In this paperwe have analyzedthe role of a scheduleof
activity to guidethebehavior of anagent.Thisagentmust
usedifferentreasoningnethodsunderreal-timerequire-
mentsassociatedvith its high level objectves.

All theactvity in AMSIA is explicitly scheduledsa
way of controllingtheuseof resourcesAlso, the activity
to choosea line of actionis separatedrom the activity of
following thatline of actionandoffering new possibilities
for futureaction.We believe thisis animportantproperty
for agentsthat mustfulfill real-timerequirements.The
line of actionfocusesthe attentionof the agentthat, in-
dependentlyconsidershanginghatline of action,i.e., it
keepsits opportunism.In otherwork (Sotoetal., 1997,
1998) we have exploredthe ideaof separatingheseac-
tivities in hardware. In this paperwe explorethe division
of theseactities in time. To do so, the activity needed
to choosea line of actionmustbeincludedasa seriesof
tasksin the scheduleof the agent. A mechanismnexter-
nal events)is addedto dealwith unexpectedevents,i.e.,
to includetasksin the schedulgo considenwhatto doin
front of thoseevents.

Also, thereare optionsfor AMSIA that we want to
explore:

e The useof a preemptve scheduler This means
that we needto be ableto interruptthe execution
of tasks. The problemis thatit is not easyto keep
the consistencef theknowledgein the blackboard
whenareasoningaskis interrupted.Thereareso-
lutionsasusingsectionsof codewhereaninterrupt
is impossibleto make changesin the knowledge
stateof the system.

e We have usedour agentarchitectureto control a
simulatedobot. In arealervironmentwe will need
areactize layerto augmenthereactvity in faceof
contingencies.

¢ Wewantto extendtheinformationthatis keptin the
scheduleFor example,it will beinterestingto reg-
isterothertemporalconstraintdor the executionof
tasks. Althoughthis will complicatethe heuristics
usedin scheduleconstructionthis is not a critical
problembecausehis actiity is alsoscheduled.
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