Obj

. O

ect Oriented Java

nject based programming

Il. O

nject oriented programing

M. Carmen Fernandez Panadero
Raquel M. Crespo Garcia
<mcfp, rcrespo@it.uc3m.es>

Contents

Polymorphism

Dynamic binding

Casting. Types compatibility
Abstract classes and methods

Partial implementations
Polymorphism with abstract classes

Interfaces (concept and implementation)
Multiple inheritance
Polymorphism with interfaces

Packages
Exceptions

) Review (Session 1) [A

BY-NC-SA
R

I_I:‘

W Classes (.java files)

L]

Primitive Reference || Normal Special

types _bpes || Methods | |_methods
Objects || Arrays Constructor || Main
/

Sring

© Review (session 2)
Inheritance hierarchy in Java

"
Object
T
| | | |
Boolean Character Number Person
t 1
| | | | | |
Integer Long Float Double Student| | Employee

T
| |

Secretary | Professor

Review (session 2)
Inheritance hierarchy in Java

e In Java, all classes are related in a unique
Inheritance hierarchy

e A class can:

— Explicitly inherit of other class

— or implicitly inherit of the Object class
(defined in the Java core)

e This applies both for predefined classes as
well as user-defined ones

Polymorphism
What Is it?

« Capacity of an object for deciding which method to apply,
depending on the class it belongs to

— A call to a method on a reference of a generic type (e.g.
base class or interface) executes different implementations
of the method depending on which class the object was
created as

* Poly (many) + morph (form)
— One function, different implementations
« Allows designing and implementing extensible systems

— Programs can process generic objects (described by
references of the superclass)

— The concrete behavior depends on the subclasses
— New subclasses can be added later

Polymorphism
Exercise

 Program a class:
— Shape, that represents a bi-dimensional shape (parallelepiped),
with two attributes, one per each dimension, and an ar ea()
method that calculates the area. Its default return value is 0.

— Tri angl e, that extends the Shape class and overrides the
ar ea() method

— Rect angl e, that extends Shape and overrides the ar ea()
method

— ShapesLi st , that has an attribute of type array of Shape, and
a method t ot al Area() that returns the sum of the areas of all
the shapes

 What should be changed in ShapesLi st if a new class
El |1 pse is added?

Polymorphism: dynamic binding

 The power of method overriding is that the correct
method Is properly called, even though when
referencing the object of the child class through a
reference of the base class

* This mechanism is called “dynamic binding”

— Allows detecting during running time which method is
the proper one to call

 The compiler does not generate the calling code
during compiling time
— It generates code for calculating which method to call

Casting (Type conversion)
Syntax and terminology

e Syntax:
(type) identifier

 Two types of casting:

—widening: a subclass Is used as an instance of
the superclass. (E.g.: calling a method of the
parent class which has not been overridden).

Implicit.
— narrowing: The superclass Is used as an
Instance of one subclass. Explicit conversion.

==, * Casting can only be applied to parent and
‘(J§ child classes, not to sibling classes.

Casting (Type conversion)
Widening or upcasting
1. Upcasting: compatibility upwards
(towards the base class)
— An object of the derived class can always
be used as an object of the base class

(because It Implements an “is-a”
relationship)

Person p = new Student ();

Casting (Type conversion)
Narrowing or downcasting

2. Downcasting: compatibility downwards
(towards the derived classes)

Downcasting cannot be applied by default,
because an object of the base class is not
always an object of the derived class.

——

St udent s =-new Person(); // error

It is only possible when the reference of the base
class actually points to an object of the derived
class

In these cases, an explicit casting must be
applied.

Casting (Type conversion)
Explicit and implicit

Reference to superclass

e —

A

Explicit downcastin

Reference to subclass

N

Automatic Upcasting

AN

N\
e

Obiject of superclas

S

Explicit upcasting if ambiguous
(e.g. Method overridding

Obiject of subclass

Casting (Type conversion)
Example

public class Test2 {
public static void main (String[] args) {
Person p1l,
//inplicit upcasting - works
Student s1 = new Student();
pl = s1,;

Student s2; -

A student is
always a persor
(implicit)

/[implicit downcasting — does notwork—

s2 = pl; /lerror beeatseTo explicit casting is don e

/l explicit downcasting - works

s2 = (Student) pl; /I pl actually references an
/Il instance of class Student

| A person is not

always a student

If someone, besides being a person, is also ardtude
(not always happens), (s)he can be required ssuff a

a student, but must Explicitly stated that (s)he
will be treated as a student.

Casting (Type conversion)

Example

Person p2 = new Person();
Student s3;

Il inmplicit downcasting — does notwork
s3 = p2; [lcompilererroi

—

/[explicit downcasting — does not works sometimes

//ClassCastException will be thrown

//because p2 does not refer to a Stude
s3 = (Student) '

Il inplicit downcasting — does notwork —

A person not
always is a
student. It
cannot be
implicitly
assumed.

__Student—s4—=—1rew Per son() ; //error

t

A person is not always a student. It cannot be
assumedmplicitly .

A person is
sometimes a
student, but if
not (it has not
been created as
such), it cannot
be treated as
such, not even
thoughexplicitly
trying.

Casting (Type conversion)
Instanceof operator

e Synt ax:
obj ect I nstanceO cl ass

— Checks if an object is really an instance of a
given class

 Example:

public Student check(Person p) {

Student s = null;

if (p | nst anceOF Student)
s = (Student) p;

return s;

Abstract classes
What is an abstract class?

e An abstract class Is a class that Aidsast one
abstract method (not implemented, without code).

|t declares theatructure of a givenabstraction,
without providing all the implementation details

(.e. without implementing completely every
method)

Message

// \\

Emall VoiceMessage

Abstract classes
Characteristics

e Classes and methods are defined as abstract
using the reserved woebst r act

public abstract class Shape{...}

* The abstract modifier cannot be applied to:
— constructors
— static methods
— private methods

Abstract classes
Characteristics

e Abstract classesannot be instantiated

— References to abstract classes can exist

— But they point to objects of classes derived of the abstrac
class

Shape fig = new Rectangl e(2, 3);
e Abstract classesan be extended
 |n an abstract class, there can be both

— abstract methods
— non abstractmethods

Abstract classes
Purpose: partial implementations

» Abstract classes are normally used for representing
partially implemented classes
— Some methods are not implemented but declared

 The objective of partial implementations is to provide
a common interface to all derived classes

— Even though in cases when the base class has not
information enough to implement the method

Abstract classes
abstract methods

 Methods declared but no implemented in
abstract classes

abstract returnType nane(paranet ers)(

— Methods are declared abstract using the reserved
word abst r act

» Classes inheriting of the abstract class must
Implement the abstract methods of the
superclass
— Or they will be abstract themselves too

NOTE: No braces! They are not

Y

7

Implemented, thus only a semico@‘.
follows the declaration

Abstract classes
How are they used?

The Resource class is abstract
because one of its methods

describe() has no code
* Grey color indicates having no code

All classes extending Resource
must provide the implementation
of the describe() method (with its
code)

** Bold indicates having code

Resource

sname

sdescription

sgetName()
Classroom Computer
s|ocation soperatingSystem
sgetLocation() sgetOperatingSysten
sdescribe()* sdescribe() **

public abst r act class Resource

@ [public class Classroonext ends Resource

public class Computerext ends Resource

Abstract classes
How are they used?. Example

abstract class Shape { /[any parallelepiped
double dim1;
double dim2;

Shape(double dim1, double dim2){
this.diml = dim1;
this.dim2 = dim2;
}

abstract double area();

}

class Rectangle ext ends Shape {
Rectangle(double dim1, double dim2){
super(diml,dim2);

doubl e area(){
} return dim1*dim2; // rectangle area

}

Abstract classes
Polymorphism

S i Resource
An array of objects of type Array elements are instances name
Resource(abstract) of a concrete (non-abstract) descrint
public class ResourcesTest{ class ¢omputer and escription
classroom °gethme()
public static yoid main(String args[]){ describe(f
Resour ceY] myResources =new Resource[3];
myResources[0] = new Cl assr oon(“classroom1"); /\
myResources[1] = new Comput er ("PC1"), Classroom Computer
myResources[2] = new Cl assr oon("classroom2"); elocation -operatingSystem
for(int i=0; i<myResources.length;i++){ *getLocation() getOperatingSystem()
myResour ces[i]Cdescri be(); edescribe (¥ sdescribe(¥*
}
}
) public abst r act class Resource{...}

v

A call to the describe method on objects of typé

public class Classroonext ends Resource{...}

1=

Resourceand during running time it will be :

ublic class Computerext ends Resource{...
checked which type of object is contained P P ool
(Computer or Classroomn) and the proper * Grey color means having no code

| method will be called. Bynamic binding * Bold means having code

Interfaces
What is an interface?

e Interfaces take the abstract class concept opdistiner.
— All methods in the interface are abstract
— They could be thought of aBKe” a “pure” abstract class.

* Interfaces are alwaysiblic
— Interface attributes are implicitly public, stasiad final
— Interface methods have no access modifiers, trepublic

 Interfaces aremnplemented by classes

— A classimplements an interface defining the bodyabf the
methods.

— An abstract classimplements an interface implementing or
declaring abstracts the methods.

— A class can implement one or more interfaces (tphel
Inheritance)

Interfaces
What is an interface?

« Aninterfaceis a puradesignelement
— What to do

* A class(including abstract ones) is a mixadsign and
Implementation

— What to do anchow

* Interfaces represent a complete abstraction Gssc

— An interface abstracts the public characteristicstaatviors of
their implementations (how those behaviors are eregut

« Different classes can implement the same intenface
different ways

Interfaces

How are they used?

Shape ishot a class, it isan interface, it
just defines the behavior but not the
Implementation

Shape

earea()

Ark

All classes implementing Shape must
provide an implementation for all
methods declared in Shape (or

declared them abstract)

public i nt er f ace Shape

Circle Parallelepiped
eradius ediml, dim2
earea() earea()
extends T
Rectangle
earea()

public class Circlei npl enent s Shape

public class Parallelepiped npl enent s Shape

Interfaces

Declaration
e Syntax:
<public> I nterface name{

type variable = value;
returnType net hod(par anet er s)@

}

— publ i ¢ modifier is optional (interfaces are public)
— All methods are implicitly abst r act and publ i c

— Interface attributes are publ i ¢, stati c and
f1nal

« They represent constants

NOTE: No braced! As the method._is
not implemented, only a semicol

) follows the declaration

Interfaces
Implementation

« If a class implements an interface, it implements all
abstract methods declared in such interface

* Represented with the reserved word i npl enent s

class MyClass | npl enent s Interfacel, Interface2 {
}
class DerivedClass ext ends BaseClass

| npl enent s Interfacel, Interface?2 {

28
Java: Interfaces/

Interfaces
Use. Example

e Define an interface for printable objects
— Method void print()

 Modify the Rectangle and Email classes
so that they implement the Printable
Interface

29

st uc3m.es Java: Interfaces/

Interfaces
Use. Example

| nterface Printable {

voi d pri nt()@
}

class Emall ext ends Message
| npl enment s Printable {

public void print(){

System.out.printin(“Printing email”);
System.out.printin(message);

NOTE: No bracesd! It is not

Implemented, thus just a semico:
follows the declaration

30

Java: Interfaces/

Interfaces
Use. Example

public class Rectangle
[...]
public void print(){
System.out.printin(“Printing Rectangle (" + dim1 +
StringBuffer res = new StringBuffer();
for (inti=0;i<=diml+1; i++)
res.append("*");
res.append("\n");
for (int] = 0; j < dim2; j++){
res.append("*");
for (inti=1;i<=diml; i++)
res.append(" ");
res.append("*");
res.append("\n");

ext ends Shape i npl enents Printable {

}

for (inti=0; i <=dim1l+1; i++)
res.append("*");

System.out.printin(res);

nat@it.uc3m.es

“X" +dim2 +")");

Java: Interfaces/

Interfaces
Use. Extending interfaces with inheritance

 Interfaces can be extended (inherited)
too

e |nterface inheritance adds the methods
to be included In the classes
Implementing the interfaces

— The class implementing the derived
Interface must include all the methods
declared in both the derived as well as the
base interfaces

32
Java: Interfaces/

Interfaces
Use. Example

« A well-design program will includterfaces
andextensionsof classes

 In the future, programmers can easily amply it:

— Extending the implementation, or
— Implementing the interface

implements

WindowLlistener <------ WindowAdapter

N~ o
~
implements ~ ~ ~ _ extends
~
~

MyWindowLlistener

33
Java: Interfaces/

Interfaces
Purpose. Multiple inheritance

LA
method 1\\\ method1 /
ClassA // Class

C c = new C\O\
methodl1() // ??7?7?

e Java does not allows multiple inheritance
semsiMilar functionality is provided with interfaces

Class C

Interfaces
Purpose. Multiple inheritance

method1 method1

Class A interface B

extends implements
C c = new C();

c.methodl() //

Class C OK

* A class extends only one base class
J, BUt Can ImMplement several interfaces

) o
~._ h
F [
N

Interfaces
Purpose. Multiple inheritance

« Simple inheritance of implementations
— Extension on just one class

 Multiple inheritance of interfaces
— Implementation of several interfaces

Implementation of several interfaces

Interfaces
Purpose. Polymorphism

* Polymorphism: “one interface, multiple
methods”

 |nterfaces support dynamic resolution of
methods during execution time (dynamic
binding)

 What difference Is there between interface
Implementation and inheritance?

— Interfaces do not belong to the hierarchy of
iInheritance

37
Java: Interfaces/

Exercise: JavaRanch

< <interface> >

Shape

void draw()

Circle Box Poly

void draw() void draw() | |void draw()

38
Java: Interfaces/

Exercise: JavaRanch

i mport java.awt.*
public interface Shape

{
}

public void draw(G aphics g);

import java.awt.*
public class Circle inplements Shape
{ . .

private int x ;

private int y ;

private int wd

private int high ;

private Col or col or

Crcle(int x, int 'y, int wide , int high , Color color)

{
this.x = x ;
this.y =y
this.wi de = wi de
thi s. high = high
this.color = color
}
public void draw(Graphics g)
{
g.setColor(color);
g.fillOval(x , vy, wide , high);
}

Exercise: JavaRanch

i mport java.awt.* ;
public class Box inplenments Shape
{
private int x ;
private int y ;
private int wide ;
private int high ;
private Color color ;
Box(int x , int y, int wide, int high, Color color)

{
this.x = x ;
this.y =y ;
this.wide = wide ;
t his. high = high ;
this.color = color ;
}
public void draw(Graphics g)
{
g.setColor(color);
g.fillRect(x , y, wide , high);
}

Exercise: JavaRanch

i mport java.aw.* ;
public class Poly inplenents Shape
{

int[] x ;

int[] y;

private Color color ;

Poly(int[] x, int[] y , Color color)

{
this.x = x ;
this.y =y ;
this.color = color ;
}
public void draw(G aphics g)
{
g.setCol or(color);
g.fillPolygon(x , y , x.length);
}

Exercise: JavaRanch

i mport java.aw.* ;
public class ShowShapes extends Frane

{
static int[] vx ={ 200 , 220, 240, 260 , 280 , 250 , 230 };
static int[] vy ={ 150 , 150 , 190 , 150 , 150 , 210 , 210 };
static Shape[] shapes =
{
IV
new Box(50 , 70 , 100, 20 , Color.red) ,
new Box(90 , 70 , 20, 110 , Color.blue) ,
new Circle(50 , 150 , 60 , 60 , Color.green) ,
new Circle(70 , 170, 20, 20 , Color.white) ,
new Box(50 , 90, 40, 90, Color.white) ,

/Il a

new Circle(130 ,
new Box(170 , 180 , 20 , 30 ,
new Circle(150 , 170 , 20, 20 ,

150 , 60, 60, Color.green) |,
Col or. blue) ,
Color.white) ,

Java: Interfaces/

42

Exercise: JavaRanch

Il v
new Poly(vx , vy , Color.black) ,

Il a
new Circle(290, 150, 60, 60, Color.green) |,
new Box(330 , 180, 20, 30, Color.blue)
new Circle(310 , 170, 20, 20

, Color.white) ,

b
ShowShapes()
{
set Bounds(200 ,150 , 400 , 250);
setVisible(true);
}
public void paint(Gaphics g)
{
for(int i =0 ; i < shapes.length ; i++)
{
shapes[i].drawm g);
}
}
public static void main(String[] args)
{
new ShowShapes() ;
}
}
t.uc3m.es

Java: Interfaces/

43

Object Orientation Summary

» Class(concrete)
— All methods are implemented

e Abstract class

— At least one method ot implementedbut
just declared

—abstract modifier
e |nterface

—No implementation at all
— Reserved wordnterface

Object Orientation Summary

» Class (concrete or abstract)

— Canextend (extends) only one base class
(simple inheritance)

— Canimplement (implements) one or more
Interfaces (multiple inheritance)
* Reserved wordextends

 Interface
— Can extendetends) one or more interfaces

Packages

M. Carmen Fernandez Panadero
Raquel M. Crespo Garcia
<mcfp, rcrespo@it.uc3m.es>

Packages

» A package groupsclasses andinterfaces

 The hierarchies in a package correspond to the
hierarchies of folders

e Dots are used for referring to subpackages, casse
and interfaces in a package

— E.g.: The Applet class in package java.appletigemi/by
Java Is imported when programming an applet

Import java.applet.Applet;

— The java.applet.Applet class is in the java/apioleter

Packages

 Using packages created by others

— Include in the classpath the path to the folder containing the
package. E.g.: assuming PackageByOther is in c:\javal\lib
(windows) and /opt/lib/ (linux)

set CLASSPATH=c:\PackageByOther; YL ASSPAT HY% (windows)
set env CLASSPATH /opt/lib/PackageByOther: $CLASSPATH (linux)

— In the class using the package, the corresponding import
sentece must be included before the class declaration

import PackageByOther.*;
 Creating my own packages

— Save the classes in a folder named as the package

— All classes belonging to the package must include the following
sentence as the first one:

package myOwnPackage;

48

~

®

Mcfp, rcrespo@it.u

c3m.es 2010

ClassName.method ();

BY-NC-SA

MODIFIERS | ClaSs \ method |attribute
pUb“C Accesible to any other class
QD . _ _
= (friendly) Accessible only to classes in the same package
(D - : X
0 protected ® Accessible to the class and its subclasses
private Applied to inner classes| Accessible only inside the class
Cannot be instantiated | Has no code
abstract
Forinheriting from It is implemented in the
them subclasses or child ®
At least 1 abstract classes
method
% ﬁnal Cannot be extended. Cannot be overridden. | Its value cannot be
D It is a leave in the It is constantand cannot| changed, it izonstant.
a inheritance tree. be modified in the child | It is normally used togethe
classes. with static.
StatiC Maximum level class. | Itis the same for all of | It is the same for all of the
Applied to inner classes the class objects. class objects.
Use:

A

(*) http://www.coderanch.com/t/527185/lava/lava/Understandina-Modifiers-classes

Exceptions

M. Carmen Fernandez Panadero
Raquel M. Crespo Garcia
<mcfp, rcrespo@it.uc3m.es>

Exceptions

 What they are Exception
\V/

e Purpose

e Type

e Use

atch Throw

Exceptions: What are they?

 Eventsthat prevent the normal execution of
the program.

 \When an exception occurs, axception
objectis created and it Is passed to the
execution controlsystem

 The execution control system:

— Searchfor a piece of code that handles the
exception

— If no handling code Is found, the progrands

Exceptions: Purpose

e Forseparatingthe code for error handling
(t ry- cat ch) from the normal code

e [orpropagating errors in the calls stack
(t hr ows)

* Forgrouping and differentiating types of errors
(as exceptions are objects, they can be
grouped Into classes)

 Every method must:

— Eithercatch (catch)
— Orthrow (throws)

N any exception happening during its execution

Exceptions: Types

e Two main types:

— Runtime exception(nt i mreExcept i on)
* Not checked in compiling-time

* E.g.: NullPointerException, ArithmeticException,
NumberFormatException, IndexOutOfBoundException,)et

— Exceptions checked during compiling time
* E.g.: Input/output exceptior($ CExcepti on,
Fi | eNot FoundExcept i on, EOFExcept i on)
o User-defined (MyExcepti on)

 During compiling time, it is checked that any
exception (except runtime exceptions) are:
— eithercaught

— ordeclaredto be thrown in the methods where they can
happen

Exceptions: Use

e EXceptions appear:

— Implicitly (when an error happens)
— Explicitly: t hr ownew MyEXxception(message)

e \What to do:

— Handle the exception
 Enclose in ary{} block sentences that may generate exceptions

 Enclose intheat ch(MyExcepti on e){} block the senteces to
be executed for handling the exception

— Throw the exception:
 public void myMethod hr ows MyException

~® ¢ Thefinally{} block encloses the code that should
7 always be executed

