
Graphical User

Interfaces. Events

Jose Jesus García Rueda

Session objectives

• Being able to add behaviour to the

graphical elements in the interface…

• …modifying them as a result of the actions

on them, also.

• In other words, to cover the whole cycle:

1. Reciving events that take place on the

graphical elements.

2. Processing them.

3. Showing feed-back on the screen.

Graphical application

architecture

Interface Processing Persistence

How is this link created?

Anybody listening?

• When users act on the interface,

something should happen.

• For being so, we will have to program

events managers (listeners)

Component Listener

Method

(reply to the

event)

Event

Examples of listeners

• WindowListener

• For managing window events.

• ActionListener

• For managing buttons and other

simple components events.

• You’ll have to consult the API

constantly!

Active waiting

• Once the GUI is “painted” on the screen…

• … the program stays in a “stand-by” mode, non

running any active code!

When something happens

on the interface, the

associated listener wakes

up

And translated into

code?
This package includes

the listeners

Listeners are

interfaces, usually

This method is awaken

automatically

import java.awt.event.*;

public class ListenerExample implements ActionListener {

public void actionPerformed (ActionEvent e) {

System.out.println(“Inside the listener");

}

}

Who listens whom?

• If we have several graphical components…

• …and we can create as many listeners as

we wish…

• Who listens whom?

• We’ll have to associate, explicitly, the

listeners to the components.

• The possible combinations are multiple:

• Several listeners associated to the same

component.

• One listener associated to several components.

How to set up the

association?

Creating an

instance of

the

corresponding

listener

Associating the

listener to the

component

import javax.swing.*;

public class Example2 extends JFrame {

JButton myButton = new JButton (“Click here");

ListenerExample myListener = new ListenerExample();

public Example2 () {

getContentPane().add(myButton);

myButton.addActionListener(myListener);

}

public static void main (String[] arg) {

Example2 window = new Example2();

window.setSize(200, 200);

window.setVisible(true);

}

}

Which part of the listener

is awaken?

• Listeners have different methods to listen to

different events.

• Java automatically invokes the suitable method,

depending on the event.

• The body of these methods will be programmed by

us. We can invoke other methods from these.

• When the method’s running is over the program

moves on to stand-by again, awaiting for new

events.

• These methods receive an event object as

argument.

Example:

WindowListener

• Among its methods we find:

• void windowClosing (WindowEvent evt)

• void windowOpened (WindowEvent evt)

• void windowClosed (WindowEvent evt)

• void windowIconified (WindowEvent evt)

• void windowDeiconified (WindowEvent evt)

• void windowActivated (WindowEvent evt)

• void windowDeactivated (WindowEvent evt)

May I get more information

about an event?

• The event received as an

argument by the listeners’

methods is provided by Java

automatically.

• “Asking” to that event object we

can find out more things about

what really happened.

• Asking, as ever, is done by

invoking methods of the event

object.

Example

Argument provided by

Java automatically

It gives back the label of

the component that started

the event

import java.awt.event.*;

public class ListenerExample implements ActionListener {

public void actionPerformed (ActionEvent e) {

String source = e.getActionCommand();

System.out.println(“Button: " + source);

}

}

Events oriented

programming

• GUIs in Java is just an example of a more general

and very important programming technique: the

Events Oriented Programming.

• In a program everything is sequential: the time

when each action is going to happen is

predictable…

• …How can we take into account those events in

the world outside our program that we don’t know

exactly when will happen?

• When will that door open?

• When will this pot of water boil?

• When will the user push this button?

• Programs have mechanisms to react (“wake up”)

when specific events take place outside the

program.

Code organization

• Everything explained about GUis is under the

principles and rules of the OO programming

paradigm…

• …so everything we know about OO up to now is

perfectly valid here.

• We have just added new pieces to the mecano…

• …that can be mixed with the rest in the way we

consider most suitable.

• Examples:

• Creating the listeners as independent classes.

• Creating the listeners as inner classes.

• Making the graphical components themselves act as

listeners.

• Associating a listener to more than one graphical

component.

Adapters

• Some listeners interfaces have lots of methods…

• …and we will have to implement them all (listeners

are interfaces).

• Adapters are classes that implement all the

methods of a specific listener.

• Being classes, we just have to extend them

rewriting the methods we need.

• For every Listener interface, there is an Adapter

class:

• WindowListener  WindowAdapter

• KeyListener  KeyAdapter

• MouseListener  MouseAdapter

