
This is the pre–print version of an article published in the Journal of
Network and Computer Applications. The final published version of
this article is available at:
https://doi.org/10.1016/j.jnca.2017.10.014

Cite this article as: Iria Estévez-Ayres, Jesús Arias Fisteus and Carlos
Delgado-Kloos, Lostrego: a distributed stream-based infrastructure for
the real-time gathering and analysis of heterogeneous educational data.
Journal of Network and Computer Applications, vol. 100, December
2017. doi: 10.1016/j.jnca.2017.10.014

https://doi.org/10.1016/j.jnca.2017.10.014
https://doi.org/10.1016/j.jnca.2017.10.014

Lostrego: a distributed stream-based infrastructure for the real-time gathering and
analysis of heterogeneous educational data

Iria Estévez-Ayresa,∗, Jesús Arias Fisteusa, Carlos Delgado-Kloosa

aDpto. Ingenieŕıa Telemática, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Leganés, Madrid, Spain

Abstract

The quick technological evolution of the last decades has also reached learning environments, where the use of networked
computing devices such as laptops, smartphones, tablets, IoT devices, servers, etc. is continuously growing. In particular,
those computerized learning environments have the potential to track the activity of teachers and students in them, which
enables the development of innovative applications that enrich the learning process by analyzing the collected data. The
majority of related work in this field has been centered on batch gathering and analysis of the data. However, in order
to integrate more reactive applications, there is a need for an infrastructure that enables the real-time collection and
analysis of data in learning environments. Such an infrastructure should be scalable and flexible enough to cope with
heterogeneous data coming from different types of learning settings. This paper presents Lostrego, a stream-based,
modular, scalable and flexible distributed infrastructure that allows the gathering and analysis of educational data from
heterogeneous data sources in a real-time fashion. Lostrego applications are composed by interconnected services that
can be reused in different courses. The results of the evaluation of Lostrego in two editions of a computer programming
course with 233 students and 384,702 gathered events are also reported.

Keywords: educational systems, learning analytics, data streaming, publish subscribe infrastructure,
service-oriented, real-time learning analytics

1. Introduction

Since technology irrupted into the learning landscape,
understanding the learning process and providing a more
individualized learning experience by using non invasive
techniques has become a concern (Suppes, 1968).

There are two closely related research fields devoted to
enhancing teaching and learning through the study of the
learners’ behavior: learning analytics and educational data
mining (EDM). Learning analytics is defined as “the mea-
surement, collection, analysis and reporting of data about
learners and their contexts, for purposes of understanding
and optimizing learning and the environments in which it
occurs” (Siemens and Gasevic, 2012); while EDM is de-
voted to “developing, researching, and applying computer-
ized methods to detect patterns in large collections of edu-
cational data that would otherwise be hard or impossible to
analyze due to the enormous volume of data within which
they exist” (Romero and Ventura, 2013). Both disciplines
rely on collecting learners’ data from different sources in
order to apply their different techniques.

As the learning process is becoming more ubiquitous
and learners engage in different settings through different

∗Corresponding author
Email addresses: ayres@it.uc3m.es (Iria Estévez-Ayres),

jaf@it.uc3m.es (Jesús Arias Fisteus), cdk@it.uc3m.es (Carlos
Delgado-Kloos)

devices (Pérez-Sanagust́ın et al., 2012), there is a grow-
ing necessity to gather and analyze huge volumes of data
coming from different sources, platforms and technologies,
in an effort to capture the whole learning experience (Fer-
guson et al., 2016). Moreover, although there are tools to
analyze the learner’s experience, they are usually tightly
coupled to specific systems, such as LMS or MOOC plat-
forms, as they need to access to the internal records of
these systems to perform their analysis (Del Blanco et al.,
2013).

The Advanced Distributed Learning (ADL) Initiative
of the U.S. Department of Defense and the IMS Global
Learning Consortium are aware of this problem and pro-
pose their respective specifications to record learning ex-
periences and outcomes: the Experience API specifica-
tion (xAPI) (Experience API Working Group, 2014) and
the IMS Caliper Analytics Learning Measurement Frame-
work (Caliper) (Haag et al., 2015). They try to maxi-
mize the interoperability of services that create, gather,
store and process information about learning experiences.
Both specifications use the JSON (JavaScript Object No-
tation) data format, both define an API to send learning
records (xAPI) or events (Caliper), both store all this in-
formation within repositories (LRS, in the case of xAPI,
Event Stores, within the Caliper framework), which will be
later accessed by others to perform learning analytics, and
both can include privacy controls to access their reposito-

Preprint submitted to Journal of Network and Computer Applications December 2017

ries. In the case of Caliper, the specification is silent about
the protocols to transfer the data, while xAPI follows the
guidelines of the REST paradigm. However, both can be
viewed as semantic technologies that rely strongly on the
use of data repositories. Moreover, the tracking of learning
experiences as defined in the xAPI specification requires
storing the learning events in a repository in order to make
them available to consumers.

One of the challenges in the field of Technology En-
hanced Learning (TEL) is adapting and providing appro-
priate support to the learner in the right place and in
the right time (Hwang, 2014). In order to make it pos-
sible, there is not only the need to collect, merge and
analyze data from different sources, but also to provide
real-time feedback to both learners and teachers (Kinshuk
et al., 2016). In a setting where continuous updates of
the application are needed due to the continuous arrival
of events, a model where the communication is initiated
always by the client can become impractical (Babu and
Widom, 2001). It is the case of the xAPI Query interface
implemented by the ADL.Collection API1, which offers a
set of SQL-like queries that force the client to perform
polling. Data streaming is a more natural paradigm when
new data are constantly being collected and need to be
processed on the fly (Tatbul, 2010). Moreover, it eases the
development of applications where the communication is
initiated by the infrastructure as soon as a new event is
available (Chandrasekaran et al., 2003), usually following
the publish-subscribe paradigm (Ghate and Pati, 2016).

In this paper we present Lostrego, a generic, modular,
scalable and flexible publish-subscribe infrastructure that
facilitates the gathering and analysis of educational data
from heterogeneous data sources in a real-time fashion.
The decoupling nature of the publish-subscribe paradigm
enables the development of responsive systems (Kim et al.,
2010). By taking advantage of these benefits, Lostrego en-
ables the development of applications that require imme-
diacy when dealing with educational data.

The rest of the paper is organized as follows: Sec-
tion 2 presents the Lostrego infrastructure, its design re-
quirements, its architecture and implementation; Section 3
defines the core services of Lostrego; a case study where
Lostrego was deployed during two semesters is described in
Section 4; Section 5 presents the results, while Section 6
compares Lostrego with previous approaches; Section 7
discusses the main advantages and limitations of our pro-
posal; and, finally, Section 8 concludes and presents the
future work and directions of this research.

2. The Lostrego Infrastructure

This section presents the design of the Lostrego infras-
tructure and discusses some of its possible uses.

1https://github.com/adlnet/xAPI-Dashboard/blob/master/

API_collection.md

2.1. Requirements

As educational environments become more complex,
the monitoring of the learning process of students needs
to become even more ubiquitous. Students and teachers
use different tools (virtual campus, Twitter, IDEs, etc) in
many different settings (in the lab, at home, while com-
muting, etc.). Thus, if the chosen monitoring system is
focused on a single tool or environment, a lot of valuable
data could be missed. Therefore, there is a needed for an
infrastructure that allows the gathering of many very dif-
ferent sources in an automatic way (Ferguson et al., 2016).

The usefulness of the gathered data is related to if and
when the data analysis happens. Thus, gathering data is
not enough. Ideally, such infrastructure should support
the implementation and integration of learning analytics
tools that, from the gathered data, could give prompt real-
time feedback to teachers and students (Lewkow et al.,
2016). In order to allow on-the-fly interventions and to
make all the actors of the learning process aware when
things happen, an infrastructure that allows not only real-
time data gathering but also real-time data analysis is needed.

Besides, universities are opening their classrooms to
the world through different initiatives such as MOOCs and
SPOCs (Fox, 2013). The number of students per course
is higher in those kinds of courses than in traditional ones
and, although different platforms use their own learning
analytics tools, students frequently use additional exter-
nal educational tools in them that should also be moni-
tored. In this context, the proposed infrastructure should
be scalable enough to cope with large numbers of students.

As different courses require different monitoring (Kin-
shuk et al., 2016), the proposed infrastructure should be
flexible to allow the deployment of different reusable mod-
ules depending on the requirements of the course. More-
over, the infrastructure should support the dynamic com-
position of modules to create more complex applications,
in order to cope with the inherent dynamism of a course
enactment.

The infrastructure should decouple data gathering from
data processing. In this way, the actual gathering of the
data could happen outside the infrastructure (on other
platforms or, even, infrastructures) when needed. Simi-
larly, different external tools could be used to process the
gathered data, as long as the needed data format converter
is provided. Moreover, the infrastructure should be agnos-
tic regarding data formats, thus allowing the coexistence
of data from different standards and tools.

Taking into account the discussion above, the design
of the Lostrego infrastructure was driven by the following
main requirements:

• Gathering of heterogeneous data.

• Automatic and real-time data gathering.

• Automatic and real-time data processing.

2

https://github.com/adlnet/xAPI-Dashboard/blob/master/API_collection.md
https://github.com/adlnet/xAPI-Dashboard/blob/master/API_collection.md

Educational

resources

events
Publish-subscribe

Infrastructure

alarm

module

Figure 1: Lostrego architectural infrastructure

• Scalability in order to cope with large numbers of
courses and students.

• Flexibility for building custom applications on top of
it.

• Loosely coupled infrastructure, allowing the decou-
pling between data gathering and processing.

2.2. Architecture

As shown in Figure 1, students interact with different
and heterogeneous educational resources. These resources
can be the desktop environment of their computer, the
LMS where the course contents are hosted, specialized
software such as, in computer programming courses, in-
tegrated development environments, and even social net-
works where students may have conversations about the
course. The infrastructure has to monitor the interaction
of the students with those resources and, in real time, cre-
ate and send the data through the infrastructure in the
form of events.

The Lostrego infrastructure follows the publish-subscribe
paradigm, which decouples data publishers (the educa-
tional data sources) from data consumers (the analysis in-
frastructure). Data flows through the infrastructure from
educational data sources to the analysis infrastructure in
the form of event streams. We follow the definition of data
stream given by Golab and Özsu (2003): a real-time, con-
tinuous, ordered (implicitly by arrival time or explicitly by
timestamp) sequence of items.

Streams are flexible, in the sense that they can easily
be filtered, split, merged, etc. Additionally, new streams
can be created with data derived from other streams. That
is, whereas some streams contain the original events gath-
ered at the educational data sources, other streams may
contain higher level events obtained from their processing.
The latter are produced by modules within the analysis
infrastructure. For example, a session tracking analysis

module might process the original streams, infer working
sessions (i.e., periods of time during which a learner is in-
teracting with the educational resources) and produce a
new stream with events that signal when every learner be-
gins or finishes a working session. Another example would
be a module that, from that session tracking stream, com-
putes the amount of working time every learner accumu-
lates in the course.

In order to allow analysis modules to use not only the
real-time streams but also historical data, data streams
can also be stored in databases. This is needed, for ex-
ample, when an analysis module needs to detect potential
student dropouts. This kind of analysis needs, besides a
model of student behavior, the records gathered in the
near past for every student.

This stream-based publish-subscribe architecture is flex-
ible in the sense that it imposes no restrictions on the anal-
ysis modules and their connections. Different deployments
could plug custom modules in according to their needs. In
addition, end-user applications can also consume the orig-
inal and derived streams. Typical applications would be
learning analytics dashboards and alarm systems. It is
even possible for end-user applications to inject new data
back to the system (e.g., annotations entered by the in-
structor through a dashboard).

2.3. Implementation

We have implemented a prototype of the Lostrego ar-
chitecture described in the previous section and deployed it
as a case study in an actual course. This section describes
our implementation and Section 4 presents its deployment
in the case study.

2.3.1. Publish-subscribe Infrastructure

The infrastructure has been built on top of the Ztreamy2

publish-subscribe stream middleware because of the fol-

2http://www.ztreamy.org/

3

http://www.ztreamy.org/

lowing reasons (Fisteus et al., 2014):

• It is a scalable platform for publishing data streams
on the Web, using HTTP(S) to consume and publish
data.

• Communications can be secured by using the HTTPS
protocol, since privacy is usually a requirement in
educational environments.

• Consumers and producers can be developed in ev-
ery major application development environment and
programming language, with the only requirement
of having HTTP(S) support. This simplifies the in-
tegration of different educational resources as data
sources, since events can be sent to the infrastruc-
ture from every major programming language and
platform.

• It supports stream duplication, aggregation and fil-
tering, which are basic operations the analysis in-
frastructure needs.

• It is flexible, in the sense that different network lay-
outs can be deployed depending on the needs of the
application.

• It simplifies application development with function-
ality such as data serialization/deserialization and
built-in semantic filtering.

Monitoring agents run within the educational data sources
(the desktop environment of lab computers, virtual ma-
chines used by the student at home, LMSs, web pages
that contain class materials, etc.) They track the actions
of the student, represent them as events (see Section 2.3.2
and the example in Figure 2) and publish them by send-
ing HTTP(S) POST requests to an end-point within the
Ztreamy publish-subscribe server. Examples of such mon-
itoring agents would be:

• In lab computers or virtual machines provided to
the students, wrappers for the programs of interest
are installed in the students’ accounts. For exam-
ple, in a programming course such commands would
be integrated development environments, text edi-
tors, compilers, debuggers, code analysis tools and
version control systems. Depending on the program,
data such as the start and end-time of their execu-
tion, command line parameters, standard output and
error streams, working directory and finish status of
the processes would be tracked. Our implementation
of this part of Lostrego is based on (Romero-Zaldivar
et al., 2012)3.

• In a learning management system such as Moodle or
in MOOC platforms every interaction of the student
would be tracked by a module running within the
platform itself.

3https://github.com/dleony/PLA

• When class materials are served in HTML format
from a web server the instructors cannot control, a
JavaScript agent would be embedded into every page
to track visits and send the corresponding events to
the infrastructure. If users need to authenticate to
access these materials, the identity of the student can
also usually be obtained by the JavaScript agent.

• Agents monitoring social networks such as Twitter
will get data from the social network API (e.g., by
monitoring certain hash tags or users), create events
from the relevant data and inject them into the in-
frastructure.

We have implemented three of those types of monitor-
ing agents for our current prototype of Lostrego, leaving
the monitoring of learning management systems for fu-
ture versions. Section 4.2 provides further technical detail
about how those agents have been implemented and de-
ployed in the case study in order to track lab computers,
virtual machines and web materials.

The Ztreamy publish-subscribe server creates a raw
event stream with the events it receives from the educa-
tional data sources. Some analysis modules within the
analysis infrastructure consume that stream. Some of them,
such as the session tracking analysis module, may pro-
duce derived higher-level streams, which are also served by
the publish-subscribe infrastructure. Other analysis mod-
ules, as well as the storage system, consume those derived
streams and may produce in turn new derived streams.

Finally, end-user applications consume the high-level
streams they need to provide their functionality to stu-
dents and instructors. They might even produce new events
and push them into the infrastructure.

2.3.2. Lostrego Event Objects

An event represents in Lostrego an action of the learner
upon an educational resource. For example, a new event
could be published when the learner enters a specific con-
tent in the LMS, runs a compiler in a computer program-
ming course, uploads a submission, etc. Those events are
modeled on top of the Ztreamy event model, which con-
sists of several headers and a body object. Some of those
headers are defined by Ztreamy (a unique event identifier,
an event timestamp, etc.), but applications are allowed to
define their own extension headers. Body objects are com-
pletely managed by applications, and may consist either
of text or binary data.

More specifically, events in Lostrego contain the follow-
ing headers, which are common for every action type (see
Figure 2):

• A globally unique event identifier (the header Event-Id
as shown in Figure 2).

• A pair of timestamps with the instants in which the
action occurred (Timestamp header) and the event is
actually sent to the server (X-SentAt header).

4

https://github.com/dleony/PLA

Event-Id: 7cafe009-086a-4d1c-9895-52c520009e88
Source-Id: 1e35bcb8-d558-4493-b403-a093c2b69cab
Syntax: application/json
Timestamp: 2015-10-09T20:32:55+02:00
X-SentAt: 2015-10-09T20:32:57+02:00
X-StudentId: 42424242
Event-Type: gcc
Body-Length: 601
{

"user": "astt",
"pwd": "/home/astt/Project/version1",
"command": ["gcc", "-g", "-Wall", "-o", "program", "main.c", "menu.c"],
"status": 1,
"num_stdout_lines": 0,
"stdout": "",
"num_stderr_lines": 8
"stderr": "main.c: In function ’main’:\n

main.c:12:8: warning: unused variable ’comp’ [-Wunused-variable]\n
int comp = strcmp(argv[1], inputHelp);\n ^\n

main.c:14:6: error: ’comp’ undeclared (first use in this function)\n
if(comp == 0){\n ^\n

main.c:14:6: note: each undeclared identifier is reported only once for each function it appears in\n"
}

Figure 2: Example of an actual Lostrego event

• The learner’s identity (X-StudentId header).

• The identity of the environment in which the event
was created, e.g. the identifier assigned to a a spe-
cific computer, virtual machine, etc. (Source-Id
header).

The detailed description of the action is placed in the
body of the event as a JSON object. The information it
carries is specific to the type of action, although actions
may share some fields when appropriate. For example, as
shown in Figure 2, all the actions that involve issuing a
command in the command line may include the user name
of the student in the system, the current working direc-
tory, the command typed by the student, including its
command-line arguments, the success status of the pro-
cess, the data written to its standard output and standard
error, etc.

3. Data Processing in Lostrego

Whereas some analysis modules in Lostrego are course
or institution-specific, others provide generic functional-
ity that may be useful in many scenarios. Those reusable
modules are called core services of Lostrego. Scenario-
specific applications and analysis modules needing of their
functionality may just consume their output. This sec-
tion describes some core services that are already part of
Lostrego.

3.1. Team Annotation Service

Because team working is nowadays a demanded soft
skill (Andrews and Higson, 2008), courses with a strong
collaborative component are becoming an essential part
of formal education (Sahami et al., 2013). Thus, having
the ability to monitor not only how individuals work but
also how teams of students collaborate to solve problems
is important for instructors.

The team annotation service is meant to bridge the gap
between individual and collaborative work. It annotates
incoming events, which already contain a header with the
student’s identity, with the identifier of the team the stu-
dent belongs to, if any. The output stream of this service
is a copy of its input stream with an additional header
that contains the team identifier. Applications that need
to track the progress of teams in collaborative exercises
use this header to map events to teams.

Instructors configure this service by providing a list of
teams and the identity of their members. The service is
also configured with a date range. It will not annotate
events whose timestamp is outside that range. This sup-
ports the reorganization of teams for different activities in
a course, since a separate instance of the service would be
deployed for each activity, configured with a different list
of teams and date range.

3.2. Exercise Detection Service

This service matches an event to an exercise the stu-
dent is currently working on. The output of this service is a
copy of its input stream where the matched events include
a new header with the exercise and session identifiers. The
instructor may also specify other exercise–related headers,
such as whether the exercise is mandatory or intended as
a teamwork activity.

This service is performed in two steps. In the first
step, the instructor configures the service with the list
of resources (directories, file names, web pages, etc.) for
each exercise/session in the course. The service scans the
body of every input event looking for mentions to these
resources.

In the second step, which requires the input stream
to be annotated with working sessions (see Section 3.3),
those events for which the first step did not detect the
exercise are annotated with the exercise of the latest event
of the same working session annotated by the first stage.
This approach is based on the fact that, in absence of

5

more specific information, there is a high chance that the
student continues with the same exercise as in the previous
events. Since its output is not always exact, this second
step may be optionally disabled by instructors.

3.3. Working Sessions Detection Service

The knowledge of the time-on-task for each student can
be useful for instructors in order to detect problems within
a team (Petkovic et al., 2016). Moreover, how a student
works on an assignment (e.g., in computer programming
exercises, her behavior when facing compilation errors or
the amount of time she spends editing) has been proved to
be a successful performance predictor (Jadud, 2006; Wat-
son et al., 2013; Rodrigo et al., 2009). Furthermore, knowl-
edge about how students manage their time, i.e., when
they work on course activities, the length of those working
sessions and their behavior during them can be used as
early predictors of students’ performance (Willman et al.,
2015).

A student’s working session is defined in Lostrego as
a period of time during which a student is continuously
working on one or more activities of the course. The ob-
jective of the working session detection service is grouping
events into working sessions. The service takes an input
event stream and generates two output streams: an event
stream composed by events signalling the beginning and
end of sessions, and a copy of the input in which events
that have been successfully associated to a session are en-
riched with a new header that contains their session iden-
tifier.

Given a student with no active working session, the
service determines that a working session begins with the
first event tracked for her. It determines that a working
session ends when a configurable amount of time (e.g., 30
minutes) passes without further events from her. In or-
der to do that, the service keeps a table of active sessions
in memory. Each session in the table is described with a
unique identifier, the identity of the student, the times-
tamp t0 of its first event and the timestamp t1 of the most
recent event associated to this session. For each input
event with timestamp te, the service looks for the active
session associated to its student:

• If there is no such session, a new session is added
to the table and te is assigned to both t0 and t1.
An event signaling the beginning of the session is
published.

• If there is such session and t0 − µ < te < t1 + τ ,
the event is associated to this session. If te < t0,
t0 is updated to te. If te > t1, t1 is updated to te.
The configurable parameter µ accounts for the fact
that events are not guaranteed to arrive in order, for
example when they come from separate monitoring
agents or they get delayed because of network issues
(e.g., when the monitoring agent cannot connect to
the server when the event is created, it needs to be

re-transmitted later.) The configurable parameter τ
represents the maximum period of time without re-
ceiving any event a session can be considered active.

• If there is such session but te ≤ t0 − µ, the event is
considered to be too old and is not mapped to any
session.

• If there is such session but te ≥ t0 + τ , the previous
session is closed and a new one is added to the table.
Two new events are created: one signaling the end
of the previous session, which includes a summary
with its start time, end time, duration, number of
events, exercises the students worked on, etc., and
one signaling the beginning of the new session.

All the sessions in the table are checked periodically in
order to close those that have been inactive for too long.
Being t the current timestamp, sessions with t > t1 +τ are
removed from the table. Similarly to the last case above,
a new event that signals their end is published.

Since there is no consensus on how to compute the
time-on-task (Kovanovic et al., 2016), the maximum inac-
tivity period τ can be configured by the instructor.

Due to the inherent flexibility of the platform, in envi-
ronments where instructors preferred to apply alternative
session tracking algorithms, a custom module could be de-
veloped and used instead.

4. Case Study

As a proof of concept, the Lostrego system was de-
ployed in a second year computer programming course
belonging to the Bachelor’s Degree in Telecommunication
Technologies Engineering at the University Carlos III de
Madrid during the Fall semesters of 2015 and 2016.

This course introduces operating systems (focusing on
UNIX) and discusses how to manage multiple processes
and tasks that execute simultaneously and share resources.
Students should be able to use both the Java and C pro-
gramming languages. Additionally, students are expected
to practice some traversal abilities in this course, namely
teamwork (including the use of version control systems),
time management and verbal communication.

The course follows an active learning approach and ap-
plies a continuous assessment scheme. Therefore, students
are expected, before face-to-face sessions, to work at home
on several activities related to the concepts those sessions
target. The course design has been improved following a
methodology that involves feedback gathering from stu-
dents and teachers at specific milestones, as well as itera-
tive refinement (Estévez-Ayres et al., 2015).

The course material comprises two types of resources:
course notes, available to the students at the website of
the course, and practical material, which includes hand-
outs and auxiliary files. All the practical material is orga-
nized in different folders and delivered to students through

6

Virtual Machines,

lab accounts and

web clients

ltg_collector

Students

Team

Annotation

Lostrego

service

ltg_teams

Exercise

Detection

Lostrego

service

step 1

Working Session

Detection

Lostrego

service

ltg_ex ltg_ws_ex

 ltg_ws

teams
list

students
exercises

lab

sessions

working

dirs

� �

Exercise

Detection

Lostrego

service

step 2

ltg_final

Figure 3: Deployed Lostrego application

the Subversion4 version control system. Those Subversion
repositories are the de facto workspace for the students.
At the beginning of the course, each team of students is
given a personalized URL that points to their repository.
Exercises and assignments are delivered to them through
those repositories as the course advances, and they are ex-
pected to submit their solutions by the same means (Pardo
and Kloos, 2011).

Being this course eminently practical, students are ex-
pected to work not only at the University laboratories but
also at home. Since the exercises require a Linux environ-
ment and some specific software, they are provided at the
beginning of the course with a Virtualbox5 virtual machine
that replicates the configuration of the computers of the
laboratories. This way students can work at home without
having to install the environment themselves.

4.1. Compliance with Data Privacy Legislation

In the context of this course, in order to comply with
the Spanish data privacy legislation, Organic Law 15/1999
on Personal Data Protection (Bolet́ın Oficial del Estado,
1999), a document is shown to the students at the be-
ginning of the course, and before downloading the virtual
machine and the tracking tools. It explains the monitor-
ing mechanisms, how to temporarily enable and disable
them, how to permanently uninstall them, the events that
are recorded, and the use of the gathered data. Students
must agree with these conditions before continuing. As
events were not only used and processed on-the-fly, but
also a copy of them was stored at university facilities, a
contact e-mail was available for the students to exercise
their rights to review, amend or delete the gathered events
at any time during or after the course.

4.2. Deployment of the Monitoring Agents

Since this course follows a practical approach in which
doing programming exercises on a computer is the most
important student’s activity, the case study was focused on

4https://subversion.apache.org/
5http://www.virtualbox.com

tracking those programming activities. Additionally, dur-
ing the Fall 2016 edition of the course the system tracked
also their access to every page in the website of the course,
which hosts all the course materials. This section provides
further detail about how the monitoring agents (see Sec-
tion 2.3.1) that track those students’ actions have been
deployed, since similar techniques may be useful in the
deployment of other courses.

The virtual machines provided to students, which they
used mainly at home, had monitoring agents already de-
ployed. In addition, students were also offered the possi-
bility to install them on their lab accounts by following a
quick and straightforward procedure. Those agents were
implemented as wrappers for the tools they use in their
programming exercises, with around 100 lines of Python
code each: text editors (Emacs and Kate), compilers (GNU
C Compiler and Java compiler) and the Java virtual ma-
chine, debuggers (GDB), profilers (Valgrind) and version
control systems (Subversion). Each wrapper was declared
as a shell alias for the command it tracks, and captured
its command line arguments, standard input, output and
error streams, start and end times, working directory, stu-
dent identity, etc. Wrappers for short duration commands,
e.g. compilers, create a single event, whereas wrappers
for long duration commands, e.g. a text editor, create
one event at the beginning of their execution and another
one at the end. In order to prevent the transmission of
the event from delaying the actual execution of the com-
mand, wrappers just store the events they create in a queue
within the file system and fork a parallel process to imme-
diately dispatch them. This mechanism also provides re-
liability, because if the transmission of an event fails, e.g.
due to a temporary loss of network connectivity, it remains
in the queue and its transmission is attempted later, in the
next execution of the dispatching process.

The agents that monitor access to course materials
were programmed in JavaScript and embedded in every
HTML page of those materials. Every time students visit
them, the agent is run within their browser and trans-
mits an event to the server infrastructure. Since students
need to authenticate in order to access those materials, the

7

https://subversion.apache.org/
http://www.virtualbox.com

agent is also able to read the student’s identity and embed
it within the events.

4.3. Deployment of the Analysis Infrastructure

The implemented Lostrego application is shown in Fig-
ure 3. The monitoring agents described in Section 4.2 pub-
lish the events they gather in the ltg-collector stream.
The first processing stage consists in annotating those events
with the team annotation service described in Section 3.1.
The resulting stream is processed then by the first stage
of the exercise detection service presented in Section 3.2.
After it, the stream passes through the working session
detection service described in Section 3.3, configured with
µ = τ = 30min. Finally, the second stage of the exercise
detection service uses working session information to infer
the exercise and lab session of the events that were not
annotated in the first stage of the service.

4.4. Practical Use of Lostrego

In order to illustrate the usefulness of the platform, this
section presents some of the many potential features that
can be built on top of the Lostrego infrastructure. The
examples show actual data that have been gathered in the
pilot deployment of the system for the case study.

Suppose it is 9 a.m. of the 4th Thursday of the course,
two hours before the beginning of the 4th lab session of
group a, one of the student groups of the course, which
Olivia teaches. Olivia wants to get insight into the work
of her students since the 3rd lab session, which took place
one week before. During that one week period, students
were expected to complete and submit the exercises of the
3rd lab (the submission deadline was the previous night:
Wednesday at 11:59 p.m.) and work on a preliminary ex-
ercise for the 4th lab. The analysis application built on
top of Lostrego would present a plot such as the one in
figure 4. Olivia already knows that all teams except teams
a-02 and a-09 worked during the 3rd lab session, but the
plot lets her notice other interesting facts:

• Teams a-02 and a-10 worked a bit every day dur-
ing the previous week. However, most teams were
inactive until the weekend.

• Most teams left a lot of work for the last day before
the deadline, and about half of them needed to work
that night until immediately before the deadline.

• Teams a-05, a-09 and a-11 show almost no activity.
Although it might just mean that they opted out of
tracking, the instructor should take it as a sign they
might be at risk of withdrawing the course especially
if she finds they did not submit the assignment ei-
ther. Talking to them in that case might help her to
better understand the problem and to try to mitigate
it.

a02

a03

a04

a05

a06

a07

a09

a10

a11

a12

a13

a14

a15

Thursday
Friday

Saturday
Sunday

Monday

Tuesday

Wednesday

Thursday06h12h18h 06h12h18h 06h12h18h 06h12h18h 06h12h18h 06h12h18h 06h12h18h 06h

a16

Figure 4: Teams’ working sessions for group a between the 3rd and
4th lab sessions. The in-class period of the 3rd lab session is shown
in light red. Working sessions are shown in blue.

Exercises
Team # S Previous Lab 3 Lab 4 Worked time
a-02 21 2.3 all - 17 h 50 min 56 s
a-03 8 - all - 8 h 22 min 38 s
a-04 14 2.5 all - 13 h 6 min 17 s
a-05 2 - 3.1, 3.3 - 1 h 16 min 53 s
a-06 14 1.1, 2.3,

2.4, 2.5
all 4.1,

4.2
19 h 8 min 47 s

a-07 9 2.3, 2.4,
2.5

3.1, 3.3,
3.6

4.1 4 h 53 min 53 s

a-09 2 - 3.1, 3.3 - 10 min 12 s
a-10 29 2.3, 2.4,

2.5
all - 27 h 45 min 59 s

a-11 2 - 3.1 - 1 h 18 min 57 s
a-12 11 - 3.1, 3.2,

3.3, 3.4
- 10 h 17 min 1 s

a-13 12 2.3, 2.5 all 4.2 17 h 25 min 37 s
a-14 4 - 3.1, 3.3,

3.4, 3.5
4.1 6 h 6 min 13 s

a-15 19 2.1, 2.3,
2.4, 2.5

all 4.1 12 h 17 min 21 s

a-16 7 2.4, 2.5 all - 9 h 7 min 53 s

Table 1: Exercises done by each team during the 3rd week of the
course and accumulated working time, as a sum of the working time
of every team member.

a
03

a
05

a
06

a
07

a
10

a
12

a
13

a
14

12:00 12:3012:05 12:10 12:15 12:20 12:25

a
15

lab: 4 ex: 1
lab: 4 ex: 2

lab: 4 ex: 3
lab: 4 ex: 4

previous

Figure 5: Group a: events by exercise at 12:30 (4th lab session)
during the last 30 minutes. Each line represents an event.

8

Olivia wants more detailed information about the ex-
ercises on which each team has been working during the
week. The platform could display a table such as Table 1,
which shows that 8 teams worked on all the exercises of
the 3rd laboratory session, but only 5 worked on the pre-
liminary exercises for the 4th laboratory. In also confirms
the problem detected with teams a-05, a-09 and a-11.

Since worked time within a team is sometimes too un-
balanced, Olivia would also want to detect teams in which
some members are not working enough and might be act-
ing as lingerers. Table 2 shows the number of sessions and
total tracked time spent by each team member. It shows
that work in some teams has been too unbalanced. Note,
however, that a possible interpretation in that case is that
team members worked together from the same computer or
that one of them has opted out of tracking. Olivia should
be careful to further investigate the issue with those teams
before reaching any conclusion.

Olivia is now in the middle of the 4th lab session. It is
12:30 and she wants to review what the teams have been
doing in the last 30 minutes. Figure 5 shows the events
per team from 12:00 to 12:30. The different exercises of
the session are marked by colors. She can see that, al-
though students were expected to complete exercise 1, i.e.,
the preliminary exercise, at home, the plot shows that six
teams were working on it during this period of the session.
There were even two teams working on exercises from a
previous lab session. On the other hand, team a-07 was
already working on the last exercise. The instructor sees
that teams a-05 and a-14 had almost no activity during
those 30 minutes.

Some time after the session, Olivia asks the system for
the activity registered during the whole session (Figure 6.)
She sees that only a few teams reached exercises 3, 4 and
5. In addition, from the three at-risk teams the instructor
had identified before the class only team a-05 attended the
session, but they stopped working too early. Moreover, it
seems that team a-10 had trouble to finish exercise 1, as
they needed too much time and generated too many events
related to that exercise. That is consistent with the fact
that they also needed to work too much time during the
week before, as Table 1 shows.

Olivia wants now to get more information about the
events gathered during the 4th lab session. However, the
previous plots only showed when events happen and which
exercise they are related to. Figures 7 and 8 show her how
many events of each type each team generated, grouped by
exercise. The event types shown are: launching a text ed-
itor, compiling, running their code and running the source
control system. It also separates successful actions from
erroneous ones (e.g., they run the compiler but it detects
errors in their source code.)

Finally, Figure 9 shows the total number of events dur-
ing the session, without grouping them by exercise. Olivia
can identify in this plot teams such as team a-10 that
are prone to running too many commands, many of them
resulting in errors. This, combined with the fact that ac-

a
03

a
04

a
05

a
06

a
07

a
10

a
12

a
13

a
14

10:30 11:00 12:00 13:00 13:3011:30 12:30

a
15

lab: 4 ex: 1
lab: 4 ex: 2

lab: 4 ex: 3
lab: 4 ex: 4

lab: 4 ex: 5
previous

Figure 6: Group a: events by exercise from 30 minutes before the
4th lab session until 30 minutes after. Each line represents an event.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

previous

a15

a14

a13

a12

a10

a07

a06

a05

a04

a03

lab: 4 ex: 1 lab: 4 ex: 2 lab: 4 ex: 3 lab: 4 ex: 4 lab: 4 ex: 5

edition
compilation error
compilation success
execution error
non ended executions
execution success
svn error
svn success

Figure 7: Group a: number of commands by exercise during the
whole 4th lab session. Colors represent the type of command.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

previous

a15

a14

a13

a12

a10

a07

a06

a05

a03

lab: 4 ex: 1 lab: 4 ex: 2 lab: 4 ex: 3 lab: 4 ex: 4

edition
compilation error
compilation success
execution error
non ended executions
execution success
svn success

Figure 8: Group a: number of commands by exercise performed by
each team from 12:00 to 12:30

9

Member 1 Member 2 Member 3
Team # S Time % t # S Time % t # S Time % t
a-02 16 17 h 44 min 41 s 99.4% 5 6 min 15 s 0.6% -
a-03 2 5 h 35 min 28 s 66.7% 6 2 h 47 min 10 s 33.3% -
a-04 9 8 h 56 min 49 s 68.3% 5 4 h 9 min 28 s 31.7% -
a-05 1 1 h 16 min 53 s 100.0% 1 0 s 0% -
a-06 10 17 h 19 min 32 s 90.5% 4 1 h 49 min 15 s 9.5% -
a-07 4 3 h 32 min 58 s 72.5% 5 1 h 20 min 55 s 27.5% -
a-09 2 10 min 12 s 100.0% No tracked sessions -
a-10 15 14 h 33 min 49 s 52.4% 14 13 h 12 min 10 s 47.6% -
a-11 2 1 h 18 min 57 s 100.0% No tracked sessions -
a-12 8 5 h 44 min 24 s 55.8% 3 4 h 32 min 37 s 44.2% -
a-13 6 13 h 37 min 9 s 78.1% 6 3 h 48 min 28 s 21.9% -
a-14 4 6 h 6 min 13 s 100.0% No tracked sessions -
a-15 9 7 h 59 min 52 s 65.1% 7 4 h 16 min 29 s 34.8% 3 1 min 0.1%
a-16 5 8 h 44 min 47 s 95.8% 2 23 min 6 s 4.2% -

Table 2: Team by team individual work during the 3rd week of the course. Teams in which at least one member worked less than the others
are highlighted.

cording to Figure 7 all those events are related to one sin-
gle exercise, probably indicates that the team had serious
problems with the exercise and followed a trial-and-error
approach. Olivia takes note to follow this team closer. On
the other hand, team a-07 committed much fewer errors
despite having worked on all the exercises of the session.
Olivia sees that they are on the right track.

0 20 40 60 80 100 120

a15

a14

a13

a12

a10

a07

a06

a05

a04

a03 edition
compilation error
compilation success
execution error
non ended executions
execution success
svn error
svn success

Figure 9: Group a: number of commands performed by each team
during the 4th lab session

5. Results

This section presents the main results obtained from
the application of the platform to two editions of the course
presented in the case study.

5.1. Recorded Events

The platform captured a total of 384, 702 events during
its deployment in the Fall of 2015 and 2016. The events
were processed in real time as soon as they reached the
analysis infrastructure. The team annotation service ac-
cepted 375, 927 events (97.72% of the total) as being part

of the course. Figure 10 shows their distribution day by
day, separating CLI (Command-line Interface) events from
the virtual machines and lab accounts of the students and
Web events, as the Lostrego web event collector was only
available for the 2016 edition.

The first stage of the exercise annotation service suc-
cessfully matched exercise and lab session for 279, 370 events
(74.31% of the total). The working session annotation ser-
vice identified a total of 15, 504 working sessions. Only
8, 541 events (2.27%) were left without a working session,
the reason being they reached the publish-subscribe infras-
tructure with an excessive delay. Finally, the second stage
of the exercise annotation service successfully assigned the
exercise and lab session to 44, 610 more events. Thus, the
two stages of this service combined were able to annotate
in real time 323, 980 events out of 375, 927 (86.18%).

The instructors observed that most students choose to
bring their own device to the classroom (with a virtual ma-
chine installed on it). Thus, from the 327, 177 ltg-final

CLI events, 308, 106 (from 233 students) were gathered
from the virtual machines of the students and 19, 071 (from
37 students) from the laboratory computers. It is impor-
tant to notice that all students used the virtual machine
at home, except one that withdrew the course at the be-
ginning. The CLI events came from 371 different sources,
where each copy of the virtual machine and each lab ac-
count are considered a separate data source. All Fall 2016
students (125 students) generated web events. The num-
ber of events by event type is shown in Table 3.

5.2. Relationship with Individual Academic Performance

This section explores the potential of the processed
data as a predictor of a students’ individual academic
achievement. A series of indicators were computed for
each student from the gathered data: the count of in-
vocations to editors, compilers, the GDB debugger, the
Valgrind profiler and the Subversion version control sys-
tem, the number of visits to course web pages, the ratio
of successful compilations (those that finished without er-

10

20150906 20150920 20151004 20151018 20151101 20151115 20151129 20151213
0

1000
2000
3000
4000
5000
6000
7000

#CLI Events 2015

20160904 20160918 20161002 20161016 20161030 20161113 20161127 20161211
0

1000
2000
3000
4000
5000
6000
7000

#CLI Events 2016

20160904 20160918 20161002 20161016 20161030 20161113 20161127 20161211
Day

0
1000
2000
3000
4000
5000
6000
7000

#Web Events 2016

Figure 10: Gathered course events per day (ltg-collector data
stream)

Type Event Type
Number

Ed. 2015 Ed. 2016

Edition

emacs/start 14, 985 12, 729
emacs/end 12, 386 10, 579
kate/start 1, 281 3, 526
kate/end 943 2, 986
Total 29, 595 29, 820

Compilation
javac 24, 187 19, 187
gcc 35, 942 41, 740
Total 60, 129 60, 927

Execution
java/start 18, 400 15, 415
java/end 13, 108 11, 448
Total 31, 508 26, 863

Debugging

gdb/start 2, 685 2, 587
gdb/end 2, 445 2, 253
valgrind/start 13, 643 5, 735
valgrind/end 12, 556 4, 895
Total 31, 329 15, 470

Version Control svn 21, 924 19, 612
Web web − 48, 750
Total 174, 485 201, 442

Table 3: Course events by event type per edition (Fall 2015 and Fall
2016)

rors), the count of working sessions and the total working
time.

In order to understand the presence of a linear rela-
tion between each one of those indicators and the final
marks of the students, the Pearson correlation between
them was computed. Table 4 reports, separately for the
Fall 2015 and Fall 2016 editions of the course, the corre-
lation coefficient (r), the coefficient of determination (r2)
and the significance of the correlation (p). A statistically
significant and moderate to strong correlation is appreci-
ated in both editions for the number of invocations to the
compiler, profiler and version control system, number of
working sessions and total working time, being it stronger
for the number of working sessions.

The correlation analysis above considered each indica-
tor alone. Since the combination of several indicators is
expected to work better as a predictor, a forward stepwise
regression analysis for factor selection was also applied to
both datasets.

For the Fall 2015 dataset the linear model produced
by the four indicators is shown in Table 5. As expected
from Pearson correlations, the number of working sessions
has the biggest weight in the linear model, with a stan-
dardized coefficient (β) of 0.75, followed by the number of
invocations to the profiler and editors. This linear model
explains 59.08% (r2) of the variance of the final marks.

For the Fall 2016 dataset the linear model produced
also four indicators, shown in Table 6. The number of
working sessions has still a strong weight in the model, and
the access to the course web pages, which are only available
in the 2016 dataset, replace the number of invocations to
editors. This model explains 58.87% of the variance of the
final marks.

It is interesting to notice that the number of working
sessions and profiling have positive coefficients in both lin-
ear models. However, the number of invocations to debug-
gers, editors and the number of web pages appear with a
negative coefficient, suggesting that, between the students
that present more working sessions and use more the pro-
filer, those who less frequently need to resort to visiting
the course web pages, invoking editors or invoking the de-
bugger achieve greater marks.

6. Comparison with Other Approaches

In order to compare Lostrego with previous approaches,
the deployment of the case study presented in Section 4
during the Fall 2015 edition of the course included the PLA
monitoring tools of Romero-Zaldivar et al. (2012) as well.
PLA relays on a version control system for gathering the
data. Every action tracked by the system in the student’s
environment is stored into a hidden directory within the
student’s local copy of her Subversion course repository.
Then, when the student commits code, e.g. her submis-
sion for a given exercise, the data about those actions gets
automatically sent to the server as part of the commit.

11

Ed. 2015 Ed. 2016
Variable r r2 p r r2 p
Editors 0.189 0.0357 0.04 0.35 0.122 < 0.0001
Compilation 0.501 0.251 < 0.0001 0.588 0.346 < 0.0001
Ratio successful compilations 0.304 0.093 0.0007 0.178 0.032 0.04
Debugging 0.277 0.077 0.002 0.368 0.135 < 0.0001
Profiling 0.523 0.273 < 0.0001 0.525 0.276 < 0.0001
Subversion 0.671 0.451 < 0.0001 0.562 0.316 < 0.0001
Web pages - - - 0.342 0.117 < 0.0001
Working sessions 0.724 0.524 < 0.0001 0.716 0.512 < 0.0001
Working time 0.659 0.431 < 0.0001 0.616 0.38 < 0.0001

Table 4: Correlation analysis between processed events and final marks per edition (Fall 2015, N = 119, and Fall 2016, N = 126)

Standard
Variable Estimate Error β t value Pr(> |t|)
(Intercept) 0.810541 0.325043 2.494 0.0141
Profiling 0.002748 0.000908 0.21 3.026 0.0031
Debugging -0.005374 0.003488 -0.10 -1.541 0.1261
Editors -0.002772 0.000967 -0.20 -2.866 0.0049
Working
sessions 0.060035 0.006592 0.75 9.107 3.33e-15
r2 = 0.5908, p < 2.2e− 16

Table 5: Fall 2015 multiple regression analysis summary (N=119)

Standard
Variable Estimate Error β t value Pr(> |t|)
(Intercept) -0.502594 0.372705 -1.349 0.1800
Profiling 0.005169 0.002102 0.20 2.459 0.0153
Debugging -0.009855 0.004438 -0.18 -2.222 0.0281
Web pages -0.003071 0.000980 -0.27 -3.135 0.0022
Working
sessions 0.062368 0.007332 0.89 8.506 5.63e-14
r2 = 0.5887, p < 2.2e− 16

Table 6: Fall 2016 multiple regression analysis summary (N=126)

By deploying both systems together, we were able to
compare PLA and Lostrego from both a qualitative and
quantitative point of view. From a qualitative point of
view, their main differences are:

1. Assuming network connectivity between data sources
and the publish-subscribe infrastructure, events in
Lostrego reach the analysis infrastructure in a few
seconds at most normally, since they are sent as soon
as the student’s action is detected. On the other
hand, data in PLA is not sent to the infrastructure
until the next code commit of the student.

2. As a consequence of the point above, events in Lostrego
can be analyzed, filtered, aggregated and displayed
on the fly as new events reach the infrastructure.
For example, a live analysis can be performed at
any moment during a laboratory session as shown
in Section 4.4. Applications can choose whether to
store any data at all. On the contrary, the poten-
tially high delays of PLA prevent performing on the
fly analyses, i.e. data can only be analyzed later in
batch mode. In addition, data is necessarily stored,
at least inside the Subversion repositories where they
are received.

3. Since the only prerequisite for data sources in Lostrego
is being able to send HTTP POST requests, data
sources can easily be integrated in any environment
or learning management system. On the contrary,
PLA can only track events happening inside the stu-
dent’s virtual machine because of relying on a ver-
sion control system. Using it in other environments
would be far from trivial.

4. The high flexibility of the underlying publish-subscribe
system makes it possible to easily replicate any com-
ponent of the Lostrego infrastructure, making it more
fault-tolerant and scalable. On the other hand, PLA
suffers from a single point of failure in the Subversion
server.

The quantitative analysis focuses on comparing two in-
dicators: events successfully received at the server infras-
tructure of each system and their delivery delay, i.e. the
time passed since the event was detected and it reached the
server. Since PLA only works on the course virtual ma-
chines, events coming from other sources (the laboratory
computers) were not taken into account for this compari-
son.

Approach
PLA Lostrego

Students enrolled in the course 118
Students participating in the ac-
tivities

115

Students with recorded events 111 113
of recorded events 157, 293 167, 536
of recorded events
per Student

Median 965.0 1, 005.5

Delay Median (s) 6, 364.00 1.00

Table 7: Comparison between PLA and Lostrego approaches (only
events from the virtual appliances are taken into account)

Table 7 summarizes the most relevant data regarding
those two indicators. Both approaches were able to col-
lect a high number of events, with a median of around
1,000 events per student. They also gathered data from
most of the students that participated in the course ac-
tivities. This means that most of them did not opt out
of the tracking features installed in the virtual machines.
Every single event gathered by PLA was also gathered
by Lostrego. However, 6.11% of the events gathered by
Lostrego from the course virtual machines (10, 243 events)

12

were not gathered by PLA, the reason being that those
events were stored in the local repository within the vir-
tual machine, but the student did no further Subversion
commit after. Figure 11 shows that for most students
(76.79%) PLA lost less than the 10% of their generated
events. The median percentage of events lost per student
was 0%, with a mean value of 8.80% and a standard devi-
ation of 18.86%. It can be concluded that PLA gathered
less events, but loss rates seem to be acceptable.

0 20 40 60 80 100
% of Events Lost if using only PLA

0

10

20

30

40

50

60

70

80

%
 o

f S
tu

de
nt

s

Figure 11: Histogram of the percentage of events lost per student if
PLA were the only monitoring mechanism.

Figure 12: Comparison between the delay of Lostrego and PLA (y-
axis in logarithmic scale) for those events gathered through the two
approaches.

Regarding event delivery delay, there was a significant
difference between the two approaches. Once an event is
detected and needs to be sent to the server infrastructure,
the most important sources of delay in the two systems
are:

• In Lostrego: loss of network connectivity between
the virtual machine and the publish-subscribe server
when an event is created, due normally to the vir-
tual machine not having Internet access or a failure

at the server side. In that case, events are stored
by the tracker, which tries to send them again when
the next event happens. For example, the server
was actually down during the case study for a whole
weekend due to works on the electrical system of
the building. During the following days the delayed
events reached the server gradually as students started
new working sessions on their virtual machines.

• In PLA: amount of time until students do the next
Subversion commit and loss of network connectiv-
ity between the virtual machine and the Subversion
server when attempting to do the commit operation,
due normally to the virtual machine not having In-
ternet access or a failure at the server side. Events
are stored by the tracker until a commit operation
initiated by the student succeeds.

The box plot of Figure 12 shows that Lostrego clearly
outperforms PLA in this indicator. Events needed just
a median of 1s to reach the Lostrego publish-subscribe
server since the instant they were created within the vir-
tual machine. However, they needed a median of 106min
to reach the server side of the Subversion repositories in
PLA. A more detailed analysis based on the cumulative
distribution functions presented Figure 13 shows that:

• A total of 67.61% of the events reached the Lostrego
server in at most 1s, versus more than 15h in PLA.

• A total of 95% of the events reached the Lostrego
server in at most 13s. versus more than 7 days in
PLA.

• A total of 98% of events reached the Lostrego server
in less than 4.7h, versus more than 15 days in PLA.

101 100 101 102 103 104 105 106

Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

P(dLostrego 16916) P(dPLA 1307265)
P(dLostrego 13)

P(dPLA 619361)
P(dLostrego 1)

P(dPLA 56957)

Figure 13: Cumulative Distribution Function of the Lostrego and
PLA delay (x-axis in logarithmic scale.)

7. Discussion

This section discusses, from the experience and results
obtained in the application of Lostrego to the case study,

13

the main advantages and limitations of our proposal. We
identify the following main advantages:

• Ability to gather and analyze the data in real time:
As showed in Section 5, the vast majority of the
events were ready to be processed at the analysis
infrastructure within a few seconds after they hap-
pened. This delay, much smaller than with other
previous approaches, allows the system to produce,
for example, visualizations that present instructors
with an overview of the progress of their class at a
certain point in the middle of a laboratory session,
such as those shown in Figures 5 and 8, or to raise
an alarm when a student gets stuck in an exercise
for too much time, so that instructors or connected
automatic tutoring systems can give her a hint on
how to progress.

• Ability to process events on-the-fly: Lostrego appli-
cations are stream based, so, inherently, events can
be processed, filtered and analyzed on-the-fly with-
out the need of being stored within a database or
repository. This allows to deploy responsive applica-
tions that react almost immediately to a change on
the data. Other approaches that claim to be real-
time are based on polling a repository (Kitto et al.,
2016) or their data come from a real-time environ-
ment although the analysis framework is based on
polling repositories (Dodero et al., 2017).

• Extensibility: Because communications are conducted
through the HTTP protocol, which means that ev-
ery event sent through HTTP is susceptible of be-
ing injected into Lostrego infrastructure, new data
sources, analysis modules and end-user applications
for instructors and students can easily be plugged
into the system, according to the needs of a course
or educational institution, instead of being tied to
a specific LMS or workspace as other previous ap-
proaches (Gómez-Aguilar et al., 2015; Petkovic et al.,
2014; Romero-Zaldivar et al., 2012).

• Flexibility and scalability of the platform: The plat-
form underlying Lostrego is flexible in the sense that
many alternative network layouts are possible ac-
cording to the needs of every course or institution. In
addition, the gathering of the data as well as their
processing can be distributed across several nodes
in high data volume scenarios. Ztreamy has been
proved to cope with the gathering of more than 25,000
events per minute from a single-server setup in a
smart city setting (Fisteus et al., 2016).

• Data interoperability: As Lostrego is agnostic re-
garding the internal event body data structure, it
naturally allows the coexistence of applications that
use different internal event models. Furthermore, if
the application to be developed on top of the Lostrego

infrastructure deals only with data streams that in-
ternally use the same data specification (for example,
xAPI (Experience API Working Group, 2014)), the
development of data adapters is not needed.

In addition, the results presented in Section 5.2 show
that some parameters derived from the data gathered in
our case study, and especially those due to the working
sessions detection service, present a moderate to strong
correlation with the final marks of the students, and that
those correlation coefficients are fairly consistent between
the two editions of the course. A combination of several
of those indicators can also be used as predictors of final
marks. This fact contributes to the evidence that statisti-
cal models derived from previous editions of a course could
potentially be used to predict the performance of students
and help the instructors to early identify students that
need help. This and other ways to exploit the gathered
data will be explored in our future work.

However, our proposal also presents some limitations
that could prevent its use in some courses:

• Privacy: The system needs to do an extensive track-
ing of the students’ activity while they work on the
activities of the course. In order to protect their
privacy, they should be able to opt out of the track-
ing (Pardo and Siemens, 2014), but if too many stu-
dents did so, the system would become useless. The
problem may be alleviated by: (1) limiting the track-
ing to the working environment of the course (e.g. in
the case study the course-specific virtual machines
and the laboratory account) and avoiding tracking
from devices the students use for personal matters
and activities not related to the course; (2) limit-
ing the tracking to just the most relevant actions
(e.g. avoid tracking every program they execute,
their browsing history outside course materials, etc.);
(3) use the gathered data to provide useful and per-
sonalized feedback to students, which should increase
their willingness to be tracked. In the deployment of
our case study we applied measures (1) and (2) and
results show that in general our students accepted
the use of tracking tools.

• Need to instrument learning environments with mon-
itoring agents: The usefulness of our proposal de-
pends on the ability to track the students’ actions
as they work on course activities. In this area, we
identify several potential limitations. First, learn-
ing environments are heterogeneous and therefore
ad–hoc monitoring agents need to be developed for
them. Our experience with the case study is, how-
ever, that those agents were not costly to develop,
being around 100 lines each and easily reusable for
tracking other commands or the web materials of
other courses. The use of HTTP and JSON, which
are conveniently supported in most application plat-
forms and programming languages, also alleviates

14

the problem. Second, some environments such as
institution–wide LMSs and MOOC platforms require
institutional support in order to install the agents.
Where that is not possible, developing the agent as
a browser extension, and relying on the students to
install it in their browsers and give it permission
to track their interaction with the LMS or MOOC
platform might be a solution. As explained before,
bundling some value–added services for students in
those extensions might make them more willing to
collaborate. Third, while our proposal is quite ap-
propriate for courses with frequent interaction with
computer tools such as learning management sys-
tems, computer-based laboratories (e.g. simulators,
design tools, programming tools, mathematics and
statistical tools, educational games, etc.) and MOOC
platforms, it will not be useful in courses in which
the majority of the activities do not happen within
a computerized environment.

• Need of qualified technical support and IT infras-
tructure: The system requires IT infrastructure to
run its server side, and technical support to deploy-
ing and maintaining it, as well as programming ap-
plications tailored to the needs of every course. We
believe that, if the initiative raises enough interest,
some companies in the area of educational technolo-
gies could be willing to provide it as a cloud service,
and some universities and other educational institu-
tions might provide it as another service to their in-
structors the same way they currently provide other
services such as learning management systems like
Moodle. Their deployment of the system might in-
clude a portfolio of useful analysis services and ap-
plications covering the needs of most courses.

8. Conclusions and Future Work

This paper presented the Lostrego infrastructure, which
allows the automatic and real-time collection and analy-
sis of events from heterogeneous learning environments.
Its main difference with respect to other approaches in
the state of the art is its real-time and scalable deliv-
ery and processing of the gathered data, which opens the
door to the development of innovative analysis tools in
which immediacy is a requirement. As a proof of concept,
the Lostrego infrastructure was validated in a second year
computer programming course. This case study shows the
usefulness of those kinds of analysis tools and the suitabil-
ity of the proposed infrastructure to gather and analyze
learning events in a timely fashion.

The infrastructure has been designed to be generic,
modular and flexible. New monitoring agents and anal-
ysis modules can be developed and plugged into it. A set
of core reusable modules have already been integrated into
the infrastructure, such as the working session detection
service and the team annotation service. However, other

analysis modules can be developed and plugged accord-
ing to the needs of each educational institution or specific
course.

Once the Lostrego infrastructure has been developed,
deployed and tested, several research lines arise:

• Other STEM courses from the same institution are
using Lostrego to gather and analyze learning data
from students. We plan to analyze the completeness
of the gathered data in these settings.

• Different tools are being developed within the Lostrego
ecosystem. Some are general and suitable for differ-
ent courses, such as a visual learning analytics dash-
board, while others are tailored to the case study
presented in this paper, such as an error annotation
system that identifies compilation errors (from the
output of the gcc and javac compilers) and memory
errors (from the output of Valgrind) of a given event.
We will provide these tools to different teachers and
we plan to measure if the tools effectively increment
teacher awareness during lectures.

• Since the analysis in Section 5.2 suggests that the
gathered data could be used as a predictor of a stu-
dent’s performance, we plan to explore other statis-
tical learning techniques in order to integrate such
predictors into the platform.

• We are also working on the identification of the pat-
terns followed by students when learning using pro-
cess mining (Bannert et al., 2014).

• We plan to analyze the gathered data as a time
series, as proposed by (González Nespereira et al.,
2015), in order to try to predict students’ results.

• Finally, we plan to develop a visual web application-
composer, suitable for teachers with less knowledge
in computer technologies, where they can select and
ensemble the Lostrego services to be used in an appli-
cation (including the visualizations from the student
data).

Acknowledgments

This work was partially funded by: the Spanish Com-
petitiveness and Economy Ministry through projects “RESET-
UC3M: Reformulando Ecosistemas Escalables Educativos”
(TIN-2014-53199-C3-1-R) and “Hermes-Smartdriver. Con-
ducción eficiente y procesamiento semántico de la infor-
mación” (TIN2013-46801-C4-2-R); and by the Commu-
nity of Madrid through its regional project “eMadrid”
(S2013/ICE-2715).

References

Andrews, J., Higson, H., 2008. Graduate employability,‘soft skills’
versus ‘hard’business knowledge: A european study. Higher edu-
cation in Europe 33, 411–422.

15

Babu, S., Widom, J., 2001. Continuous queries over data streams.
ACM Sigmod Record 30, 109–120.

Bannert, M., Reimann, P., Sonnenberg, C., 2014. Process mining
techniques for analysing patterns and strategies in students’ self-
regulated learning. Metacognition and learning 9, 161–185.

Bolet́ın Oficial del Estado, 1999. Ley Orgánica 15/1999, de 13 de
diciembre, de Protección de Datos de Carácter Personal.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J.,
Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S.R.,
Reiss, F., Shah, M.A., 2003. Telegraphcq: continuous dataflow
processing, in: Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, ACM. pp. 668–668.

Del Blanco, Á., Serrano, Á., Freire, M., Mart́ınez-Ortiz, I.,
Fernández-Manjón, B., 2013. E-learning standards and learn-
ing analytics. can data collection be improved by using stan-
dard data models?, in: Global Engineering Education Conference
(EDUCON), 2013 IEEE, IEEE. pp. 1255–1261.

Dodero, J.M., González-Conejero, E.J., Gutiérrez-Herrera, G.,
Peinado, S., Tocino, J.T., Ruiz-Rube, I., 2017. Trade-off between
interoperability and data collection performance when designing
an architecture for learning analytics. Future Generation Com-
puter Systems 68, 31 – 37. URL: http://www.sciencedirect.

com/science/article/pii/S0167739X16302813, doi:http://dx.
doi.org/10.1016/j.future.2016.06.040.

Estévez-Ayres, I., Alario-Hoyos, C., Pérez-Sanagust́ın, M., Pardo,
A., Crespo-Garćıa, R.M., Leony, D., Parada G., H.A., Delgado-
Kloos, C., 2015. A methodology for improving active learning
engineering courses with a large number of students and teach-
ers through feedback gathering and iterative refinement. Interna-
tional Journal of Technology and Design Education 25, 387–408.
URL: http://dx.doi.org/10.1007/s10798-014-9288-6, doi:10.
1007/s10798-014-9288-6.

Experience API Working Group, 2014. Experience API, version
1.0.2. Advanced Distributed Learning (ADL). URL: https:

//github.com/adlnet/xAPI-Spec/blob/master/xAPI.md.
Ferguson, R., Brasher, A., Clow, D., Cooper, A.and Hillaire, G.,

Mittelmeier, J., Rienties, B., Ullmann, T., Vuorikari, R., 2016.
Research Evidence on the Use of Learning Analytics - Implications
for Education Policy. EUR - Scientific and Technical Research
Reports. Joint Research Centre Science for Policy Report. doi:10.
2791/955210. eUR 28294 EN.

Fisteus, J.A., Fernandez, L.S., Magana, V.C., Organero, M.M.,
Fernandez, J.Y., Alvarez-Garcia, J.A., 2016. A scalable data
streaming infrastructure for smart cities, in: Falomir, Z., Or-
tega, J.A. (Eds.), Proc. of the XVIII Workshop on Qualita-
tive Systems and Applications in Diagnosis, Robotics and Am-
bient Intelligence (JARCA 2016), Aachen. pp. 7–13. URL: http:
//ceur-ws.org/Vol-1812/JARCA16-paper-2.pdf.

Fisteus, J.A., Garcia, N.F., Fernandez, L.S., Fuentes-Lorenzo, D.,
2014. Ztreamy: A middleware for publishing semantic streams on
the web. Web Semantics: Science, Services and Agents on the
World Wide Web 25, 16–23. doi:10.1016/j.websem.2013.11.002.

Fox, A., 2013. From MOOCs to SPOCs. Communications of the
ACM 56, 38–40.

Ghate, P.V., Pati, H.K., 2016. Collaborative distributed communi-
cation in heterogeneous environments: A comprehensive survey.
Journal of Network and Computer Applications 61, 1–20.

Golab, L., Özsu, M.T., 2003. Issues in data stream management.
ACM Sigmod Record 32, 5–14.

Gómez-Aguilar, D.A., Hernández-Garćıa, Á., Garćıa-Peñalvo, F.J.,
Therón, R., 2015. Tap into visual analysis of customization of
grouping of activities in elearning. Computers in Human Behavior
47, 60–67. doi:10.1016/j.chb.2014.11.001.

González Nespereira, C., Fernández Vilas, A., Dı́az Redondo, R.P.,
2015. Am I failing this course?: risk prediction using e-learning
data, in: Proceedings of the 3rd International Conference on Tech-
nological Ecosystems for Enhancing Multiculturality, ACM. pp.
271–276.

Haag, V., Millar, M., Nayak, P., Vento, C., Whyte, A., Sinha, V.,
2015. Caliper Analytics v1 Final Specification. IMS Global Learn-
ing Consortium. URL: https://www.imsglobal.org/activity/

caliperram.
Hwang, G.J., 2014. Definition, framework and research issues of

smart learning environments-a context-aware ubiquitous learning
perspective. Smart Learning Environments 1, 4.

Jadud, M.C., 2006. Methods and tools for exploring novice com-
pilation behaviour, in: Proceedings of the second international
workshop on Computing education research, ACM. pp. 73–84.

Kim, M., Karenos, K., Ye, F., Reason, J., Lei, H., Shagin, K.,
2010. Efficacy of techniques for responsiveness in a wide-area pub-
lish/subscribe system, in: Proceedings of the 11th International
Middleware Conference Industrial track, ACM. pp. 40–45.

Kinshuk, Chen, N.S., Cheng, I.L., Chew, S.W., 2016. Evolution
is not enough: Revolutionizing current learning environments to
smart learning environments. International Journal of Artificial
Intelligence in Education 26, 561–581.

Kitto, K., Bakharia, A., Lupton, M., Mallet, D., Banks, J., Bruza,
P., Pardo, A., Shum, S.B., Dawson, S., Gašević, D., et al., 2016.
The connected learning analytics toolkit, in: Proceedings of the
Sixth International Conference on Learning Analytics & Knowl-
edge, ACM. pp. 548–549.

Kovanovic, V., Gašević, D., Dawson, S., Joksimovic, S., Baker, R.,
2016. Does time-on-task estimation matter? implications on va-
lidity of learning analytics findings. Journal of Learning Analytics
2, 81–110.

Lewkow, N., Feild, J., Zimmerman, N., Riedesel, M., Essa, A.,
Boulanger, D., Seanosky, J., Kumar, V., Kinshuk, Kode, S.,
2016. A scalable learning analytics platform for automated writ-
ing feedback, in: Proceedings of the Third (2016) ACM Con-
ference on Learning @ Scale, ACM, New York, NY, USA. pp.
109–112. URL: http://doi.acm.org/10.1145/2876034.2893380,
doi:10.1145/2876034.2893380.

Pardo, A., Kloos, C.D., 2011. Subcollaboration: large-scale group
management in collaborative learning. Software: Practice and
Experience 41, 449–465. doi:10.1002/spe.1023.

Pardo, A., Siemens, G., 2014. Ethical and privacy principles for
learning analytics. British Journal of Educational Technology 45,
438–450.

Pérez-Sanagust́ın, M., Ramirez-Gonzalez, G., Hernández-Leo, D.,
Muñoz-Organero, M., Santos, P., Blat, J., Kloos, C.D., 2012.
Discovering the campus together: A mobile and computer-based
learning experience. Journal of Network and Computer Applica-
tions 35, 176–188.

Petkovic, D., Sosnick-Pérez, M., Huang, S., Todtenhoefer, R.,
Okada, K., Arora, S., Sreenivasen, R., Flores, L., Dubey, S., 2014.
Setap: Software engineering teamwork assessment and prediction
using machine learning, in: Frontiers in Education Conference
(FIE), 2014 IEEE, IEEE. pp. 1–8.

Petkovic, D., Sosnick-Perez, M., Okada, K., Todtenhoefer, R.,
Huang, S., Miglani, N., Vigil, A., 2016. Using the random forest
classifier to assess and predict student learning of software engi-
neering teamwork, in: Frontiers in Education Conference (FIE),
2016 IEEE, IEEE. pp. 1–7.

Rodrigo, M.M.T., Tabanao, E., Lahoz, M.B.E., Jadud, M.C., 2009.
Analyzing online protocols to characterize novice java program-
mers. Philippine Journal of Science 138, 177–190.

Romero, C., Ventura, S., 2013. Data mining in education. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery
3, 12–27.

Romero-Zaldivar, V.A., Pardo, A., Burgos, D., Kloos, C.D., 2012.
Monitoring student progress using virtual appliances: A case
study. Computers & Education 58, 1058–1067. doi:10.1016/j.
compedu.2011.12.003.

Sahami, M., Danyluk, A., Fincher, S., Fisher, K., Grossman, D.,
Hawthorne, E., Katz, R., LeBlanc, R., Reed, D., Roach, S.,
et al., 2013. Computer Science Curricula 2013: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Sci-
ence. Technical Report. The Association for Computing Machin-
ery (ACM) and IEEE Computer Society Joint Task Force on Com-
puting Curricula. Available at https://www.acm.org/education/
CS2013-final-report.pdf.

Siemens, G., Gasevic, D., 2012. Guest editorial-learning and knowl-

16

http://www.sciencedirect.com/science/article/pii/S0167739X16302813
http://www.sciencedirect.com/science/article/pii/S0167739X16302813
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2016.06.040
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2016.06.040
http://dx.doi.org/10.1007/s10798-014-9288-6
http://dx.doi.org/10.1007/s10798-014-9288-6
http://dx.doi.org/10.1007/s10798-014-9288-6
https://github.com/adlnet/xAPI-Spec/blob/master/xAPI.md
https://github.com/adlnet/xAPI-Spec/blob/master/xAPI.md
http://dx.doi.org/10.2791/955210
http://dx.doi.org/10.2791/955210
http://ceur-ws.org/Vol-1812/JARCA16-paper-2.pdf
http://ceur-ws.org/Vol-1812/JARCA16-paper-2.pdf
http://dx.doi.org/10.1016/j.websem.2013.11.002
http://dx.doi.org/10.1016/j.chb.2014.11.001
https://www.imsglobal.org/activity/caliperram
https://www.imsglobal.org/activity/caliperram
http://doi.acm.org/10.1145/2876034.2893380
http://dx.doi.org/10.1145/2876034.2893380
http://dx.doi.org/10.1002/spe.1023
http://dx.doi.org/10.1016/j.compedu.2011.12.003
http://dx.doi.org/10.1016/j.compedu.2011.12.003
https://www.acm.org/education/CS2013-final-report.pdf
https://www.acm.org/education/CS2013-final-report.pdf

edge analytics. Educational Technology & Society 15, 1–2.
Suppes, P., 1968. Computer technology and the future of education.

Creative Educational Materials.
Tatbul, N., 2010. Streaming data integration: Challenges and oppor-

tunities, in: Data Engineering Workshops (ICDEW), 2010 IEEE
26th International Conference on, IEEE. pp. 155–158.

Watson, C., Li, F.W., Godwin, J.L., 2013. Predicting performance
in an introductory programming course by logging and analyzing
student programming behavior, in: Advanced Learning Technolo-
gies (ICALT), 2013 IEEE 13th International Conference on, IEEE.
pp. 319–323.

Willman, S., Lindén, R., Kaila, E., Rajala, T., Laakso, M.J.,
Salakoski, T., 2015. On study habits on an introductory course
on programming. Computer Science Education 25, 276–291.

17

	Introduction
	The Lostrego Infrastructure
	Requirements
	Architecture
	Implementation
	Publish-subscribe Infrastructure
	Lostrego Event Objects

	Data Processing in Lostrego
	Team Annotation Service
	Exercise Detection Service
	Working Sessions Detection Service

	Case Study
	Compliance with Data Privacy Legislation
	Deployment of the Monitoring Agents
	Deployment of the Analysis Infrastructure
	Practical Use of Lostrego

	Results
	Recorded Events
	Relationship with Individual Academic Performance

	Comparison with Other Approaches
	Discussion
	Conclusions and Future Work

