
Java coding guidelines 

This document is a summary of the guidelines to create elegant Java code. 

These guidelines are not part of the Java specification: a given piece of Java code can break all of 

these guidelines and still be a complete correct program. 

However, experience teaches that following these guidelines leads in the long-term to better 

programs. Code that is correctly formatted severely increases the readability, making much easier 

to find problems. 

For example, these two pieces of code are exactly the same code… which one do you think is 

easier to read and understand? 

  

Oracle publishes a guide called Code Conventions for the Java programming Language 

(http://www.oracle.com/technetwork/java/codeconv-138413.html) with several conventions that 

are widely spread among the Java community of programmers. Such guide will provide advice on 

how to name the classes, methods and properties, how to indent code, where to add carriage-

returns, how to write the braces,… 

Do not read on until you have read the guide from Oracle. It is a bit long but it will be worth the 

time. 

http://www.oracle.com/technetwork/java/codeconv-138413.html


Eclipse can help you to correctly format the code. With a .java file open in the editor, use 

SourceFormat to format the code with the built-in formatting rules. 

 

The default built-in formatting rules mostly comply with the rules defined by Oracle. However, the 

teachers of the course use a slightly different set of rules (actually, the only difference is that lines 

are indented using 2 spaces, instead of 1 TAB). If you want to use such slightly different formatting 

rules, you can download the rules from this link (http://www.it.uc3m.es/java/2012-

13/resources/j_java.xml) and import them into Eclipse through its preferences: 

 

Additionally to those rules, experience teaches that some other rules should be followed: 

 Try to avoid characters that are not US-ASCII. US-ASCII allows standard letters (a, b, c,…), 

numbers (1, 2, 3,…) and standard punctuation marks (?, :, !, $, %,…) but not accentuated 

letters (á, é, ñ, ï, ô, ù,…) nor “Spanish” punctuation marks (¿ and ¡). Exception to this norm 

may be the literals to be shown to the user. 

 Use meaningful names for classes, methods, properties and variables. You may look cool 

naming your variables with funny names, or using exercise1() for the methods… but that 

http://www.it.uc3m.es/java/2012-13/resources/j_java.xml
http://www.it.uc3m.es/java/2012-13/resources/j_java.xml


will complicate your life later. And also the life of the teacher that will evaluate your code, 

by the way. 

 Use the comments to explain what the code does. Read it again: WHAT the code does, not 

HOW the code does it. An exception may be specially complicated algorithms. Use 

meaningful names for classes, methods, proper… hold a second! Didn’t we wrote that 

above? Sure. Many times, if you use meaningful names, you will not need to add a 

comment. For example, if a method is called setHeight() you know that it obviously sets 

the height; however, if you call the method setH(), you need to add a comment to say so. 

 Try to use short methods (not method names, but short methods themselves). If the 

method fits your screen, you will be able to see it, read it and understand it at a glance. 

However, if it does not fit, being continuously scrolling up and down will confuse you. 


