
Object Oriented Java

M. Carmen Fernández Panadero

Raquel M. Crespo García
<mcfp, rcrespo@it.uc3m.es>

I. Object based programming
II. Object oriented programing

Contents

� Polymorphism

� Dynamic binding

� Casting. Types compatibility

� Abstract classes and methods

� Partial implementations

� Polymorphism with abstract classes

� Interfaces (concept and implementation)

� Multiple inheritance

� Polymorphism with interfaces

� Packages

� Exceptions

Review (Session 1)

Program

Members

Attributes

Reference
types

Methods

Primitive
types

Classes (.java files)

Normal
Methods

Constructor Main

Special
methods

Objects Arrays

String

Review (session 2)
Inheritance hierarchy in Java

Object

Boolean Character Number

Integer

…

Long Float Double

Person

Student Employee

Secretary Professor

Review (session 2)
Inheritance hierarchy in Java

• In Java, all classes are related in a unique
inheritance hierarchy

• A class can:
– Explicitly inherit of other class
– or implicitly inherit of the Object class

(defined in the Java core)

• This applies both for predefined classes as
well as user-defined ones

Polymorphism
What is it?

• Capacity of an object for deciding which method to apply,
depending on the class it belongs to
– A call to a method on a reference of a generic type (e.g.

base class or interface) executes different implementations
of the method depending on which class the object was
created as

• Poly (many) + morph (form)
– One function, different implementations

• Allows designing and implementing extensible systems
– Programs can process generic objects (described by

references of the superclass)
– The concrete behavior depends on the subclasses
– New subclasses can be added later

Polymorphism
Exercise

• Program a class:
– Shape, that represents a bi-dimensional shape (parallelepiped),

with two attributes, one per each dimension, and an area()
method that calculates the area. Its default return value is 0.

– Triangle, that extends the Shape class and overrides the
area() method

– Rectangle, that extends Shape and overrides the area()
method

– ShapesList, that has an attribute of type array of Shape, and
a method totalArea() that returns the sum of the areas of all
the shapes

• What should be changed in ShapesList if a new class
Ellipse is added?

Polymorphism: dynamic binding

• The power of method overriding is that the correct
method is properly called, even though when
referencing the object of the child class through a
reference of the base class

• This mechanism is called “dynamic binding”
– Allows detecting during running time which method is

the proper one to call

• The compiler does not generate the calling code
during compiling time
– It generates code for calculating which method to call

Casting (Type conversion)
Syntax and terminology

• Syntax:
(type) identifier

• Two types of casting:
– widening: a subclass is used as an instance of

the superclass. (E.g.: calling a method of the
parent class which has not been overridden).
Implicit.

– narrowing: The superclass is used as an
instance of one subclass. Explicit conversion.

• Casting can only be applied to parent and
child classes, not to sibling classes.

Casting (Type conversion)
Widening or upcasting

1. Upcasting: compatibility upwards
(towards the base class)
– An object of the derived class can always

be used as an object of the base class
(because it implements an “is-a”
relationship)
Person p = new Student();

Casting (Type conversion)
Narrowing or downcasting

2. Downcasting: compatibility downwards
(towards the derived classes)
– Downcasting cannot be applied by default,

because an object of the base class is not
always an object of the derived class.

Student s = new Person(); // error

– It is only possible when the reference of the base
class actually points to an object of the derived
class

– In these cases, an explicit casting must be
applied.

Casting (Type conversion)
Explicit and implicit

Reference to superclass

Reference to subclass Object of subclass

Object of superclass

Automatic Upcasting

Explicit downcasting Explicit upcasting if ambiguous
(e.g. Method overridding

public class Test2 {
public static void main (String[] args) {

Person p1;
//implicit upcasting - works
Student s1 = new Student();
p1 = s1;

Student s2;
// implicit downcasting – does not work
s2 = p1; //error because no explicit casting is don e

// explicit downcasting - works
s2 = (Student) p1; // p1 actually references an

// instance of class Student

Casting (Type conversion)
Example

A student is
always a person
(implicit)

A person is not
always a student

If someone, besides being a person, is also a student
(not always happens), (s)he can be required stuff as
a student, but must be explicitly stated that (s)he
will be treated as a student.

Person p2 = new Person();
Student s3;

// implicit downcasting – does not work
s3 = p2; //compiler error

// explicit downcasting – does not works sometimes
//ClassCastException will be thrown
//because p2 does not refer to a Student object

s3 = (Student) p2; //error

// implicit downcasting – does not work
Student s4 = new Person(); //error

}
}

A person not
always is a
student. It
cannot be
implicitly
assumed.

A person is
sometimes a
student, but if
not (it has not
been created as
such), it cannot
be treated as
such, not even
though explicitly
trying.

A person is not always a student. It cannot be
assumed implicitly .

Casting (Type conversion)
Example

• Syntax:

object instanceOf class
– Checks if an object is really an instance of a

given class

• Example:
public Student check(Person p) {

Student s = null;

if (p instanceOf Student)
s = (Student) p;

return s;

}

Casting (Type conversion)
instanceof operator

• An abstract class is a class that has at least one
abstract method (not implemented, without code).

• It declares the structure of a given abstraction,
without providing all the implementation details
(i.e. without implementing completely every
method)

Abstract classes
What is an abstract class?

Message

Email SMS Fax VoiceMessage

Abstract classes
Characteristics

• Classes and methods are defined as abstract
using the reserved word abstract

• The abstract modifier cannot be applied to:
– constructors

– static methods

– private methods

public abstract class Shape{...}

• Abstract classes cannot be instantiated
– References to abstract classes can exist
– But they point to objects of classes derived of the abstract

class

• Abstract classes can be extended

• In an abstract class, there can be both
– abstract methods

– non abstract methods

Abstract classes
Characteristics

Shape fig = new Rectangle(2,3);

Abstract classes
Purpose: partial implementations

• Abstract classes are normally used for representing
partially implemented classes
– Some methods are not implemented but declared

• The objective of partial implementations is to provide
a common interface to all derived classes
– Even though in cases when the base class has not

information enough to implement the method

• Methods declared but no implemented in
abstract classes
abstract returnType name(parameters);

– Methods are declared abstract using the reserved
word abstract

• Classes inheriting of the abstract class must
implement the abstract methods of the
superclass
– Or they will be abstract themselves too

Abstract classes
abstract methods

NOTE: No braces!! They are not
implemented, thus only a semicolon (;)
follows the declaration

Abstract classes
How are they used?

Classroom
•location
•getLocation()
•describe()

Computer
•operatingSystem
•getOperatingSystem()
•describe()

Resource
•name
•description
•getName()
•describe()

public class Classroom extends Resource
public class Computer extends Resource

The Resource class is abstract
because one of its methods
describe() has no code

All classes extending Resource
must provide the implementation
of the describe() method (with its
code)

public abstract class Resource

* Grey color indicates having no code

** Bold indicates having code

*

abstract class Shape { // any parallelepiped
double dim1;
double dim2;

Shape(double dim1, double dim2){
this.dim1 = dim1;
this.dim2 = dim2;

}

abstract double area();
}

class Rectangle extends Shape {
Rectangle(double dim1, double dim2){

super(dim1,dim2);
}
double area(){

return dim1*dim2; // rectangle area
}

}

Abstract classes
How are they used?. Example

Abstract classes
Polymorphism

Classroom
•location
•getLocation()
•describe()

Computer
•operatingSystem
•getOperatingSystem()
•describe()

Resource
•name
•description
•getName()
•describe()

public class Classroom extends Resource{…}

public class Computer extends Resource{…}

public abstract class Resource{…}

*

public class ResourcesTest{

public static void main(String args[]){
Resource[] myResources = new Resource[3];

myResources[0] = new Classroom(“classroom1");
myResources[1] = new Computer("PC1");
myResources[2] = new Classroom("classroom2");

for(int i=0; i<myResources.length;i++){
myResources[i].describe();

}

}
}

** Bold means having code

* Grey color means having no code

An array of objects of type
Resource (abstract)

Array elements are instances
of a concrete (non-abstract)
class (computer and
classroom)

A call to the describe method on objects of type
Resource and during running time it will be
checked which type of object is contained
(Computer or Classroom) and the proper
method will be called. –Dynamic binding

Interfaces
What is an interface?

• Interfaces take the abstract class concept one step further.
– All methods in the interface are abstract

– They could be thought of as “like” a “pure” abstract class.

• Interfaces are always public
– Interface attributes are implicitly public, static and final
– Interface methods have no access modifiers, they are public

• Interfaces are implemented by classes
– A class implements an interface defining the body of all the

methods.
– An abstract class implements an interface implementing or

declaring abstracts the methods.
– A class can implement one or more interfaces (~multiple

inheritance)

Interfaces
What is an interface?

• An interface is a pure designelement

– What to do

• A class (including abstract ones) is a mix of design and
implementation
– What to do and how

• Interfaces represent a complete abstraction of a class
– An interface abstracts the public characteristics and behaviors of

their implementations (how those behaviors are executed)

• Different classes can implement the same interface in
different ways

Interfaces
How are they used?

Circle
•radius

•area()

Parallelepiped
•dim1, dim2

•area()

Shape
•area()

public class Circle implements Shape

public class Parallelepiped implements Shape

Shape is not a class, it is an interface, it
just defines the behavior but not the
implementation

All classes implementing Shape must
provide an implementation for all
methods declared in Shape (or
declared them abstract)

public interface Shape

implements

Rectangle
•area()

extends

• Syntax:
<public> interface name {

type variable = value;
returnType method(parameters);

}

– public modifier is optional (interfaces are public)
– All methods are implicitly abstract and public
– Interface attributes are public, static and
final

• They represent constants

Interfaces
Declaration

NOTE: No braces!! As the method is
not implemented, only a semicolon (;
) follows the declaration

• If a class implements an interface, it implements all
abstract methods declared in such interface

• Represented with the reserved word implements

class MyClass implements Interface1, Interface2 {
...

}

class DerivedClass extends BaseClass

implements Interface1, Interface2 {

...

}

28
nati@it.uc3m.es Java: Interfaces/

Interfaces
Implementation

29

• Define an interface for printable objects
– Method void print()

• Modify the Rectangle and Email classes
so that they implement the Printable
interface

nati@it.uc3m.es Java: Interfaces/

Interfaces
Use. Example

30

interface Printable {
void print();

}

class Email extends Message
implements Printable {

public void print(){

System.out.println(“Printing email”);
System.out.println(message);

}

nati@it.uc3m.es Java: Interfaces/

NOTE: No braces!! It is not
implemented, thus just a semicolon (;)
follows the declaration

Interfaces
Use. Example

31

public class Rectangle extends Shape implements Printable {
[...]
public void print(){

System.out.println(“Printing Rectangle (" + dim1 + “x" + dim2 + ")");
StringBuffer res = new StringBuffer();
for (int i = 0; i <= dim1+1; i++)

res.append("* ");
res.append("\n");
for (int j = 0; j < dim2; j++){

res.append("* ");
for (int i = 1; i <= dim1; i++)

res.append(" ");
res.append("*");
res.append("\n");

}
for (int i = 0; i <= dim1+1; i++)

res.append("* ");
System.out.println(res);

}
}

nati@it.uc3m.es Java: Interfaces/

Interfaces
Use. Example

Interfaces
Use. Extending interfaces with inheritance

• Interfaces can be extended (inherited)
too

• Interface inheritance adds the methods
to be included in the classes
implementing the interfaces
– The class implementing the derived

interface must include all the methods
declared in both the derived as well as the
base interfaces

32
nati@it.uc3m.es Java: Interfaces/

33

• A well-design program will include interfaces
and extensionsof classes

• In the future, programmers can easily amply it:
– Extending the implementation, or
– Implementing the interface

WindowListener WindowAdapter

MyWindowListener

nati@it.uc3m.es Java: Interfaces/

Interfaces
Use. Example

extends

implements

implements

Interfaces
Purpose. Multiple inheritance

Class C

ClassA

method1

Class B

method1

C c = new C();
method1() // ????

• Java does not allows multiple inheritance
• Similar functionality is provided with interfaces

extends extends

Interfaces
Purpose. Multiple inheritance

Class C

Class A

method1

interface B

method1

C c = new C();
c.method1() //
OK

• A class extends only one base class
• But can implement several interfaces

extends implements

Interfaces
Purpose. Multiple inheritance

• Simple inheritance of implementations
– Extension on just one class

• Multiple inheritance of interfaces
– Implementation of several interfaces

Implementation of several interfaces

37

• Polymorphism: “one interface, multiple
methods”

• Interfaces support dynamic resolution of
methods during execution time (dynamic
binding)

• What difference is there between interface
implementation and inheritance?
– Interfaces do not belong to the hierarchy of

inheritance

nati@it.uc3m.es Java: Interfaces/

Interfaces
Purpose. Polymorphism

Exercise: JavaRanch

38
nati@it.uc3m.es Java: Interfaces/

Exercise: JavaRanch

import java.awt.* ;
public interface Shape
{

public void draw(Graphics g);
}

import java.awt.* ;
public class Circle implements Shape
{

private int x ;
private int y ;
private int wide ;
private int high ;
private Color color ;

Circle(int x , int y , int wide , int high , Color color)
{

this.x = x ;
this.y = y ;
this.wide = wide ;
this.high = high ;
this.color = color ;

}

public void draw(Graphics g)
{

g.setColor(color);
g.fillOval(x , y , wide , high);

}

}

Exercise: JavaRanch

import java.awt.* ;
public class Box implements Shape
{

private int x ;
private int y ;
private int wide ;
private int high ;
private Color color ;
Box(int x , int y , int wide , int high , Color color)
{

this.x = x ;
this.y = y ;
this.wide = wide ;
this.high = high ;
this.color = color ;

}

public void draw(Graphics g)
{

g.setColor(color);
g.fillRect(x , y , wide , high);

}
}

Exercise: JavaRanch

import java.awt.* ;
public class Poly implements Shape
{

int[] x ;
int[] y ;
private Color color ;

Poly(int[] x , int[] y , Color color)
{

this.x = x ;
this.y = y ;
this.color = color ;

}

public void draw(Graphics g)
{

g.setColor(color);
g.fillPolygon(x , y , x.length);

}
}

Exercise: JavaRanch

42
nati@it.uc3m.es Java: Interfaces/

import java.awt.* ;
public class ShowShapes extends Frame
{

static int[] vx = { 200 , 220 , 240 , 260 , 280 , 250 , 230 };
static int[] vy = { 150 , 150 , 190 , 150 , 150 , 210 , 210 };

static Shape[] shapes =
{

// J
new Box(50 , 70 , 100 , 20 , Color.red) ,
new Box(90 , 70 , 20 , 110 , Color.blue) ,
new Circle(50 , 150 , 60 , 60 , Color.green) ,
new Circle(70 , 170 , 20 , 20 , Color.white) ,
new Box(50 , 90 , 40 , 90 , Color.white) ,

// a
new Circle(130 , 150 , 60 , 60 , Color.green) ,
new Box(170 , 180 , 20 , 30 , Color.blue) ,
new Circle(150 , 170 , 20 , 20 , Color.white) ,

Exercise: JavaRanch

43
nati@it.uc3m.es Java: Interfaces/

// v
new Poly(vx , vy , Color.black) ,

// a
new Circle(290 , 150 , 60 , 60 , Color.green) ,
new Box(330 , 180 , 20 , 30 , Color.blue) ,
new Circle(310 , 170 , 20 , 20 , Color.white) ,

};

ShowShapes()
{

setBounds(200 ,150 , 400 , 250);
setVisible(true);

}

public void paint(Graphics g)
{

for(int i = 0 ; i < shapes.length ; i++)
{

shapes[i].draw(g);
}

}

public static void main(String[] args)
{

new ShowShapes();
}

}

Object Orientation Summary

• Class (concrete)
– All methods are implemented

• Abstract class
– At least one method is not implemented but

just declared
–abstract modifier

• Interface
– No implementation at all
– Reserved word: interface

Object Orientation Summary

• Class (concrete or abstract)
– Can extend (extends) only one base class

(simple inheritance)

– Can implement (implements) one or more
interfaces (multiple inheritance)
• Reserved word: extends

• Interface
– Can extend (extends) one or more interfaces

Packages

M. Carmen Fernández Panadero

Raquel M. Crespo García
<mcfp, rcrespo@it.uc3m.es>

Packages

• A package groups classes and interfaces

• The hierarchies in a package correspond to the
hierarchies of folders

• Dots are used for referring to subpackages, classes
and interfaces in a package
– E.g.: The Applet class in package java.applet provided by

Java is imported when programming an applet

– The java.applet.Applet class is in the java/applet folder

import java.applet.Applet;

48

Packages

• Using packages created by others
– Include in the classpath the path to the folder containing the

package. E.g.: assuming PackageByOther is in c:\java\lib
(windows) and /opt/lib/ (linux)

– In the class using the package, the corresponding import
sentece must be included before the class declaration

• Creating my own packages
– Save the classes in a folder named as the package
– All classes belonging to the package must include the following

sentence as the first one:

import PackageByOther.*;

set CLASSPATH=c:\PackageByOther; %CLASSPATH%
setenv CLASSPATH /opt/lib/PackageByOther: $CLASSPATH

(windows)
(linux)

package myOwnPackage;

copyright
mcfp@it.uc3m.es

Java: Estructura del lenguaje 49

MODIFIERS class method attribute

access

public Accesible to any other class

(friendly) Accessible only to classes in the same package

protected Accessible to the class and its subclasses

private Applied to inner classes Accessible only inside the class

others

abstract Cannot be instantiated

For inheriting from
them

At least 1 abstract
method

Has no code

It is implemented in the
subclasses or child
classes

final Cannot be extended.

It is a leave in the
inheritance tree.

Cannot be overridden.

It is constantand cannot
be modified in the child
classes.

Its value cannot be
changed, it is constant .

It is normally used together
with static.

static Maximum level class.

Applied to inner classes

It is the same for all of
the class objects.

Use:

ClassName.method ();

It is the same for all of the
class objects.

Mcfp, rcrespo@it.uc3m.es 2010 49
(*) http://www.coderanch.com/t/527185/java/java/Understanding-Modifiers-classes

Exceptions

M. Carmen Fernández Panadero

Raquel M. Crespo García
<mcfp, rcrespo@it.uc3m.es>

Exceptions

• What they are

• Purpose

• Type

• Use

Ignore End Catch Throw

Exception

Exceptions: What are they?

• Events that prevent the normal execution of
the program.

• When an exception occurs, an exception
object is created and it is passed to the
execution control system

• The execution control system:
– Search for a piece of code that handles the

exception

– If no handling code is found, the program ends

Exceptions: Purpose

• For separating the code for error handling
(try-catch) from the normal code

• For propagating errors in the calls stack
(throws)

• For grouping and differentiating types of errors
(as exceptions are objects, they can be
grouped into classes)

• Every method must:
– Either catch (catch)
– Or throw (throws)

any exception happening during its execution

Exceptions: Types

• Two main types:
– Runtime exceptions (RuntimeException)

• Not checked in compiling-time
• E.g.: NullPointerException, ArithmeticException,

NumberFormatException, IndexOutOfBoundException, etc.)
– Exceptions checked during compiling time

• E.g.: Input/output exceptions (IOException,
FileNotFoundException, EOFException)

• User-defined (MyException)

• During compiling time, it is checked that any
exception (except runtime exceptions) are:
– either caught
– or declaredto be thrown in the methods where they can

happen

Exceptions: Use

• Exceptions appear:
– Implicitly (when an error happens)
– Explicitly: throw new MyException(message)

• What to do:
– Handle the exception:

• Enclose in a try{} block sentences that may generate exceptions

• Enclose in the catch(MyException e){}block the senteces to
be executed for handling the exception

– Throw the exception:
• public void myMethod throws MyException

• The finally{} block encloses the code that should
always be executed

