
Day 1, 2, 3 73

NETWORK CAPABILITIES

TVA

Day 1, 2, 3 74

Introduction

  Described in:
  X. Yang, D. Wetherall, and T. Anderson. A DoS-

limiting network architecture. In Proceedings of
ACM SIGCOMM, August 2005.

  TVA stands for Traffic Validation Architecture
(inspired on Tennessee Valley Authority)

  Carefully designs and evaluates a more
complete capability-based network
architecture

  TVA counters broader set of attacks:
  Flooding of the setup channel, router state

exhaustion, network bandwidth consumption, etc.

Day 1, 2, 3 75

Bootstrapping capabilities

request

request
request

request

Pre-capabilities

Source

Destination
Ingress
router

Egress
router

response

Capabilities

To source

Day 1, 2, 3 76

Bootstrapping capabilities

request

Source

Destination
Ingress
router

Egress
router

packet

To destination

Each router
verifies its
capability

Day 1, 2, 3 77

Bootstrapping capabilities (II)

  The initial request channel should not open
an avenue for DoS attacks, by
  Flooding a destination
  Denial of Capability

  Solution to first issue:
  Request packets should comprise a small

fraction of bandwidth
  Requests are rate-limited at every network

location (5% of the link capacity)

Day 1, 2, 3 78

100 Mbps

Denial of Capability: review

Web site

Legitimate
Source

5%
Capability requests

95%
Regular traffic

…

20.000 attackers

2.5 Gbps ISP

Day 1, 2, 3 79

Bootstrapping capabilities (III)
Trust boundary

Ingress
router Core router

Source

Source

Source

Capability
requests

Day 1, 2, 3 80

Bootstrapping capabilities (III)
Trust boundary

Ingress
router Core router

Source

Source

Source

33%

33%

33%

Capability
requests

Tags the request with small
value (16 bits) derived from

the incoming interface

Fair-queue requests using
the most recent tag

Day 1, 2, 3 81

Unforgeable capabilities

  Attackers should not:
  Forge capabilities
  Make use of a capability stolen or transferred

from other parties
  Solution:

  Each router that forwards a request packet
attaches a pre-capability

timestamp Hash (src IP, dest IP, time, secret)

8 bits 56 bits

Day 1, 2, 3 82

Unforgeable capabilities (II)

  The destination receives a ordered list of
pre-capabilities:
  Bounded to a network path, source IP address

and destination IP address
  If the destination authorizes the request, it

returns back to the sender an ordered list
of capabilities
  Capabilities allow the sender to send packets

towards the destination, through the network
path

Day 1, 2, 3 83

Fine-grained capabilities

  Capabilities grant the right to send up to N bytes
within the next T seconds
  E.g. 100 KB in 10 seconds

  Destination converts pre-capabilities to capabilities

timestamp Hash (pre-capability, N, T)

8 bits 56 bits

  {Capabilities, N, T} are returned to authorize the
sender

Day 1, 2, 3 84

Capability validation

  Source includes the list of capabilities, N and T
within each packet

  A router on the path:
  Uses its secret to recompute its pre-capability:

 Source and destination IP addresses are obtained
from the packet

 The timestamp is obtained from the capability
  Uses the pre-capability to recompute the capability:

 N and T are included in the packet
 Checks if the result matches the capability value

  Checks if the capability has expired:
 From N and T

Day 1, 2, 3 85

Bounded router state

  Routers check that capabilities are not used for
more than N bytes
  Router state is required
  Attackers should not exhaust router state

  An algorithm is designed that bounds the bytes
sent using a capability:
  It uses a fixed amount of router state
  High-level idea: keep state only for flows with valid

capabilities that send faster than N/T
  In the worst case, a capability may be used to send 2N

bytes

Day 1, 2, 3 86

Balancing authorized traffic
  The proposal is vulnerable to floods of authorized traffic
  Solution: fair-queuing based on the destination IP

address

Cap.
request

Attacker

Destination

Ingress
router

Egress
router

Cap.
response

Capability

Bottleneck link

Colluder

Source

50%

50%

Day 1, 2, 3 87

Queue management at routers

Requests
Fair-queue
based on

most recent tag

Regular
packets

Fair-queue
based on

destination IP
address

Capability
checking

yes

no

Low priority
queue Legacy

packets

5%

95%

Output link

Day 1, 2, 3 88

Efficient capabilities

  When a sender obtains capabilities, it
generates a random flow nonce
  The nonce is included in the packets

  A router caches the capability relevant
information and the flow nonce

  Subsequent packets carry the flow nonce
and omit the list of capabilities

  But cache can expire!
  Senders model cache expiration at routers

Day 1, 2, 3 89

Route changes and failures

  The design accommodates route changes
and failures:
  A packet may arrive to a router that has no

associated capability state:
 The packet is demoted to the same priority as

legacy traffic
 The destination notifies the demotion to the sender
 The sender re-acquires new capabilities

Day 1, 2, 3 90

Evaluation:
simulation topology

Destination

Source
1

Attacker
1

Attacker
100

Bottleneck link

Colluding
destination

.

.

.

10 Mbps, 10 ms

Each legitimate source:
•  Sequentially sends 1000

files of 20 KB
•  Uses TCP

.

.

.
Source

10

10 ms

10 ms

Day 1, 2, 3 91

Evaluation:
simulation topology

Destination

Source
1

Attacker
1

Attacker
100

Bottleneck link

Colluding
destination

.

.

.

10 Mbps, 10 ms

Each legitimate source:
•  Sequentially sends 1000

files of 20 KB
•  Uses TCP

Attackers:
•  Flood at 1 Mbps
• The number of attackers
varies from 1 to 100

.

.

.
Source

10

10 ms

10 ms

Day 1, 2, 3 92

Evaluation:
simulation topology

Destination

Source
1

Attacker
1

Attacker
100

Bottleneck link

Colluding
destination

.

.

.

10 Mbps, 10 ms

Each legitimate source:
•  Sequentially sends 1000

files of 20 KB
•  Uses TCP

Attackers:
•  Flood at 1 Mbps
• The number of attackers
varies from 1 to 100

Target measures:
• Fraction of completed file
transfers
• Average delay of completed
file transfers

.

.

.
Source

10

10 ms

10 ms

Day 1, 2, 3 93

Evaluation:
legacy packet floods

  Each attacker floods the destination with legacy
traffic at 1 Mbps

Day 1, 2, 3 94

Evaluation:
request packet floods

  Each attacker floods the destination with request
packets at 1 Mbps

Day 1, 2, 3 95

Evaluation:
authorized packet floods

  Attackers cooperate with a colluding destination
  Colluder grants capabilities to attackers, allowing them to

send authorized traffic at their maximum rate

Day 1, 2, 3 96

NETWORK CAPABILITIES

Portcullis: addressing the DoC attack

Day 1, 2, 3 97

100 Mbps

Reminder:
Denial of Capability (DoC)

Web site

Legitimate
Source

5%
Capability requests

95%
Regular traffic

…

20.000 attackers

2.5 Gbps ISP

Day 1, 2, 3 98

Introduction

  Described in:
  B. Parno, D. Wendlandt, E. Shi, A. Perrig, B.

Maggs, and Y.-C. Hu. “Portcullis: Protecting
Connection Setup from Denial-of-Capability
Attacks”. In ACM SIGCOMM, 2007

  Portcullis augments the proposed
capabilities based solutions with puzzle
based protection against DoC

Day 1, 2, 3 99

Design overview

  The sender:
  Generates a puzzle, using a puzzle generation

algorithm
  Computes the solution to the puzzle
  The puzzle and the solution are included in the

header of the request packet
  The routers:

  Verify the authenticity of the puzzle and the
solution

  Give priority to requests that contain higher-
level puzzles

Day 1, 2, 3 100

Puzzle generation algorithm

  Definition of the puzzle:
 P = H (x || r || hi || dest IP || l)

  Where:
  hi: seed
  r: random 64-bit nonce
  l: difficulty level of the puzzle

  To solve the puzzle, the sender finds a 64-
bit value x such that the last l bits of p are
zero
  The sender must resort to a brute-force

approach, by trying random values of x

Day 1, 2, 3 101

Strategies

  Legitimate sender strategy:
  Computes a solution to the lowest level puzzle

and transmit a request
  If the request fails, solve a puzzle that requires

twice the computation
  Attacker strategy:

  Send the highest priority puzzles possible,
  while still saturating the victim‘s bottleneck

