
Object Oriented Programming

Telematics Engineering

M. Carmen Fernández Panadero
<mcfp@it.uc3m.es>

Systems Systems programmingprogramming

I. Object Based Programming
II. Object Oriented Programming

mcfp@it.uc3m.es 2010 1

Scenario V:
Reusing code. Inheritance

• Once you are able to create your own classes, you are ready to work in
teams and reuse code developed by your colleagues. Your team will
provide you with a set of classes and you are required to create
specializations or generalizations of them.

• Objective:
– Be able to create a derived class adding some characteristics (attributes) and

behavior (methods) to an existing class.
– Be able to extract all the common code from a set of similar classes in order to

group it into a new parent class so that it is easier to maintain.

– Be able to create objects, and reference and access their attributes and
methods, depending on their position in the inheritance hierarchy and their
modifiers.

• Work plan:
– Memorize the nomenclature related to inheritance
– Memorize the java syntax related to inheritance (extends) and to reference (super, this)

and access (modifiers) to the different members.
– Know basic inheritance mechanisms, such as attribute hiding, overriding of methods and

overloading of constructors, and know what they are used for and how they are used.

mcfp@it.uc3m.es 2010 Review 2

Contents

� Basic inheritance concepts

� Inheritance hierarchy

� Overriding I: Attribute Hiding

� Overriding II: Method Overriding

� Constructors of derived classes

� Static and Final Modifiers

� Scope and access

mcfp@it.uc3m.es 2010 3

Inheritance
What is it?

• Mechanism for software reuse
• Allows to define from a class other related classes that

can be a:
– Specialization of the given class. (Eg “Car” class is a

specialization of the class “Vehicle”)
• Scenario: We have to implement a new class that is very similar to a previous

one but it needs aditional information (characteristics and behaviour)

• Solution: Create a class derived from the old one and add it new functionality
without having to rewrite the common code

– Generalization of the given class. (The “Vehicle” class is a
generalization of the “Car” class).

• Scenario : We have a set of similar classes with code that is repeated in every
class and thus difficult to update and maintain (eg. a letter should be added to
the serial number)

• Solution : We move the code that is repeated to a single site (the parent class)

mcfp@it.uc3m.es 2010 4

Inheritance
What is it?

Resouce
•name
•description
•getName()
•getDescription()

Classroom
•name
•description
•location
•getName()
•getDescription()
•getLocation()

computer
•name
•description
•operatingSystem
•getName()
•getDescription()
•getOS()

Classroom
•location
•getLocation()

Computer
•operatingSistem
•getOS()

Resource
•name
•description
•getName()
•getDescription()

public class Classroom extends Resource
public class Computer extends Resource

The attributes and methods that appear in blue in the parent class are
repeated in the subclasses. (Left picture)
It is not necessary to repeat the code, you only have to say that a class
extendsthe other or inheritsfrom it. (Right picture)
mcfp@it.uc3m.es 2010 5

Inheritance
Nomenclature

• If we define the class car from the class vehicle, it is
said that:
– “car" inherits attributes and methods from "vehicle “
– “car" extends "vehicle"
– “car" is a subclass of "vehicle"

Derived class
Child class

– “vehicle" is a superclass of “car"
Base class
Parent class

• Inheritance implements the is-a relation
– A car is-a vehicle; a dog is-a mammal, etc.

mcfp@it.uc3m.es 2010 6

• The syntax for declaring subclasses is:
class Subclass extends Superclass { ... }

Inheritance
Declaration of subclasses

Nati, mcfp@it.uc3m.es 2010 7

Person

Student Employee

Professor Secretary

class Person { ... }

class Student extends Person { ... }

class Employee extends Person { ... }

class Professor extends Employee { ... }

class Secretary extends Employee { ... }

Inheritance
Subclass

Nati, mcfp@it.uc3m.es 2010 8

MethodsAttributes

Class Student

Inherited from class Person

firstName

lastName

yearBirth

group

timetable

setGroup

printGroup

print

Inheritance
How is it used? Eg.: Person.java

Nati, mcfp@it.uc3m.es 2010 9

public class Person {

protected String firstName;
protected String lastName;
protected int yearBirth;

public Person () {

}

public Person (String firstName, String lastName,

int yearBirth){
this.firstName = firstName;
this.lastName = lastName;
this.yearBirth = yearBirth;

}

public void print(){

System.out.print("Personal data: " + firstName
+ " " + lastName + " (“
+ yearBirth + ")");

}

}

Inheritance
How is it used? Eg.: Person.java

Nati, mcfp@it.uc3m.es 2010 10

10

public class Student extends Person {
protected String group;
protected char timetable;

public Student() {
}

public Student(String firstName, String lastName,
int birthYear) {

super(firstName, lastName, birthYear);
}

public void setGroup(String group, char timetable)
throws Exception {
if (group == null || group.length() == 0)

throw new Exception ("Invalid group");
if (timetable != 'M' && timetable != 'A')

throw new Exception ("Invalid timetable");

this.group = group;
this.timetable = timetable;

}

public void printGroup(){
System.out.print(" Group " + group + timetable);

}
}

Inheritance
How is it used? Eg.: Test.java

Nati, mcfp@it.uc3m.es 2010 11

public class Test {

public static void main (String[] args) throws Exce ption{

Person neighbor = new Person ("Luisa", "Asenjo Martí nez", 1978);
Student aStudent = new Student ("Juan", "Ugarte López ", 1985);
aStudent.setGroup("66", 'M');

neighbor.print();

System.out.println();

aStudent.print();
aStudent.printGroup();

}
}

Inheritance
Consequences of extension of classes

Nati, mcfp@it.uc3m.es 2010 12

• Inheritance of the interface
• The public part of the suclass contains the public

part of the superclass
• The Student class contains the method print()

• Inheritance of the implementation
• The implementation of the subclass contains the

implementation of the superclass
• When calling the method of the superclass on an

object of the subclass (aStudent.print()) the
expected behavior takes place

Inheritance
Inheritance hierarchy in Java

• In Java, all classes are related through a
single inheritance hierachy

• A class can:
– Explicitly inherit from another class, or
– Implicitly inherit from the class Object (defined

in the Java core)

• This is the case both for predefined
classes and for user-defined classes

mcfp@it.uc3m.es 2010 13

Inheritance hierarchy

nati@it.uc3m.es 2010 14

Object

Boolean Character Number

Integer

…

Long Float Double

Person

Student Employee

Secretary Professor

Inheritance
Overriding

• Modification of the elements of the base
class inside the derived class

• The derived class can define:
– An attribute with the same name as one of the

base class → attribute hiding
– A method with the same signature as one of

the base class → Method overriding

• The second case is more usual

Nati, mcfp@it.uc3m.es 2010 15

Overriding I (Shadowing)
Attribute hiding

• How can I access to hiding variables?
– name (car name)
– this.name (car name)
– super.name (vehicle name)
– ((vehicle)this).name (vehicle name)
– super.super.name (bad)
– ((transport)this).name (transport name)

Transport

vehicle

carscooter

convoy

String name = “ground"

String name = “car"

String name = "Ferrari"

Parent class

variables
Child class:
visibles

Variables
Parent class
hidden

mcfp@it.uc3m.es 2010 16

“Granny” class

Child class

Overriding I (Shadowing)
Attribute hiding

Nati@it.uc3m.es 2010 17

Person p = a;

System.out.println(p.firstName);

MethodsAttributes

Class Student

Inherited from class Person

firstName

lastName

yearBirth

group

timetable

setGroup(String s)

printGroup()

print()

firstName

firstName
Student a = new Student(...);
System.out.println(a.firstName);

Overriding I (Shadowing)
Attribute hiding

• When accessing an attribute, the type of
the reference is used for deciding which
value to access

• The attribute of the subclass needs to
have the same name as the one of the
superclass
– But not necessarily the same type

• Not very useful in practice
– Allows the superclasses to define new

attributes without affecting the subclasse

mcfp@it.uc3m.es 2010 18

class SuperShow {
public String str = "SuperStr";

}

class ExtendShow extends SuperShow {
public int str = 7;

}

class Show {
public static void main (String[] args)

{
ExtendShow ext = new ExtendShow();
SuperShow sup = ext;
System.out.println(sup.str);
System.out.println(ext.str);

}
}

Overriding I (Shadowing)
Attribute hiding. Example

prints SuperStr

prints 7

Nati, mcfp@it.uc3m.es 2010 19

Overriding I (Shadowing)
Attribute hiding

• If we define an attribute (variable) in a subclass
with the same name and type that other one in
the superclass. Variable in the superclass
remains hidden.

• We can access one variable or the other using
this and super.
– Eg: “Car" extends from “Vehicle" and “Vehicle"

extends from “Transport”.
– We define the variable String name in the three

classes.
– How can we know if we are referring to the name of

transport, the name of the vehicle or the name of the
car?

mcfp@it.uc3m.es 2010 20

Overriding II
Method overriding. What is it?

• If the subclass defines a method with the same
signature (name + number and type of the parameters)
the method in the superclass is hidden.

• If the final modifier is userd in a method, this method
can not be overriden

• How can we access hidden methods?:

– start() (run the start method of the car)

– this.start() (run the start method of the car)

– super.start() (run the start method of the vehicle)

– super.super.start() (Bad)

Methods of
the child
class: visible

Methods of
the parent
class: hidden

mcfp@it.uc3m.es 2010 21

Overriding II
Method overriding. What is it?

Resource
•name
•Description
•getName()
•getDescription()

Classroom
•name
•description
•localization
•getName()
•getDescriptoin()
•getLocalization()

Computer
•name
•description
•OperatingSystem
•getName()
•getDescription()
•getOS()

Classroom
•description
•localization
•getLocalization()
•getDescription()

Computer
•OperatingSystem
•getOS()

Resource
•name
•description
•getName()
•getDescription()

public class Classroomextends Resource
public class Computerextends Resource

super.getDescripcion

this .getDescription()

mcfp@it.uc3m.es 2010 22

Overriding II
Method overriding.

23Nati, mcfp@it.uc3m.es 2010

Object

Another ancestor

Superclass

Subclassobject
instance

method(parameters)

message
¿∃ method(parameters)?

¿∃ method(parameters)?

no

¿∃ method(parameters)?

no

¿∃ method(parameters)?

no

error
no

Overriding II
Method overriding.

• When sending a message to an object,
the selected method:
– It depends on the class which the object is

an instance of
– It does not depend on the reference class

to which it is assigned, as in the case of
attributes

Nati, mcfp @it.uc3m.es 2010 24

Overriding II
Method overriding. Example

Both print:
“Extend.show: ExtendStr”

class SuperShow {
public String str = "SuperStr";

public void show() {
System.out.println("Super.show: " + str);

}
}
class ExtendShow extends SuperShow {

public String str = "ExtendStr";
public void show() {

System.out.println("Extend.show: " + str);
}

}
class Show2 {

public static void main (String[] args) {
ExtendShow ext = new ExtendShow();
SuperShow sup = ext;
sup.show ();
ext.show ();

}
}

25Nati, mcfp@it.uc3m.es 2010

Overriding II
Final methods

• Method overriding is useful for
– Extending the functionality of a method
– Particularizing the functionality of a method to

the derived class

• If it is not desired that subclasses are able
to modify a method or an attribute of the
base class, the reserved word final
should be applied to the method or
attribute

mcfp@it.uc3m.es 2010 26

• this references to the current class object

• super
– references the current object casted as if it was an instance

of its superclass
– With the super reference, the methods of the base class

can be explicitly accessed
– super is useful when overriding methods

public class Student extends Person {
// the rest remains the same

public void print(){
super .print();
System.out.print("Group:" + group+ schedule);

}
}

this and super references

Nati, mcfp@it.uc3m.es 2010 27

Overriding vs. overloading

• Overriding: The subclass substitutes the
implementation of a method of the superclass
– Both methods need to have the same signature

• Overloading: There is more than one method
with the same name but different signature
– The overloaded methods can be declared in the

same class or in different classes in the
inheritance hierarchy

nati, mcfp@it.uc3m.es 2010 28

Constructors and inheritance

• To create an object, the following steps are
done:
1. The base part is created
2. The derived part is added
– If the base class of the object inherits from another class,

step 1 is applied in the orden of the inheritance chain,
until we reach Object

• For example, when creating a Student object,
that extends Person , the steps would be:
1. The part corresponding to Person is created. To do so:

1. The part corresponding to Object is created.
2. The Person elements are added

2. The Student elements are added

nati@it.uc3m.es 2010 29

Constructors and inheritance

• A call to the constructor of the base
class is always done in the constructor
of the derived class.

• This is the first action of the constructor
(always in the first line)

• Two possibilities:
– Not explicitly indicate it
– Explicitly indicate it

(mandatory in the first line)

mcfp@it.uc3m.es 2010 30

Constructors and inheritance

1.If it is not explicit, Java automatically
inserts a call to super() in the first
line of the constructor of the derived
class.

public Student (String firstName, String lastName,
int yearBirth, String group, char timetable) {

// Java inserts here a call to super()
this.firstName = firstName;
this.lastName = lastName;
this.yearBirth = yearBirth;
this.group = group;
this.timetable = timetable;

}

31Nati, mcfp@it.uc3m.es 2010

Constructors and inheritance

2. Explicitly coded

public Student (String firstName, String lastName,

int birthYear, String group, char
timetable) {

super(firstName, lastName, birthYear) ;

this.group = group;

this.timetable = timetable;

}

32Nati, mcfp@it.uc3m.es 2010

Modifiers and access
Final

• The final modifier can be applied to:
– Parameters: Means that the value of such parameter

cannot be changed inside the method

– Methods: Means that it cannot be overridden in derived
classes

– Classes: Avoid extending the class. It cannot be inherited.

public void myMethod(final int p1, int p2){} // p1 value cannot be changed

public final void myMethod(){} // myMethod cannot be overridden

public final class myClass(){} // myClass cannot be extended

33Nati, mcfp, @it.uc3m.es 2010

• static modifier

• Static members exist only once per class,
independently of the number of instances (objects)
of the class that have been created or even if none
(instances) exists.

• Static members can be accessed using the class
name.

• An static method cannot access non-static
members directly, it must first create an object.

Modifiers and access
Static (static members)

Mcfp, rcrespo@it.uc3m.es 2010 34

Modifiers and access
Static. Some rules

– Static members are invoked with:

– Non static members require an instance (object) in order to
be accessed.

– Non static members are invoked with:

– When a static member is invoked (called) from inside the
same class , the class name can be deleted. I.e. it can be
written:

objectName .normalMethod();
objectName .normalAttribute;

ClassName .staticMethod();
ClassName .staticAttribute;

ClassName objectName = new ClassName();

staticMethod();
staticAttribute;

ClassName .staticMethod();
ClassName .staticAttribute;

instead
of:

Mcfp, rcrespo@it.uc3m.es 2010 35

copyright
mcfp@it.uc3m.es

Java: Estructura del lenguaje 36

MODIFIERS class method attribute

access

public Accesible to any other class

(friendly) Accessible only to classes in the same package

protected Accessible to the class and its subclasses

private Applied to inner classes Accessible only inside the class

others

abstract Cannot be instantiated

For inheriting from
them

At least 1 abstract
method

Has no code

It is implemented in the
subclasses or child
classes

final Cannot be extended.

It is a leave in the
inheritance tree.

Cannot be overridden.

It is constantand cannot
be modified in the child
classes.

Its value cannot be
changed, it is constant .

It is normally used together
with static.

static Maximum level class.

Applied to inner classes

It is the same for all of
the class objects.

Use:

ClassName.method ();

It is the same for all of the
class objects.

Mcfp, rcrespo@it.uc3m.es 2010 36
(*) http://www.coderanch.com/t/527185/java/java/Understanding-Modifiers-classes

