
File Input/Output in Java

Alberto Cortés <alcortes@it.uc3m.es>

March 31, 2013

Contents

1 Introduction 2

1.1 Purpose of this document . 2
1.2 General context . 2
1.3 File Systems . 3

2 Paths: file names 4

2.1 Relative and absolute paths . 5
2.2 Paths in Java . 5
2.3 Example of use . 6

3 Files 7

3.1 Checking for existence and permissions 7
3.2 Creating and deleting files . 8

4 Reading from a file 9

4.1 Character Sets (charsets) . 9
4.2 Reading to a byte array . 11
4.3 Buffers . 13
4.4 Reading to a buffer . 13

5 Writing Files 16

5.1 Access modes, the OpenOptions parameter 16
5.2 Writing from a byte array . 16
5.3 Writing through buffers . 17
5.4 More advanced examples . 18

6 Binary Files 21

1

Chapter 1

Introduction

1.1 Purpose of this document

This document is a brief introduction to Java file input/output.
It is targeted to first year students in the degree, with no previous experi-

ence in Java, beyond the basic knowledge about language syntax, its fundamen-
tal structures and the knowledge about object orientation typical of the first
chapters of any Java programming introductory textbook.

It will briefly review the API and involved classes as well as some required
operating systems and file systems. Appropriate examples complete the corre-
sponding explanations.

Advanced concepts about file management, like channels, locks, pattern-
matching, direct mapping of files to memory, multiplexing, selectors, random
access, non-blocking operations, multithreading, or asynchronous access tech-
niques are not covered in this document.

This document applies to Java version 1.7.0_17, thus the information relates
to NIO.2 (New I/O version 2), the new file input/output system introduced in
Java version 1.7 dated 2011-06-07.

Most of this document is based on The Java Tutorials, for Java version SE
7.

1.2 General context

Most of the file input/output support in Java is included in the java.nio.file

package. Although such API includes many classes, only a few of them are
actually access points to the API, which greatly simplifies its use.

2

http://docs.oracle.com/javase/tutorial/index.html

1.3 File Systems

A file is an abstraction of the operating system for the generic storage of data.
The part of the operating system responsible of file management is called “file
system”.

Traditional file systems organise, store and name (identify with a name) the
files stored in persistent storage devices, such as hard disks, USB solid state
memories, DVDs. . .

Nowadays, well-known file systems are “ext3” for Linux operating systems,
“NTFS” for systems based on Windows NT, such as Windows XP o Windows
7, and “ISO9660” y “UDF” for optical devices such as CDs y DVDs.

Although each file system offers its own vision of the data saved in a hard
drive and manages and orders them its own way, all of them share some general
aspects:

• Files are usually organised in hierarchical structures (trees) of directo-
ries. Such directories are file (and other directories) containers that allow
organising the data in the drive

• The file name is related to its position in the directory tree that contains it,
which allows not only identifying unambiguously each file but also finding
it based on its name.

• The files usually have some associated metadata, such as its creation time,
the time of its last modification, its owner ore the permissions that the
different users have on it (read, write. . .). This turns the file system into a
database of the contents stored in the drive that can be queried applying
multiple search criteria.

3

Chapter 2

Paths: file names

A file is identified by its path through the file system.
For example, the path (its complete file name) of the file where I am writing

this document is

/home/alcortes/room/current/Java-File-IO/tex/java-file-io.tex

In my computer there can be no other file with exactly the same path, though
probably there are many files with the (short) name “java-file-io.tex”.

Of course, the file path of a file changes depending on the file system used.
For example, in Linux operating systems all the files are contained in the root
directory or in directories hanging from it.

However, in NTFS-type file systems, the files are stored in a “volume” (iden-
tified by an alphabetic letter). Such volume can in turn contain files and direc-
tories. Traditionally, in the Windows environment the file names usually have
an extension (typically a “.” and three letters) that helps to identify the type of
content stored in such file.

In both systems, all of the information needed to locate the file is contained
in the path string. Let’s see a couple of examples:

• Linux: /home/alcortes/my_file: In the root directory (/), there is a
directory /home/, inside which there is a directory /home/alcortes/ (-
short- name “alcortes”), inside which there is a file
/home/alcortes/my_file, with (short) name “my_file”.

• Windows 7: C:\Mis documentos\fichero.txt: In the C volume, there
is a directory C:\Mis documentos\, inside which there is a file C:\Mis

documentos\fichero.txt, with (short name) “fichero.txt”, which has the
typical old Windows 3-letters extension (“txt”).

As seen in the examples, paths have a very different format depending on
the operating system. In Linux everything is under the root directory / and the
character used to separate the directories an files (also called the delimiter)

4

is /. Windows in turn supports multiple root nodes, each one mapping to a
volume, and directories are separated with the \ character.

It is also important to notice that each operating system has its own restric-
tions for other aspects of the path. For example, the FAT file system (used in
MS-DOS systems) does not distinguish between uppercase and lowercase (it is
case insensitive), thus the files C:\FiChEro.TXT and C:\fichero.txt are the
same. It does not support file (short) names longer than 8 characters, nor char-
acters not included in the ASCII standard (such as á, ñ, Å, ¿, α. . .). Most of
these constraints have been solved in newer file systems.

2.1 Relative and absolute paths

Until now, we have only seen examples of absolute paths, which are those that
allow identifying unambiguously a file and its location with no additional infor-
mation.

A relative path specifies the path to a file from a reference directory, known
as the working directory.

Let’s see some examples:

• If the working directory is /home/alcortes/, the relative path
my_file identifies the file /home/alcortes/my_file.

• If the working directory is /home/alcortes/, the relative path
my_project/my_file identifies the file
/home/alcortes/my_project/my_file.

• If the working directory is /home/alcortes/, the relative path

• Si el directorio de trabajo es /home/alcortes/, el path
../mcfp/my_file identifies the file /home/mcfp/my_file. The ../ direc-
tory is an alias to represent the parent directory of the one it follows.

• If the working directory is /home/alcortes/, the relative path
./my_project/my_file identifies the file
/home/alcortes/my_project/my_file. The ./ directory is an alias of
the current directory (the working directory).

The key for distinguishing a relative path from an absolute one consists on
realising that the relative path does not start with the root of the file system (/
in Linux, or with a volume letter in Windows, such as C:\ for example).

2.2 Paths in Java

The java.nio.file.Path interface represents a path, and the classes imple-
menting such interface can be used for locating files in the file system.

5

The simplest way of creating an object implementing the Path interface is
using the java.nio.file.Paths class, that provides static methods that return
Path objects based on a String representation of the desired path. For example:

Path p = Paths.get("/home/alcortes/my_file");

Of course, the files do not need to actually exist in the hard drive for creating
the corresponding Path objects. The representation and management of paths
in Java is not restricted by the actual existance of such files or directories in file
system.

The Path interface declares many useful methods for managing paths, such
as getting the (short) name of a file, getting its container directory, resolving
relative paths, etc.

Notice that working with paths is totally unrelated to working with the
content of the files they represent. For example, modifying the content of a file
is an operation that is independent of its name or its location in the file system.

An instance of type Path reflects the naming system the subyacent. In con-
sequence, path objects of different operating systems are not easily compared.

2.3 Example of use

PathExample.java

1 import java.nio.file.Path;

2 import java.nio.file.Paths;
3

4 class PathExample {
5 public static void main(String args[]) {

6 Path path = Paths.get("/home/alcortes /my_file ");
7 System .out.println (" path = " + path);
8 System .out.println ("is absoute ? = " + path. isAbsolute());

9 System .out.println (" file short name = " + path. getFileName());
10 System .out.println (" parent = " + path. getParent());

11 System .out.println (" uri = " + path.toUri ());
12 }
13 }

1 ; javac PathExample. java
2 ; java PathExample

3 path = /home/ alcortes /my_file
4 is absoute ? = true

5 file short name = my_file
6 parent = /home/alcortes

7 uri = file :/// home/alcortes / my_file

6

Chapter 3

Files

The class java.nio.file.Files allows to manage files in a disk in Java.
This class has static methods to handle files, allowing us to create and delete

files and directories, check if a file exists in the disk, check is permissions (read-
ing, writting. . .), move a file to a different directory and reading and writing
the contents of a file.

Let us see how to perform some of these simple operations first:

3.1 Checking for existence and permissions

ExistanceChecks.java

1 import java.nio.file.Path;
2 import java.nio.file.Paths;

3 import java.nio.file.Files;
4

5 class ExistanceChecks {
6 public static void main(String args[]) {
7 Path path = Paths.get("./ ExistanceChecks.java");

8 System .out.println (" path = " + path);
9 System .out.println (" exists = " + Files.exists (path));

10 System .out.println (" readable = " + Files. isReadable(path));
11 System .out.println (" writeable = " + Files. isWritable(path));
12 System .out.println (" executeable = " + Files. isExecutable(path));

13

14 path = Paths.get ("/ this_file_doesn ’t_exist ");

15 System .out.println (" path = " + path);
16 System .out.println (" exists = " + Files.exists (path));

17 System .out.println (" readable = " + Files. isReadable(path));
18 System .out.println (" writeable = " + Files. isWritable(path));
19 System .out.println (" executeable = " + Files. isExecutable(path));

20 }
21 }

1 path = ./ ExistanceChecks.java
2 exists = true

3 readable = true
4 writeable = true
5 executeable = false

7

6 path = / this_file_doesn ’t_exist
7 exists = false

8 readable = false
9 writeable = false

10 executeable = false

3.2 Creating and deleting files

CreateOrDelete.java

1 import java.nio.file.Path;
2 import java.nio.file.Paths;
3 import java.nio.file.Files;

4 import java.io.IOException;
5

6 // Creates a new file or delete it , if it already exists
7 class CreateOrDelete {

8 private static void usage () {
9 System .err.println (" java CreateOrDelete <file >");

10 System .err.println (" The <file > argument is required .");

11 System .exit (1);
12 }

13

14 public static void main(String args[]) {

15 if (args.length != 1)
16 usage ();
17

18 Path path = Paths.get(args [0]);
19 try {

20 if (Files.exists (path))
21 Files.delete (path);
22 else

23 Files.createFile(path);
24 } catch (IOException e) {

25 System .err.println (e);
26 System .exit(1);

27 }
28 }
29 }

1 ; java CreateOrDelete
2 java CreateOrDelete <file >

3 The <file > argument is required .
4 ; ls

5 CreateOrDelete.class CreateOrDelete.java
6 ; java CreateOrDelete bla
7 ; ls

8 bla CreateOrDelete.class CreateOrDelete.java
9 ; java CreateOrDelete bla

10 ; ls
11 CreateOrDelete.class CreateOrDelete.java

12 ; java CreateOrDelete / root/ bla
13 java.nio.file. AccessDeniedException: /root/bla

8

Chapter 4

Reading from a file

There are several ways to read a file in Java.
Small files can be read in a single invocation and stored in a byte array or a

string.
For bigger files, this can be very inefficient in terms of memory usage, we

would rather read them in chunks and process each chunk as they come by. This
can be done by the means of a buffer (explained later in this document), which
can also help in using the hard disk efficiently.

4.1 Character Sets (charsets)

A charset is an association between numbers and letters. The charset purpose is
to assign a number to each letter, so you can store letters as their corresponding
numbers, and retrieve them later by translating those numbers back to the
original letters.

Charset are needed because a hard disk can only store (binary) numbers,
not letters. Therefore, if we want to write a text file to disk, we must translate
each of its letters to numbers, and store those numbers instead.

Some years ago, the most used charset was ASCII, shown bellow:

9

Dec Char Dec Char Dec Char Dec Char
0 NUL 32 SPACE 64 @ 96 ‘

1 SOH 33 ! 65 A 97 a

2 STX 34 " 66 B 98 b

3 ETX 35 # 67 C 99 c

4 EOT 36 $ 68 D 100 d

5 ENQ 37 % 69 E 101 e

6 ACK 38 & 70 F 102 f

7 BEL 39 ’ 71 G 103 g

8 BS 40 (72 H 104 h

9 HT 41) 73 I 105 i

10 LF 42 * 74 J 106 j

11 VT 43 + 75 K 107 k

12 FF 44 , 76 L 108 l

13 CR 45 - 77 M 109 m

14 SO 46 . 78 N 110 n

15 SI 47 / 79 O 111 o

16 DLE 48 0 80 P 112 p

17 DC1 49 1 81 Q 113 q

18 DC2 50 2 82 R 114 r

19 DC3 51 3 83 S 115 s

20 DC4 52 4 84 T 116 t

21 NAK 53 5 85 U 117 u

22 SYN 54 6 86 V 118 v

23 ETB 55 7 87 W 119 w

24 CAN 56 8 88 X 120 x

25 EM 57 9 89 Y 121 y

26 SUB 58 : 90 Z 122 z

27 ESC 59 ; 91 [123 {

28 FS 60 < 92 \ 124 |

29 GS 61 = 93] 125 }

30 RS 62 > 94 ^ 126 ~

31 US 63 ? 95 _ 127 DEL

Dec Char Dec Char Dec Char Dec Char

These means that if we want to store an ’a’ letter to disk using ASCII, we
must store a 97 instead. Reading a 97 from disk, means we are reading a ’a;, if
we use ASCII.

Please, note that the ASCII table do not include some characters from Span-
ish, as accented letters or the ’ñ’.

There are many charsets available, for example, until very recently ISO-8859-
1 (latin-1) was commonly used in Spanish speaking countries and nowadays
UTF-8 is widespread adopted.

When storing a text file in a disk, no information about the chosen charset
is stored in it. This means that when trying to read it back, you can get the
wrong characters if you do not use the same charset for reading that the one

10

used for writing.
A nice solution to this problem is to use the default charset in Java.
The abstract class java.nio.charset.Charset is used in Java to control

which charset we want to use in our programs. Being an abstract class, you
can not instantiate it directly, but can name particular charsets whenever you
need them. As an example, the following Java program will print some common
charsets that can be used in Java and configure the JVM to use for different
purposes.

CharsetExample.java

1 import java.nio.charset . Charset ;

2

3 class CharsetExample {

4 public static void main(String args[]) {
5 // find default charset
6 System .out.println (" Default Charset = " + Charset .defaultCharset());

7

8 // Use Latin1 for file i/o instead of the default charset

9 System .setProperty(" file. encoding ", "ISO -8859 -1");
10 System .out.println (" file. encoding = " + System . getProperty(" file.

encoding "));

11

12 // Example of directly using charset objects

13 Charset ascii = Charset . forName ("US -ASCII ");
14 System .out.println (" Standard charset in old systems = " + ascii);

15 }
16 }

1 ; javac CharsetExample. java
2 ; java CharsetExample
3 Default Charset = UTF -8

4 file.encoding = ISO -8859 -1
5 Standard charset in old systems = US -ASCII

4.2 Reading to a byte array

This is quite simple, you name a file and you get a byte array filled with the
contents of the file. Of course this can be very memory inefficient and besides,
you will hardly need all the file at once.

It may be hard to process a text file in this way as the translation between
bytes and characters is not a simple matter (remember charsets ?). You will
have to build your own chars and lines by reading each member of the array
and turning them into chars and end-of0line characters. As we will see later,
there are better ways to do this.

But this way of reading files is very nice for small files (a couple of sentences)
or for small binary files, where reading a byte at a time is the desired behaviour.

The following program writes to standard output the contents of file passed
as its argument.

1 ; javac Cat1 . java
2 ; java Cat1 /tmp/bla

3 ERROR: java.nio.file. NoSuchFileException: /tmp/bla
4 ; java Cat1 Cat1. java

11

5 import java.nio.file.Path;
6 import java.nio.file.Paths;

7 import java.nio.file.Files;
8 import java.io.IOException;

9

10 // prints the contents of a file using an array of bytes

11 class Cat1 {
12 private static void usage () {
13 System .err.println (" java Cat1 <file >");

14 System .err.println (" A <file > argument is mandatory");
15 System .exit (1);

16 }
17

18 public static void main(String args []) {

19 if (args. length != 1)
20 usage ();

21

22 Path path = Paths.get(args [0]);

23 try {
24 byte[] content = Files. readAllBytes(path);
25 for (int i=0; i<content .length ; i++)

26 System .out.print ((char) content [i]);
27 } catch (IOException e) {

28 System .err.println (" ERROR: " + e);
29 System .exit (1);
30 }

31 }
32 }

The following program counts lines in a file.

CountLines1.java

1 import java.nio.file.Path;
2 import java.nio.file.Paths;

3 import java.nio.file.Files;
4 import java.io.IOException;

5

6 // Count (UNIX) lines in a file
7 class CountLines1 {

8 private final static char UNIX_NEWLINE = ’\n’;
9

10 private static void usage () {
11 System .err.println (" java CountLines <file >");

12 System .err.println (" The <file > argument is mandatory");
13 System .exit (1);
14 }

15

16 public static void main(String args[]) {

17 if (args.length != 1)
18 usage ();
19

20 Path path = Paths.get(args [0]);
21 long count = 0;

22 try {
23 byte [] content = Files. readAllBytes(path);

24 for (int i=0; i<content . length ; i++)
25 if ((char) content [i] == UNIX_NEWLINE)
26 count ++;

27 } catch (IOException e) {
28 System .err.println (" ERROR : " + e);

29 System .exit(1);
30 }
31 System .out.println (count);

32 }
33 }

12

1 ; javac CountLines1. java
2 ; java CountLines1 CountLines1. java
3 33

Lectura a una lista enlazada de Strings

The method java.nio.file.Files.readAllLines() can be very useful for
certain text processing. As reading to a byte array, it reads all the file at once,
which can be a problem. But it returns a linked list of strings, one per line,
which can be very nice for small text files.

4.3 Buffers

A buffer is a data structure to manage chunks of data from a (bigger) collection
of data.

Buffers are useful to prevent storing large data in memory at once, accessing
such data in chunks instead.

They can also be useful for efficiency purposes, the applications no longer
care about how is the best writing ratio to the hardware device, it just write to
the buffer whenever it wants and the buffer takes care of writing to disk at the
right moments for maximum disk efficiency.

4.4 Reading to a buffer

The class java.io.BufferedReader is used to read text files and process them.
It allows to efficiently read chars, arrays or whole lines as strings.

Each read from a BufferedReader will return data from the corresponding
file, in order, the BufferedReader keeps track of the amount of data previously
read.

The method readLine() will read a whole line of text from the file and
return it as an String.

The following program writes to standard output the contents of a file passed
as it argument.

1 ; javac Cat2 . java

2 ; java Cat2 Cat2. java
3 import java.nio.file.Path;

4 import java.nio.file.Paths;
5 import java.nio.file.Files;

6 import java.io.IOException;
7 import java.nio.charset .Charset ;
8 import java.io.BufferedReader;

9

10 // prints the contents of a file using a BufferedReader

11 class Cat2 {
12 private static void usage () {
13 System .err.println (" java Cat2 <file >");

14 System .err.println (" A <file > argument is mandatory");
15 System .exit (1);

16 }
17

13

18 public static void main(String args []) {
19 if (args. length != 1)

20 usage ();
21

22 Path path = Paths.get(args [0]);
23 try {

24 BufferedReader reader =
25 Files. newBufferedReader(path , Charset . defaultCharset());
26 String line;

27 while ((line = reader . readLine ()) != null)
28 System .out.println (line);

29 reader . close ();
30 } catch (IOException e) {
31 System .err.println (" ERROR: " + e);

32 System .exit (1);
33 }

34 }
35 }

This program is clearly more efficient than the previous one, Cat1, as we are
using buffers now:

1 ; time java Cat1 Cat2. java > / dev/ null
2

3 real 0m0 .101s
4 user 0m0 .088s

5 sys 0m0 .012s
6 ; time java Cat2 Cat2. java > / dev/ null
7

8 real 0m0 .086s
9 user 0m0 .064s

10 sys 0m0 .012s

The following Java program count lines in a file using a buffer.

CountLines2.java

1 import java.nio.file.Path;

2 import java.nio.file.Paths;
3 import java.nio.file.Files;

4 import java.io.IOException;
5 import java.nio.charset . Charset ;

6 import java.io.BufferedReader;
7

8 // Count (UNIX) lines in a file

9 class CountLines2 {
10 private static void usage () {

11 System .err.println (" java CountLines2 <file >");
12 System .err.println (" A <file > argument is mandatory");
13 System .exit (1);

14 }
15

16 public static void main(String args[]) {
17 if (args.length != 1)

18 usage ();
19

20 Path path = Paths.get(args [0]);

21 long count = 0;
22 try {

23 BufferedReader reader =
24 Files.newBufferedReader(path , Charset . defaultCharset());
25 while (reader .readLine () != null)

26 count ++;
27 reader .close ();

28 } catch (IOException e) {
29 System .err.println (" ERROR : " + e);

14

30 System .exit(1);
31 }

32 System .out.println (count);
33 }

34 }

1 ; javac CountLines2. java

2 ; java CountLines2 CountLines2. java
3 34

15

Chapter 5

Writing Files

5.1 Access modes, the OpenOptions parameter

While writing files in Java we can restrict the permissions we have over to file,
thanks to the operating system, for extra protection or easiest handle of the
files.

As an example: if the user has read and write access over a file, but our
Java application only wants to write in it, we can “open” the file in Java in the
“writing” mode, that will restrict how the application use the file.

To this end and for some other extra functionalities, there are some ac-
cess methods for files defined in Java, through the OpenOptions parameter.
The easiest way of using this parameter is by using the members of enum

StandardOpenOptions, that has the following values (among others):

• WRITE: allows writing to the file

• APPEND: start writing at the end of the file (keep the current contents)

• CREATE_NEW: create a new file or throw an exception if it already exists

• CREATE: create an new file or just open it if it already exists

• TRUNCATE_EXISTING: if the file exists and has contents, start writing from
the beginning of the file, overwriting the old contents and deleting any
remaining old content.

The following methods use this access modes, you can find what each method
do if the access parameters are not explicitly used in its invocation by reading
each method documentation.

5.2 Writing from a byte array

This is the simplest (and more limited) way of writing files. Use the method
java.nio.file.Files.write() as in the following examples:

16

Cp1.java

1 import java.nio.file.Path;

2 import java.nio.file.Paths;
3 import java.nio.file.Files;
4 import java.io.IOException;

5 import java.nio.file. StandardOpenOption;
6

7 // Copy a file
8 class Cp1 {

9 private static void usage () {
10 System .err.println (" java Cp1 <input file > <output file >");
11 System .exit (1);

12 }
13

14 public static void main(String args[]) {
15 if (args.length != 2)
16 usage ();

17

18 Path inputFile = Paths.get(args [0]);

19 Path outputFile = Paths.get(args [1]);
20

21 try {
22 byte [] contents = Files. readAllBytes(inputFile);
23 Files .write(outputFile , contents ,

24 StandardOpenOption.WRITE ,
25 StandardOpenOption.CREATE ,

26 StandardOpenOption. TRUNCATE_EXISTING);
27 } catch (IOException e) {
28 System .err.println (" ERROR : " + e);

29 System .exit(1);
30 }

31 }
32 }

1 ; javac Cp1. java
2 ; ls

3 Cp1.class Cp1.java
4 ; java Cp1 Cp1. class bla
5 ; diff -sq Cp1. class bla

6 Files Cp1.class and bla are identical

5.3 Writing through buffers

As with reading files, writing files using buffers is more efficient.
The following Java program copies files, using buffers for reading and writing,

one line at a time.

Cp2.java

1 import java.nio.file.Path;
2 import java.nio.file.Paths;
3 import java.nio.file.Files;

4 import java.io.IOException;
5 import java.nio.charset . Charset ;

6 import java.io.BufferedReader;
7 import java.io.BufferedWriter;

8 import java.nio.file. StandardOpenOption;
9

10 // Copy a file

11 class Cp2 {
12 private static void usage () {

17

13 System .err.println (" java Cp2 <input file > <output file >");
14 System .exit (1);

15 }
16

17 public static void main(String args[]) {
18 if (args.length != 2)

19 usage ();
20

21 Path input = Paths.get(args [0]);

22 Path output = Paths.get(args [1]);
23

24 try {
25 BufferedReader inputReader =
26 Files.newBufferedReader(input , Charset . defaultCharset());

27 BufferedWriter outputWriter =
28 Files.newBufferedWriter(output , Charset . defaultCharset(),

29 StandardOpenOption.WRITE ,
30 StandardOpenOption.CREATE ,

31 StandardOpenOption. TRUNCATE_EXISTING);
32

33 String line;

34 while ((line = inputReader.readLine ()) != null) {
35 outputWriter.write(line , 0, line.length ());

36 outputWriter.newLine ();
37 }
38

39 inputReader.close ();
40 outputWriter.close ();

41 } catch (IOException e) {
42 System .err.println (" ERROR : " + e);

43 System .exit(1);
44 }
45 }

46 }

1 ; javac Cp2. java

2 ; java Cp2 Cp2. class bla
3 ERROR: java.nio.charset . MalformedInputException: Input length = 1

4 ; java Cp2 Cp2. java bla
5 ; diff -sq Cp2. java bla
6 Files Cp2.java and bla are identical

5.4 More advanced examples

The following Java program, reads a file, ignores those lines with lowercase
characters and prints to standard output the rest of them:

CopyUpperCase.java

1 import java.nio.file.Path;
2 import java.nio.file.Paths;
3 import java.nio.file.Files;

4 import java.io.IOException;
5 import java.nio.charset . Charset ;

6 import java.io.BufferedReader;
7 import java.io.BufferedWriter;
8 import java.nio.file. StandardOpenOption;

9

10 // Copy uppercase lines of file

11 class CopyUpperCase {
12 private static void usage () {

13 System .err.println (" java CopyUpperCase <input file > <output file >");

18

14 System .exit (1);
15 }

16

17 public static void main(String args[]) {

18 if (args.length != 2)
19 usage ();

20

21 Path input = Paths.get(args [0]);
22 Path output = Paths.get(args [1]);

23

24 try {

25 BufferedReader inputReader =
26 Files.newBufferedReader(input , Charset . defaultCharset());
27 BufferedWriter outputWriter =

28 Files.newBufferedWriter(output , Charset . defaultCharset(),
29 StandardOpenOption.WRITE ,

30 StandardOpenOption.CREATE ,
31 StandardOpenOption. TRUNCATE_EXISTING);

32

33 String line;
34 while ((line = inputReader.readLine ()) != null) {

35 if (line.equals (line. toUpperCase())) {
36 outputWriter.write(line , 0, line.length ());

37 outputWriter.newLine ();
38 }
39 }

40

41 inputReader.close ();

42 outputWriter.close ();
43 } catch (IOException e) {

44 System .err.println (" ERROR : " + e);
45 System .exit(1);
46 }

47 }
48 }

1 ; javac CopyUpperCase. java

2 ; cat test
3 This line has lowercase letters .
4 THIS LINE IS ALL IN UPPERCASE.

5 THIS LINE TOO.
6 this line is not in uppercase.

7 this LINE is NOT in uppercase.
8 THIS LAST LINE IS ALL IN UPPERCASE.

9 ; java CopyUpperCase test output
10 ; cat output
11 THIS LINE IS ALL IN UPPERCASE.

12 THIS LINE TOO.
13 THIS LAST LINE IS ALL IN UPPERCASE.

The following Java program prints the lines of a file that match a given
pattern:

Grep.java

1 import java.nio.file.Path;
2 import java.nio.file.Paths;

3 import java.nio.file.Files;
4 import java.io.IOException;

5 import java.nio.charset . Charset ;
6 import java.io.BufferedReader;

7

8 // Search for a text in a file
9 class Grep {

10 private static void usage () {
11 System .err.println (" java Grep <input file > <pattern >");

19

12 System .exit (1);
13 }

14

15 public static void main(String args[]) {

16 if (args.length != 2)
17 usage ();

18

19 Path input = Paths.get(args [0]);
20

21 try {
22 BufferedReader inputReader =

23 Files.newBufferedReader(input , Charset . defaultCharset());
24

25 String line;

26 long lineNumber = 1;
27 while ((line = inputReader.readLine ()) != null) {

28 if (line.contains (args [1]))
29 System .out.println (lineNumber + ": " + line);

30 lineNumber++;
31 }
32

33 inputReader.close ();
34 } catch (IOException e) {

35 System .err.println (" ERROR : " + e);
36 System .exit(1);
37 }

38 }
39 }

1 ; javac Grep . java
2 ; java Grep Grep. java import

3 1: import java.nio.file.Path;
4 2: import java.nio.file.Paths;

5 3: import java.nio.file.Files;
6 4: import java.io.IOException;
7 5: import java.nio.charset .Charset ;

8 6: import java.io.BufferedReader;
9 ; java Grep Grep. java line

10 25: String line;
11 26: long lineNumber = 1;
12 27: while ((line = inputReader.readLine ()) != null) {

13 28: if (line.contains (args [1]))
14 29: System .out.println (lineNumber + ": " + line);

15 30: lineNumber++;
16 ; java Grep Grep. java (

17 bash: syntax error near unexpected token ‘(’
18 ; java Grep Grep. java "("
19 10: private static void usage () {

20 11: System .err.println (" java Grep <input file > <pattern >");
21 12: System .exit (1);

22 15: public static void main(String args []) {
23 16: if (args.length != 2)
24 17: usage ();

25 19: Path input = Paths.get(args [0]);
26 23: Files .newBufferedReader(input , Charset . defaultCharset());

27 27: while ((line = inputReader.readLine ()) != null) {
28 28: if (line.contains (args [1]))

29 29: System .out.println (lineNumber + ": " + line);
30 33: inputReader.close ();
31 34: } catch (IOException e) {

32 35: System .err.println (" ERROR : " + e);
33 36: System .exit(1);

20

Chapter 6

Binary Files

Reading short binary files can be performed by reading the whole file to a byte
array, like in 4.2. But reading large binary files by such means is inefficient in
terms memory usage.

You would like to use a buffer in such cases, like BufferedReader (4.4) does,
but this class translates bytes to Strings and characters, being quite difficult
to translate them back to the original byte contents.

What you really need is a buffered access to the file without the extra feature
of byte to string translation. A nice solution is to use java.io.BufferedInputStream,
and its method read(byte[] b, int off, int len) that allows you to read
efficiently the desired amount of bytes into an array.

Writing binary files has the same problem as reading, and there is also a
java.io.BufferedOutputStream class to solve it. The method write(byte[]

b, int off, int len) can be used to write to the buffer, delegating to the
JVM and the operating system the complex task of writing the data efficiently
to the disk.

The following program copies binary files (or any other file for that matter),
by reading and writing bytes arrays of the desired size.

Dd.java

1 import java.nio.file.Path;
2 import java.nio.file.Paths;

3 import java.nio.file.Files;
4 import java.io.IOException;

5 import java.nio.charset . Charset ;
6 import java.io. BufferedInputStream;
7 import java.io. BufferedOutputStream;

8 import java.nio.file. StandardOpenOption;
9

10 // Copy files using binary buffers
11 class Dd {
12 private static void usage () {

13 System .err.println (" java Dd <input file > <output file > <buffer size >");
14 System .exit (1);

15 }
16

17 public static void main(String args[]) {

21

18 if (args.length != 3)
19 usage ();

20

21 Path inputPath = Paths.get(args [0]);

22 Path outputPath = Paths.get(args [1]);
23

24 try {
25 int bufferSize = Integer .parseInt (args [2]);
26 if (bufferSize <= 0)

27 throw new NumberFormatException(args [2] + " is not positive ");
28

29 BufferedInputStream input ;
30 BufferedOutputStream output ;
31 input = new BufferedInputStream(

32 Files. newInputStream(inputPath ,
33 StandardOpenOption.READ));

34 output = new BufferedOutputStream(
35 Files. newOutputStream(outputPath ,

36 StandardOpenOption.WRITE ,
37 StandardOpenOption.CREATE ,
38 StandardOpenOption. TRUNCATE_EXISTING));

39

40 byte [] buffer = new byte[bufferSize];

41 int bytesRead = input.read(buffer , 0, bufferSize);
42 while (bytesRead >= 0) {
43 output .write(buffer , 0, bytesRead);

44 bytesRead = input.read(buffer , 0, bufferSize);
45 }

46

47 input .close ();

48 output .close ();
49 } catch (IOException e) {
50 System .err.println (" ERROR : " + e);

51 System .exit(1);
52 } catch (NumberFormatException e) {

53 System .err.println (" ERROR : Bad number format : " + e);
54 System .exit(1);
55 }

56 }
57 }

1 ; # create a 10 MB file with random contents
2 ; dd if =/ dev/ urandom of =/ tmp/ input bs =100000 count =100

3 100+0 records in
4 100+0 records out

5 10000000 bytes (10 MB) copied , 1.35976 s, 7.4 MB/s
6 ;
7 ;

8 ; # copy the file using a 1024 bytes buffer
9 ; java Dd / tmp/ input / tmp/ output 1024

10 ; diff -sq /tmp/ input / tmp/ output
11 Files /tmp/input and /tmp/output are identical
12 ;

13 ;
14 ; # copy the file one byte at a time , this is slow

15 ; # even if we use buffers!!
16 ; time java Dd /tmp/ input / tmp/ output 1

17

18 real 0m1 .168s
19 user 0m1 .100s

20 sys 0m0 .060s
21 ;

22 ;
23 ; # copy the file using a 1024 byte buffer , this is much faster

24 ; # in user time , but can still be slow on real time
25 ; time java Dd /tmp/ input / tmp/ output 1024
26

22

27 real 0m0 .168s
28 user 0m0 .120s

29 sys 0m0 .032s
30 ;

31 ;
32 ; # copy the file using a 1 MBi byte buffer , this is waaay faster

33 ; time java Dd /tmp/ input / tmp/ output 1048576
34

35 real 0m0 .114s

36 user 0m0 .068s
37 sys 0m0 .044s

23

	Introduction
	Purpose of this document
	General context
	File Systems

	Paths: file names
	Relative and absolute paths
	Paths in Java
	Example of use

	Files
	Checking for existence and permissions
	Creating and deleting files

	Reading from a file
	Character Sets (charsets)
	Reading to a byte array
	Buffers
	Reading to a buffer

	Writing Files
	Access modes, the OpenOptions parameter
	Writing from a byte array
	Writing through buffers
	More advanced examples

	Binary Files

