BGP non-convergence

marcelo bagnulo

Introduction

- BGP has no guaranteed convergence
- Other routing protocols, they try to solve the shortest path problem
- What problem tries to solve BGP?
- The stabel path problem formulation

Modeling BGP route selection (I)

- Simplifying assumptions
 - Ignore IBGP related issues
 - Ignore MED attribute
 - Assume at most one link between two ASes
 - Ignore Route aggregation
- Information contained in UPDATE records
 - NIri
 - next-hop
 - as_path
 - local_pref
 - c_set
- · Ranking: for the same nlri

$$rank_tuple(r) = \left\langle r.local_pref, \frac{1}{r.as_path}, \frac{1}{r.next_hop} \right\rangle$$

Modeling BGP route selection (II)

- Route transformation *T*(r): operates by deleting, inserting or modifying atributes values
- If u and w autonomous systems, the a record moves from u to w suffers the following transformations:
 - $-r_1$ =export(u<-w,r) export policies defined by w
 - $r_2 = PVT(u < -w, r_1)$ Path Vector Trans
 - add w to AS path, sets next hop, filters loops
 - $-r_3$ =import(u<-w, r_2) import policies defined by u
- Peering transformation
 - pt(u<-w,r)=import(u<-w,PVT(u<-w,export(u<-w,r)))</pre>

Modeling BGP route selection (III)

- AS u₀ is the origin of a destiantion d sending record r₀
- AS U_k and P=u_ku_{k-1}...u₀ a path, then r(P) is the route record received at u_k from u₀
 - $r(P) = pt(u_k < -u_{k-1}, pt(u_{k-1} < -u_{k-2}, ...pt(u_1 < -u_0, r_0)...)$
 - P is permited at u_k if r(P) is non empty
- Ranking function

$$\lambda^{u_k}(P) = lexical_rank(rank_tuple(r(P)))$$

Stable Path Problem (SPP) (I)

- G=(V,E), simple undirected graph
 - $V={0,1,...,n}$ nodes
 - E, set of edges
- Node 0 (origin) special cause is the destination
- peers(u)
- Path: $P = (v_k, v_{k-1}, ..., v_0)$ seq of nodes
- For each v of V, Pv is set of permited paths
- P is the union of all Pv
- For each v, ranking function $\lambda^{\text{\tiny V}}(P)$ where P is in $P^{\text{\tiny V}}$
 - $-\lambda^{v}(P_1)>\lambda^{v}(P_2) => P_1$ is preferred
 - $-\Lambda = \{\lambda^{\nu}/\nu \text{ belongs to V-}\{0\}\}$

Stable Path Problem (SPP) (II)

- Instance of the SPP S=(G,P,Λ) (graph, set of permited paths and ranking functions) and:
 - $-P^0=\{\{0\}\}\$ and for all v except 0
 - · Empty path is permitted
 - · Empty path is always ranked last
 - Strictness: If P₁≠P₂ and λ^v(P₁)>λ^v(P₂)=> they have the same next hop
 - Simplicity: all paths in P have no repeated nodes

Stable Path Problem (SPP) (III)

- Instance of the SPP $S=(G,P,\Lambda)$
- Path assignment function π maps a node u to a path $\pi(u)$ from P^u
 - $-\pi(u)$ empty means u has no path to the origin
- Path choices(π ,u)

$$choices(\pi, u) = \{ \{(uv)\pi(v)/\{u, v\} \in E\} \cap P^{u}, u \neq 0 \\ \{(0)\}, o.w. \}$$

• W subset of Pu with different next hop

$$best(W, u) = P \in W, \max \lambda^{u}(P)$$

Stable Path Problem (SPP) (IV)

- A path assignment π is stable at a node u if $\pi(u)=best(choices(\pi,u),u)$
- A SPP S=(G,P,Λ) is solvable if if there is a stable path assigment for all u of S

Example 1: good gadget

• Only one solution

• ((1 3 0),(2 0),(3 0),(4 3 0))

 Note that not only shortest paths are preferred

Simple Path Vector Protocol (SPVP)

- · Abstract version of BGP
- Always diverges when the SPP has no solution
- Assume reliable FIFO queue for messages
- Messages exhcnaged are simply paths
- When node u adopts one path P from P^u, it informs all its peers by sending them P
- Data strcutures in u
 - rib(u) contains current path to the origin
 - rib-in(u<=w) for each w, sotres the most recent path
- choices(u)={(u w)P of Pu / P=rib-in(u<=w)}
- Best possible path: best(u)=best(choices(u),u)

SPVP algorithm

```
process svpv(u)
begin
receive P from w
begin
rib-in(u<=w):=P
if rib(u) ≠ best(u) then
begin
rib(u):=best(u)
for each v of peers(u) do
begin
send rib(u) to v
end
end
end
```

SPVP and the bad gadget		
step	π	
0	(10)(20)(3420)(420)	
1	(10) (210) (3420) (420)	210
2	(1 0) (2 1 0) (3 4 2 0) $\underline{\epsilon}$	2
3	(1 0) (2 1 0) <u>(3 0)</u> ε	4 42
4	(1 0) (2 1 0) (3 0) <u>(4 3 0)</u>	4 3
5	(130) (210) (30) (430)	3
6	(1 3 0) (2 0) (3 0) (4 3 0)	130
7	(1 3 0) (2 0) (3 0) (4 2 0)	10
8	(1 3 0) (2 0) (3 4 2 0) (4 2 0)	
9	(10)(20)(3420)(420)	

Stability and safety

- Network states are the collection of values of rib(u), rib-in(u<=v) and state of communication links
- A network state is stable if communications links are empty
- Path assignment of a stable network state is a stable path assignment
- A stable path problem is safe if the SPVP always converge

Dispute wheels (I)

- Deteming if a stable path assignment exsits is an NP hard problem
- Dispute wheels are an heuristic to find a stable paht assignment
- Suppose V' contained in V such that 0 is in V'
- Partial path assigment π for V' is a path assigment such as
 - For all u of V', every node in $\pi(u)$ is in V'
- Heursitic procdure to construct seq $V_0 \subset V_1 \subset ... \subset V_n$ along with π_0 , π_1 ,..., π_n partial assignments for V_i
- Then for each π_i we construct π'_i such as
 - $-\pi'_{i}(u) = \pi_{i}(u)$ for u of V_{i}
 - $-\pi'_{i}$ (u) is empty for other u

Dispute wheels (II)

- If u belongs to V-V; and P belong to Pu, then P is consistent with π_i if
 - $P=P_1(u_i u_2)P_2$ where P_1 is a path in V-V_i and u_2 belong to V_i and $P_2=\pi(u_2)$ and $\{u_1 u_2\}$ belongs to E
 - P is called direct path to V_i if P₂ is empty
- Let D_i be the set of nodes u of V-V_i that have a direct path to V_i
- Let H_i the set of nodes of D_i that highest ranked path consistent with π_i is a direct path
 - This path is called B^u_i
- Let $V_{i+1} = V_i + H_i$

- Define partial assignment $\pi_{i+1}(u) = \{ B_i^u, u \in H_i \\ \pi_i(u), u \in V_i \}$ Continue till either $V_k = V$ or $V_k \neq V$ and $H_k = 0$

Dispute wheels (III)

- If we are in the second case, we have a circular set of conflicting rankings between nodes, called a dispute wheel
- Dispute wheel $\Pi = (\vec{U}, \vec{Q}, \vec{R})$ of size k
 - Seq of node $U = u_0, u_1, ..., u_{k-1}$
 - Seq of non empty paths $Q = Q_1, Q_2, ..., Q_{k-1}$ $\vec{R} = R_1, R_2, ..., R_{k-1}$
 - Such that for for each 0≤i≤k-1
 - 1. R_i is a path from u_i to u_{i+1}
 - 2. Q_i belongs to P^{u_i}
 - 3. R_iQ_{i+1} belongs to P^{u_i}
 - $4. \quad \lambda^{u_i}(Q_i) \leq \lambda^{u_i}(R_i Q_{i+1})$

Properties of Dispute wheels

- No dispute wheel implies solvability
- No dispute wheel implies a unique solution
- No dispute wheel implies safety

Can we guarantee that BGO will not diverge?

- Operational practices
 - See next section
- Static analysis
 - Routing policy registry
 - Check for convergence
 - NP hard problem
 - ASes don't want to show policy information
- Dynamic solution?

Reference

 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002 The Stable Paths Problem and Interdomain Routing, Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong

Relationships between ASes

- Peering
- Transit

Transit relationship

- ◆ Customer pays provider for access to the Internet
 - Provider exports its customer's routes to everybody
 - Customer exports provider's routes only to downstream customers

Traffic to the customer

Traffic **from** the customer

Peer relationship

- ◆ Peers exchange traffic between their customers
 - AS exports *only* customer routes to a peer
 - AS exports a peer's routes *only* to its customers

Traffic to/from the peer and its customers

Resulting hierarchy

- ◆ Provider-customer graph is a directed, acyclic graph
 - If u is a customer of v and v is a customer of w
 - ... then \bar{w} is not a customer of u

Proposed route selection

- Classify routes based on next-hop AS
 - Customer routes, peer routes, and provider routes
- Rank routes based on classification
 - Prefer *customer* routes over peer and provider routes
- Allow any ranking of routes within a class
 - E.g., can rank one customer route higher than another
 - Gives network operators the flexibility they need
- Consistent with traffic engineering practices
 - Customers pay for service, and providers are paid
 - Peer relationship contingent on balanced traffic load

slide form Rexford

Proof, Phase 1: Selecting Customer Routes

- Activate ASes in customer-provider order
 - AS picks a customer route if one exists
 - Decision of one AS cannot cause an earlier AS to change its mind

Proof, Phase 2: Selecting Peer and Provider Routes

- Activate rest of ASes in provider-customer order
 - Decision of one phase-2 AS cannot cause an earlier phase-2 AS to change its mind
 - Decision of phase-2 AS cannot affect a phase 1 AS

AS picks a peer or provider route when no customer route is available

Reference

- L. Gao, J. Rexford, Stable Internet routing wihtout global coordination
- http://www.cs.princeton.edu/~jrex/teaching/ spring2005/reading/gao01.pdf

Assignment

- Theorem 5.1 & proof
- Theorem 5.2 & proof
- Theorem 5.3 & proof