
java.util
Class Vector<E>

java.lang.Object
 java.util.AbstractCollection<E>
 java.util.AbstractList<E>
 java.util.Vector<E>

All Implemented Interfaces:
Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess

Direct Known Subclasses:
Stack

public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, Serializable

The Vector class implements a growable array of objects. Like an array, it contains components that can be accessed using an integer index. However, the size of
a Vector can grow or shrink as needed to accommodate adding and removing items after the Vector has been created.

Each vector tries to optimize storage management by maintaining a capacity and a capacityIncrement. The capacity is always at least as large as the vector
size; it is usually larger because as components are added to the vector, the vector's storage increases in chunks the size of capacityIncrement. An application
can increase the capacity of a vector before inserting a large number of components; this reduces the amount of incremental reallocation.

As of the Java 2 platform v1.2, this class has been retrofitted to implement List, so that it becomes a part of Java's collection framework. Unlike the new collection
implementations, Vector is synchronized.

The Iterators returned by Vector's iterator and listIterator methods are fail-fast: if the Vector is structurally modified at any time after the Iterator is created, in any
way except through the Iterator's own remove or add methods, the Iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent
modification, the Iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future. The

Overview Package Class Use Tree Deprecated Index Help JavaTM 2 Platform
Standard Ed. 5.0 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Página 1 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

Enumerations returned by Vector's elements method are not fail-fast.

Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of
unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to
write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.

This class is a member of the Java Collections Framework.

Since:
JDK1.0

See Also:
Collection, List, ArrayList, LinkedList, Serialized Form

Field Summary
protected

 int capacityIncrement
 The amount by which the capacity of the vector is automatically incremented when its size becomes greater than its capacity.

protected
 int elementCount

 The number of valid components in this Vector object.
protected
 Object[] elementData

 The array buffer into which the components of the vector are stored.

Fields inherited from class java.util.AbstractList
modCount

Constructor Summary
Vector()
 Constructs an empty vector so that its internal data array has size 10 and its standard capacity increment is zero.

Vector(Collection<? extends E> c)
 Constructs a vector containing the elements of the specified collection, in the order they are returned by the collection's iterator.

Vector(int initialCapacity)

Página 2 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

 Constructs an empty vector with the specified initial capacity and with its capacity increment equal to zero.

Vector(int initialCapacity, int capacityIncrement)
 Constructs an empty vector with the specified initial capacity and capacity increment.

Method Summary
 boolean add(E o)

 Appends the specified element to the end of this Vector.
 void add(int index, E element)

 Inserts the specified element at the specified position in this Vector.
 boolean addAll(Collection<? extends E> c)

 Appends all of the elements in the specified Collection to the end of this Vector, in the order that they are returned by the specified
Collection's Iterator.

 boolean addAll(int index, Collection<? extends E> c)
 Inserts all of the elements in the specified Collection into this Vector at the specified position.

 void addElement(E obj)
 Adds the specified component to the end of this vector, increasing its size by one.

 int capacity()
 Returns the current capacity of this vector.

 void clear()
 Removes all of the elements from this Vector.

 Object clone()
 Returns a clone of this vector.

 boolean contains(Object elem)
 Tests if the specified object is a component in this vector.

 boolean containsAll(Collection<?> c)
 Returns true if this Vector contains all of the elements in the specified Collection.

 void copyInto(Object[] anArray)
 Copies the components of this vector into the specified array.

 E elementAt(int index)
 Returns the component at the specified index.

 Enumeration<E>

Página 3 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

elements()
 Returns an enumeration of the components of this vector.

 void ensureCapacity(int minCapacity)
 Increases the capacity of this vector, if necessary, to ensure that it can hold at least the number of components specified by the minimum
capacity argument.

 boolean equals(Object o)
 Compares the specified Object with this Vector for equality.

 E firstElement()
 Returns the first component (the item at index 0) of this vector.

 E get(int index)
 Returns the element at the specified position in this Vector.

 int hashCode()
 Returns the hash code value for this Vector.

 int indexOf(Object elem)
 Searches for the first occurence of the given argument, testing for equality using the equals method.

 int indexOf(Object elem, int index)
 Searches for the first occurence of the given argument, beginning the search at index, and testing for equality using the equals method.

 void insertElementAt(E obj, int index)
 Inserts the specified object as a component in this vector at the specified index.

 boolean isEmpty()
 Tests if this vector has no components.

 E lastElement()
 Returns the last component of the vector.

 int lastIndexOf(Object elem)
 Returns the index of the last occurrence of the specified object in this vector.

 int lastIndexOf(Object elem, int index)
 Searches backwards for the specified object, starting from the specified index, and returns an index to it.

 E remove(int index)
 Removes the element at the specified position in this Vector.

 boolean remove(Object o)
 Removes the first occurrence of the specified element in this Vector If the Vector does not contain the element, it is unchanged.

Página 4 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

 boolean removeAll(Collection<?> c)
 Removes from this Vector all of its elements that are contained in the specified Collection.

 void removeAllElements()
 Removes all components from this vector and sets its size to zero.

 boolean removeElement(Object obj)
 Removes the first (lowest -indexed) occurrence of the argument from this vector.

 void removeElementAt(int index)
 Deletes the component at the specified index.

protected void removeRange(int fromIndex, int toIndex)
 Removes from this List all of the elements whose index is between fromIndex, inclusive and toIndex, exclusive.

 boolean retainAll(Collection<?> c)
 Retains only the elements in this Vector that are contained in the specified Collection.

 E set(int index, E element)
 Replaces the element at the specified position in this Vector with the specified element.

 void setElementAt(E obj, int index)
 Sets the component at the specified index of this vector to be the specified object.

 void setSize(int newSize)
 Sets the size of this vector.

 int size()
 Returns the number of components in this vector.

 List<E> subList(int fromIndex, int toIndex)
 Returns a view of the portion of this List between fromIndex, inclusive, and toIndex, exclusive.

 Object[] toArray()
 Returns an array containing all of the elements in this Vector in the correct order.

<T> T[] toArray(T[] a)
 Returns an array containing all of the elements in this Vector in the correct order; the runtime type of the returned array is that of the
specified array.

 String toString()
 Returns a string representation of this Vector, containing the String representation of each element.

 void trimToSize()
 Trims the capacity of this vector to be the vector's current size.

Página 5 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

elementData

protected Object[] elementData

The array buffer into which the components of the vector are stored. The capacity of the vector is the length of this array buffer, and is at least large enough
to contain all the vector's elements.

Any array elements following the last element in the Vector are null.

elementCount

protected int elementCount

The number of valid components in this Vector object. Components elementData[0] through elementData[elementCount-1] are the actual items.

capacityIncrement

Methods inherited from class java.util.AbstractList
iterator, listIterator, listIterator

Methods inherited from class java.lang.Object
finalize, getClass, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.util.List
iterator, listIterator, listIterator

Field Detail

Página 6 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

protected int capacityIncrement

The amount by which the capacity of the vector is automatically incremented when its size becomes greater than its capacity. If the capacity increment is
less than or equal to zero, the capacity of the vector is doubled each time it needs to grow.

Vector

public Vector(int initialCapacity,
 int capacityIncrement)

Constructs an empty vector with the specified initial capacity and capacity increment.

Parameters:
initialCapacity - the initial capacity of the vector.
capacityIncrement - the amount by which the capacity is increased when the vector overflows.

Throws:
IllegalArgumentException - if the specified initial capacity is negative

Vector

public Vector(int initialCapacity)

Constructs an empty vector with the specified initial capacity and with its capacity increment equal to zero.

Parameters:
initialCapacity - the initial capacity of the vector.

Throws:
IllegalArgumentException - if the specified initial capacity is negative

Vector

Constructor Detail

Página 7 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

public Vector()

Constructs an empty vector so that its internal data array has size 10 and its standard capacity increment is zero.

Vector

public Vector(Collection<? extends E> c)

Constructs a vector containing the elements of the specified collection, in the order they are returned by the collection's iterator.

Parameters:
c - the collection whose elements are to be placed into this vector.

Throws:
NullPointerException - if the specified collection is null.

Since:
1.2

copyInto

public void copyInto(Object[] anArray)

Copies the components of this vector into the specified array. The item at index k in this vector is copied into component k of anArray. The array must be
big enough to hold all the objects in this vector, else an IndexOutOfBoundsException is thrown.

Parameters:
anArray - the array into which the components get copied.

Throws:
NullPointerException - if the given array is null.

trimToSize

Method Detail

Página 8 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

public void trimToSize()

Trims the capacity of this vector to be the vector's current size. If the capacity of this vector is larger than its current size, then the capacity is changed to
equal the size by replacing its internal data array, kept in the field elementData, with a smaller one. An application can use this operation to minimize the
storage of a vector.

ensureCapacity

public void ensureCapacity(int minCapacity)

Increases the capacity of this vector, if necessary, to ensure that it can hold at least the number of components specified by the minimum capacity argument.

If the current capacity of this vector is less than minCapacity, then its capacity is increased by replacing its internal data array, kept in the field
elementData, with a larger one. The size of the new data array will be the old size plus capacityIncrement, unless the value of capacityIncrement is
less than or equal to zero, in which case the new capacity will be twice the old capacity; but if this new size is still smaller than minCapacity, then the new
capacity will be minCapacity.

Parameters:
minCapacity - the desired minimum capacity.

setSize

public void setSize(int newSize)

Sets the size of this vector. If the new size is greater than the current size, new null items are added to the end of the vector. If the new size is less than the
current size, all components at index newSize and greater are discarded.

Parameters:
newSize - the new size of this vector.

Throws:
ArrayIndexOutOfBoundsException - if new size is negative.

Página 9 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

capacity

public int capacity()

Returns the current capacity of this vector.

Returns:
the current capacity (the length of its internal data array, kept in the field elementData of this vector).

size

public int size()

Returns the number of components in this vector.

Specified by:
size in interface Collection<E>

Specified by:
size in interface List<E>

Specified by:
size in class AbstractCollection<E>

Returns:
the number of components in this vector.

isEmpty

public boolean isEmpty()

Tests if this vector has no components.

Specified by:
isEmpty in interface Collection<E>

Specified by:
isEmpty in interface List<E>

Página 10 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

Overrides:
isEmpty in class AbstractCollection<E>

Returns:
true if and only if this vector has no components, that is, its size is zero; false otherwise.

elements

public Enumeration<E> elements()

Returns an enumeration of the components of this vector. The returned Enumeration object will generate all items in this vector. The first item generated is
the item at index 0, then the item at index 1, and so on.

Returns:
an enumeration of the components of this vector.

See Also:
Enumeration, Iterator

contains

public boolean contains(Object elem)

Tests if the specified object is a component in this vector.

Specified by:
contains in interface Collection<E>

Specified by:
contains in interface List<E>

Overrides:
contains in class AbstractCollection<E>

Parameters:
elem - an object.

Returns:
true if and only if the specified object is the same as a component in this vector, as determined by the equals method; false otherwise.

Página 11 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

indexOf

public int indexOf(Object elem)

Searches for the first occurence of the given argument, testing for equality using the equals method.

Specified by:
indexOf in interface List<E>

Overrides:
indexOf in class AbstractList<E>

Parameters:
elem - an object.

Returns:
the index of the first occurrence of the argument in this vector, that is, the smallest value k such that elem.equals(elementData[k]) is true; returns
-1 if the object is not found.

See Also:
Object.equals(Object)

indexOf

public int indexOf(Object elem,
 int index)

Searches for the first occurence of the given argument, beginning the search at index, and testing for equality using the equals method.

Parameters:
elem - an object.
index - the non-negative index to start searching from.

Returns:
the index of the first occurrence of the object argument in this vector at position index or later in the vector, that is, the smallest value k such that
elem.equals(elementData[k]) && (k >= index) is true; returns -1 if the object is not found. (Returns -1 if index >= the current size of this
Vector.)

Throws:
IndexOutOfBoundsException - if index is negative.

Página 12 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

See Also:
Object.equals(Object)

lastIndexOf

public int lastIndexOf(Object elem)

Returns the index of the last occurrence of the specified object in this vector.

Specified by:
lastIndexOf in interface List<E>

Overrides:
lastIndexOf in class AbstractList<E>

Parameters:
elem - the desired component.

Returns:
the index of the last occurrence of the specified object in this vector, that is, the largest value k such that elem.equals(elementData[k]) is true;
returns -1 if the object is not found.

lastIndexOf

public int lastIndexOf(Object elem,
 int index)

Searches backwards for the specified object, starting from the specified index, and returns an index to it.

Parameters:
elem - the desired component.
index - the index to start searching from.

Returns:
the index of the last occurrence of the specified object in this vector at position less than or equal to index in the vector, that is, the largest value k
such that elem.equals(elementData[k]) && (k <= index) is true; -1 if the object is not found. (Returns -1 if index is negative.)

Throws:
IndexOutOfBoundsException - if index is greater than or equal to the current size of this vector.

Página 13 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

elementAt

public E elementAt(int index)

Returns the component at the specified index.

This method is identical in functionality to the get method (which is part of the List interface).

Parameters:
index - an index into this vector.

Returns:
the component at the specified index.

Throws:
ArrayIndexOutOfBoundsException - if the index is negative or not less than the current size of this Vector object. given.

See Also:
get(int), List

firstElement

public E firstElement()

Returns the first component (the item at index 0) of this vector.

Returns:
the first component of this vector.

Throws:
NoSuchElementException - if this vector has no components.

lastElement

public E lastElement()

Página 14 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

Returns the last component of the vector.

Returns:
the last component of the vector, i.e., the component at index size() - 1.

Throws:
NoSuchElementException - if this vector is empty.

setElementAt

public void setElementAt(E obj,
 int index)

Sets the component at the specified index of this vector to be the specified object. The previous component at that position is discarded.

The index must be a value greater than or equal to 0 and less than the current size of the vector.

This method is identical in functionality to the set method (which is part of the List interface). Note that the set method reverses the order of the parameters,
to more closely match array usage. Note also that the set method returns the old value that was stored at the specified position.

Parameters:
obj - what the component is to be set to.
index - the specified index.

Throws:
ArrayIndexOutOfBoundsException - if the index was invalid.

See Also:
size(), List, set(int, java.lang.Object)

removeElementAt

public void removeElementAt(int index)

Deletes the component at the specified index. Each component in this vector with an index greater or equal to the specified index is shifted downward to
have an index one smaller than the value it had previously. The size of this vector is decreased by 1.

Página 15 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

The index must be a value greater than or equal to 0 and less than the current size of the vector.

This method is identical in functionality to the remove method (which is part of the List interface). Note that the remove method returns the old value that
was stored at the specified position.

Parameters:
index - the index of the object to remove.

Throws:
ArrayIndexOutOfBoundsException - if the index was invalid.

See Also:
size(), remove(int), List

insertElementAt

public void insertElementAt(E obj,
 int index)

Inserts the specified object as a component in this vector at the specified index. Each component in this vector with an index greater or equal to the
specified index is shifted upward to have an index one greater than the value it had previously.

The index must be a value greater than or equal to 0 and less than or equal to the current size of the vector. (If the index is equal to the current size of the
vector, the new element is appended to the Vector.)

This method is identical in functionality to the add(Object, int) method (which is part of the List interface). Note that the add method reverses the order of
the parameters, to more closely match array usage.

Parameters:
obj - the component to insert.
index - where to insert the new component.

Throws:
ArrayIndexOutOfBoundsException - if the index was invalid.

See Also:
size(), add(int, Object), List

Página 16 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

addElement

public void addElement(E obj)

Adds the specified component to the end of this vector, increasing its size by one. The capacity of this vector is increased if its size becomes greater than its
capacity.

This method is identical in functionality to the add(Object) method (which is part of the List interface).

Parameters:
obj - the component to be added.

See Also:
add(Object), List

removeElement

public boolean removeElement(Object obj)

Removes the first (lowest-indexed) occurrence of the argument from this vector. If the object is found in this vector, each component in the vector with an
index greater or equal to the object's index is shifted downward to have an index one smaller than the value it had previously.

This method is identical in functionality to the remove(Object) method (which is part of the List interface).

Parameters:
obj - the component to be removed.

Returns:
true if the argument was a component of this vector; false otherwise.

See Also:
List.remove(Object), List

removeAllElements

public void removeAllElements()

Página 17 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

Removes all components from this vector and sets its size to zero.

This method is identical in functionality to the clear method (which is part of the List interface).

See Also:
clear(), List

clone

public Object clone()

Returns a clone of this vector. The copy will contain a reference to a clone of the internal data array, not a reference to the original internal data array of this
Vector object.

Overrides:
clone in class Object

Returns:
a clone of this vector.

See Also:
Cloneable

toArray

public Object[] toArray()

Returns an array containing all of the elements in this Vector in the correct order.

Specified by:
toArray in interface Collection<E>

Specified by:
toArray in interface List<E>

Overrides:
toArray in class AbstractCollection<E>

Returns:

Página 18 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

an array containing all of the elements in this collection.
Since:

1.2
See Also:

Arrays.asList(Object[])

toArray

public <T> T[] toArray(T[] a)

Returns an array containing all of the elements in this Vector in the correct order; the runtime type of the returned array is that of the specified array. If the
Vector fits in the specified array, it is returned therein. Otherwise, a new array is allocated with the runtime type of the specified array and the size of this
Vector.

If the Vector fits in the specified array with room to spare (i.e., the array has more elements than the Vector), the element in the array immediately following
the end of the Vector is set to null. This is useful in determining the length of the Vector only if the caller knows that the Vector does not contain any null
elements.

Specified by:
toArray in interface Collection<E>

Specified by:
toArray in interface List<E>

Overrides:
toArray in class AbstractCollection<E>

Parameters:
a - the array into which the elements of the Vector are to be stored, if it is big enough; otherwise, a new array of the same runtime type is allocated for
this purpose.

Returns:
an array containing the elements of the Vector.

Throws:
ArrayStoreException - the runtime type of a is not a supertype of the runtime type of every element in this Vector.
NullPointerException - if the given array is null.

Since:
1.2

Página 19 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

get

public E get(int index)

Returns the element at the specified position in this Vector.

Specified by:
get in interface List<E>

Specified by:
get in class AbstractList<E>

Parameters:
index - index of element to return.

Returns:
object at the specified index

Throws:
ArrayIndexOutOfBoundsException - index is out of range (index < 0 || index >= size()).

Since:
1.2

set

public E set(int index,
 E element)

Replaces the element at the specified position in this Vector with the specified element.

Specified by:
set in interface List<E>

Overrides:
set in class AbstractList<E>

Parameters:
index - index of element to replace.
element - element to be stored at the specified position.

Returns:
the element previously at the specified position.

Throws:

Página 20 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

ArrayIndexOutOfBoundsException - index out of range (index < 0 || index >= size()).
Since:

1.2

add

public boolean add(E o)

Appends the specified element to the end of this Vector.

Specified by:
add in interface Collection<E>

Specified by:
add in interface List<E>

Overrides:
add in class AbstractList<E>

Parameters:
o - element to be appended to this Vector.

Returns:
true (as per the general contract of Collection.add).

Since:
1.2

remove

public boolean remove(Object o)

Removes the first occurrence of the specified element in this Vector If the Vector does not contain the element, it is unchanged. More formally, removes the
element with the lowest index i such that (o==null ? get(i)==null : o.equals(get(i))) (if such an element exists).

Specified by:
remove in interface Collection<E>

Specified by:
remove in interface List<E>

Página 21 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

Overrides:
remove in class AbstractCollection<E>

Parameters:
o - element to be removed from this Vector, if present.

Returns:
true if the Vector contained the specified element.

Since:
1.2

add

public void add(int index,
 E element)

Inserts the specified element at the specified position in this Vector. Shifts the element currently at that position (if any) and any subsequent elements to the
right (adds one to their indices).

Specified by:
add in interface List<E>

Overrides:
add in class AbstractList<E>

Parameters:
index - index at which the specified element is to be inserted.
element - element to be inserted.

Throws:
ArrayIndexOutOfBoundsException - index is out of range (index < 0 || index > size()).

Since:
1.2

remove

public E remove(int index)

Removes the element at the specified position in this Vector. shifts any subsequent elements to the left (subtracts one from their indices). Returns the

Página 22 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

element that was removed from the Vector.

Specified by:
remove in interface List<E>

Overrides:
remove in class AbstractList<E>

Parameters:
index - the index of the element to removed.

Returns:
element that was removed

Throws:
ArrayIndexOutOfBoundsException - index out of range (index < 0 || index >= size()).

Since:
1.2

clear

public void clear()

Removes all of the elements from this Vector. The Vector will be empty after this call returns (unless it throws an exception).

Specified by:
clear in interface Collection<E>

Specified by:
clear in interface List<E>

Overrides:
clear in class AbstractList<E>

Since:
1.2

containsAll

public boolean containsAll(Collection<?> c)

Página 23 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

Returns true if this Vector contains all of the elements in the specified Collection.

Specified by:
containsAll in interface Collection<E>

Specified by:
containsAll in interface List<E>

Overrides:
containsAll in class AbstractCollection<E>

Parameters:
c - a collection whose elements will be tested for containment in this Vector

Returns:
true if this Vector contains all of the elements in the specified collection.

Throws:
NullPointerException - if the specified collection is null.

See Also:
AbstractCollection.contains(Object)

addAll

public boolean addAll(Collection<? extends E> c)

Appends all of the elements in the specified Collection to the end of this Vector, in the order that they are returned by the specified Collection's Iterator. The
behavior of this operation is undefined if the specified Collection is modified while the operation is in progress. (This implies that the behavior of this call is
undefined if the specified Collection is this Vector, and this Vector is nonempty.)

Specified by:
addAll in interface Collection<E>

Specified by:
addAll in interface List<E>

Overrides:
addAll in class AbstractCollection<E>

Parameters:
c - elements to be inserted into this Vector.

Returns:
true if this Vector changed as a result of the call.

Throws:

Página 24 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

NullPointerException - if the specified collection is null.
Since:

1.2
See Also:

AbstractCollection.add(Object)

removeAll

public boolean removeAll(Collection<?> c)

Removes from this Vector all of its elements that are contained in the specified Collection.

Specified by:
removeAll in interface Collection<E>

Specified by:
removeAll in interface List<E>

Overrides:
removeAll in class AbstractCollection<E>

Parameters:
c - a collection of elements to be removed from the Vector

Returns:
true if this Vector changed as a result of the call.

Throws:
NullPointerException - if the specified collection is null.

Since:
1.2

See Also:
AbstractCollection.remove(Object), AbstractCollection.contains(Object)

retainAll

public boolean retainAll(Collection<?> c)

Retains only the elements in this Vector that are contained in the specified Collection. In other words, removes from this Vector all of its elements that are

Página 25 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

not contained in the specified Collection.

Specified by:
retainAll in interface Collection<E>

Specified by:
retainAll in interface List<E>

Overrides:
retainAll in class AbstractCollection<E>

Parameters:
c - a collection of elements to be retained in this Vector (all other elements are removed)

Returns:
true if this Vector changed as a result of the call.

Throws:
NullPointerException - if the specified collection is null.

Since:
1.2

See Also:
AbstractCollection.remove(Object), AbstractCollection.contains(Object)

addAll

public boolean addAll(int index,
 Collection<? extends E> c)

Inserts all of the elements in the specified Collection into this Vector at the specified position. Shifts the element currently at that position (if any) and any
subsequent elements to the right (increases their indices). The new elements will appear in the Vector in the order that they are returned by the specified
Collection's iterator.

Specified by:
addAll in interface List<E>

Overrides:
addAll in class AbstractList<E>

Parameters:
index - index at which to insert first element from the specified collection.
c - elements to be inserted into this Vector.

Returns:

Página 26 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

true if this Vector changed as a result of the call.
Throws:

ArrayIndexOutOfBoundsException - index out of range (index < 0 || index > size()).
NullPointerException - if the specified collection is null.

Since:
1.2

equals

public boolean equals(Object o)

Compares the specified Object with this Vector for equality. Returns true if and only if the specified Object is also a List, both Lists have the same size, and
all corresponding pairs of elements in the two Lists are equal. (Two elements e1 and e2 are equal if (e1==null ? e2==null : e1.equals(e2)).) In other
words, two Lists are defined to be equal if they contain the same elements in the same order.

Specified by:
equals in interface Collection<E>

Specified by:
equals in interface List<E>

Overrides:
equals in class AbstractList<E>

Parameters:
o - the Object to be compared for equality with this Vector.

Returns:
true if the specified Object is equal to this Vector

See Also:
Object.hashCode(), Hashtable

hashCode

public int hashCode()

Returns the hash code value for this Vector.

Página 27 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

Specified by:
hashCode in interface Collection<E>

Specified by:
hashCode in interface List<E>

Overrides:
hashCode in class AbstractList<E>

Returns:
the hash code value for this list.

See Also:
Object.equals(java.lang.Object), Hashtable

toString

public String toString()

Returns a string representation of this Vector, containing the String representation of each element.

Overrides:
toString in class AbstractCollection<E>

Returns:
a string representation of this collection.

subList

public List<E> subList(int fromIndex,
 int toIndex)

Returns a view of the portion of this List between fromIndex, inclusive, and toIndex, exclusive. (If fromIndex and ToIndex are equal, the returned List is
empty.) The returned List is backed by this List, so changes in the returned List are reflected in this List, and vice-versa. The returned List supports all of the
optional List operations supported by this List.

This method eliminates the need for explicit range operations (of the sort that commonly exist for arrays). Any operation that expects a List can be used as a
range operation by operating on a subList view instead of a whole List. For example, the following idiom removes a range of elements from a List:

Página 28 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

 list.subList(from, to).clear();

Similar idioms may be constructed for indexOf and lastIndexOf, and all of the algorithms in the Collections class can be applied to a subList.

The semantics of the List returned by this method become undefined if the backing list (i.e., this List) is structurally modified in any way other than via the
returned List. (Structural modifications are those that change the size of the List, or otherwise perturb it in such a fashion that iterations in progress may
yield incorrect results.)

Specified by:
subList in interface List<E>

Overrides:
subList in class AbstractList<E>

Parameters:
fromIndex - low endpoint (inclusive) of the subList.
toIndex - high endpoint (exclusive) of the subList.

Returns:
a view of the specified range within this List.

Throws:
IndexOutOfBoundsException - endpoint index value out of range (fromIndex < 0 || toIndex > size)
IllegalArgumentException - endpoint indices out of order (fromIndex > toIndex)

removeRange

protected void removeRange(int fromIndex,
 int toIndex)

Removes from this List all of the elements whose index is between fromIndex, inclusive and toIndex, exclusive. Shifts any succeeding elements to the left
(reduces their index). This call shortens the ArrayList by (toIndex - fromIndex) elements. (If toIndex==fromIndex, this operation has no effect.)

Overrides:
removeRange in class AbstractList<E>

Parameters:
fromIndex - index of first element to be removed.
toIndex - index after last element to be removed.

Página 29 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

Submit a bug or feature
For further API reference and developer documentation, see Java 2 SDK SE Developer Documentation . That documentation contains more detailed, developer-targeted descriptions, with
conceptual overviews, definitions of terms, workarounds, and working code examples.

Copyright 2004 Sun Microsystems, Inc. All rights reserved. Use is subject to license terms. Also see the documentation redistribution policy .

Overview Package Class Use Tree Deprecated Index Help JavaTM 2 Platform
Standard Ed. 5.0 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Página 30 de 30Vector (Java 2 Platform SE 5.0)

05/03/2006http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html

