Java coding guidelines

This document is a summary of the guidelines to create elegant Java code.

These guidelines are not part of the Java specification: a given piece of Java code can break all of
these guidelines and still be a complete correct program.

However, experience teaches that following these guidelines leads in the long-term to better
programs. Code that is correctly formatted severely increases the readability, making much easier
to find problems.

For example, these two pieces of code are exactly the same code... which one do you think is
easier to read and understand?

public class Fofito {
public static

void main{5tring[] args) {
String mensajel="Fofito es feo"
H
String mensaje2
= "Tu si que eres feo";
boolean interruptor = | true;

int acumulador;

if (public class Fofito {

interruptor public static void main(String[] args) {
== String mensajel = "Fofito es feo™;
true String mensaje2 = "Tu si que eres fec";

)| boolean interruptor = true;

1

int acumulador;
System.out.println(mensajel); if (interruptor == true) {
System.out.println(mensajel);
b }
b b
¥ h

Oracle publishes a guide called Code Conventions for the Java programming Language
(http://www.oracle.com/technetwork/java/codeconv-138413.html) with several conventions that
are widely spread among the Java community of programmers. Such guide will provide advice on

how to name the classes, methods and properties, how to indent code, where to add carriage-
returns, how to write the braces,...

Do not read on until you have read the guide from Oracle. It is a bit long but it will be worth the
time.

http://www.oracle.com/technetwork/java/codeconv-138413.html

Eclipse can help you to correctly format the code. With a .java file open in the editor, use
Source ?Format to format the code with the built-in formatting rules.

= Java - Di\jsedanc\uc3m\ps12\Fofitojava - Eclipse SDK

File Edit Refactor Run Navigate Search Project Window Help
- = Toggle Comment Crl+7
Add Block Comment Ctrl+Shift+/
Fofito,java
- Remove Block Comment Ctrl+Shift+Y,
public{
publid Generate Flement Comment Alt+Shift+]
5tr]
St Shift Right
bool spift Left
int
iy Correct Indentation Cil+1
5 Format Ctrl+Shift+F
3 ! Format Element '
} Add Import Ctrl+Shift+M
Organize Imports Ctrb+Shift+0
Sort Members...

The default built-in formatting rules mostly comply with the rules defined by Oracle. However, the
teachers of the course use a slightly different set of rules (actually, the only difference is that lines
are indented using 2 spaces, instead of 1 TAB). If you want to use such slightly different formatting
rules, you can download the rules from this link (http://www.it.uc3m.es/java/2012-

13/resources/j java.xml) and import them into Eclipse through its preferences:

.
= Preferences (e X
type filter text Formatter (=14 - -

General - .
Android Configure Project Specific Settings.
Ant Active profile: N
Data Management IEchpsa[bul\t-m] l'\§ VI I Edit... Remove
Dynamic Languages
GlassFish Preferences Do Impotts Export Al
Help
HQL editor Preview:
Install/Update L e "
Java * A sample source file for the code formatter preview
Appearance 7
Build Path
Code Style package mypackage;
Clean Up import java.util.linkedlist; -
Code Templates|
Formatter public class MyIntStack {
ize Import private final LinkedList fStack;
Com,
Deb public MyIntStack() {
o fstack = new LinkedList();
Editor }
Installed JREs
Unit public int pop() {
Properties Files Editc return ((Integer) fStack.removeFirst()).intValue();
Java EE ¥ i
Java Persistence A ¢
JavaScript -
2vasenp Restore Defaults Apply
] . ¢
a
®

Additionally to those rules, experience teaches that some other rules should be followed:

e Try to avoid characters that are not US-ASCII. US-ASCII allows standard letters (a, b, c,...),
numbers (1, 2, 3,...) and standard punctuation marks (?, :, |, S, %,...) but not accentuated
letters (3, é, i, i, 6, U,...) nor “Spanish” punctuation marks (¢ and). Exception to this norm
may be the literals to be shown to the user.

e Use meaningful names for classes, methods, properties and variables. You may look cool
naming your variables with funny names, or using exercisel() for the methods... but that

http://www.it.uc3m.es/java/2012-13/resources/j_java.xml
http://www.it.uc3m.es/java/2012-13/resources/j_java.xml

will complicate your life later. And also the life of the teacher that will evaluate your code,
by the way.

Use the comments to explain what the code does. Read it again: WHAT the code does, not
HOW the code does it. An exception may be specially complicated algorithms. Use
meaningful names for classes, methods, proper... hold a second! Didn’t we wrote that
above? Sure. Many times, if you use meaningful names, you will not need to add a
comment. For example, if a method is called setHeight() you know that it obviously sets
the height; however, if you call the method setH(), you need to add a comment to say so.
Try to use short methods (not method names, but short methods themselves). If the
method fits your screen, you will be able to see it, read it and understand it at a glance.
However, if it does not fit, being continuously scrolling up and down will confuse you.

