
Linked Lists

Systems Programming

1



Data Structures

• Abstraction that represents a collection of 
data in a program in order to ease its 
manipulation.

• The suitability of a data structure depends on 
the nature of the data to be stored and how 
that data will be manipulated

2



Linear Data Structures

• Organize data as a sequence, where each piece of 
data has a preceding datum (except the first one) 
and a succeeding datum (except the last one)

• Examples of linear data structures:

– Arrays

– Linked lists

– Stacks

– Queues

– Doubly ended queues

3



Arrays

• Arrays have two main advantages for storing 
linear data collections:

– Random access: any position in the array can be 
accessed in constant time.

– Efficient use of memory when all the positions of 
the array are in use, because the array is stored in 
consecutive memory positions.

4



Arrays

• Disadvantages (I):
– Static size: a size must be established when the array 

is created, and cannot be changed later. The main 
problems it poses are:
• Inefficient use of memory when more positions than needed 

are reserved, because of being the array sized for the worst 
case

• It may happen at run-time that more positions than reserved 
are needed

– Need of contiguous memory:
• Even having the system enough free memory, it may happen 

that there is not enough contiguous space, due to memory 
fragmentation

5



Arrays

• Disadvantages (II):

– Some operations on the array have a sub-
optimum cost:

• Insertions and removals of data in the first position or 
intermediate positions need data to be moved to 
consecutive memory positions

• Concatenation of arrays: data has to be copied to a new 
array

• Partition of an array in several pieces: data needs to be 
copied to new arrays

6



Linked Lists

• Ordered sequence of nodes in which each 
node stores:

– A piece of data

– A reference pointing to the next node

• Nodes do not need to be in consecutive 
memory positions 

first

info

next

info

next

info

next null
7



The Node Class

Public class Node {

private Object info;

private Node next;

public Node(Object info) {…}

public Node getNext() {…}

public void setNext(Node next) {…}

public Object getInfo() {…}

public void setInfo(Object info) {…} 

}

8



Inserting a node at the beginning

first

null

newNode

Node newNode = new Node(info);

null

9



Inserting a node at the beginning

first

newNode

newNode .setNext(first);

null

10



Inserting a node at the beginning

first

newNode

first = newNode;

null

11



Removing the first node

first

null

12



Removing the first node

first

data

Object data = first.getInfo();

null

13



Removing the first node
first

data

first = first.getNext();

null

14



Removing the first node
first

data

null

15



Inserting a node at an intermediate
position

first

null

newNode

Node newNode = new Node(info);

previous

null

16



Inserting a node at an intermediate
position

first

newNode

newNode.setNext(previous.getNext())

previous

null

17



Inserting a node at an intermediate
position

first

newNode

previous.setNext(newNode)

previous

null

18



Removing an intermediate node

first

null

previous

19



Removing an intermediate node

first

null

previous

Object data = previous.getNext().getInfo();

data

20



Removing an intermediate node

first

null

previous

previous.setNext(previous.getNext().getNext())

data

21



Removing an intermediate node

first

null

previous data

22



Traversing the linked list

first

null

current

Node current = first;

while (current != null) {

current = current.getNext();

}

23



Traversing the list: looking for the last 
node

• A reference steps the list until a node is 
reached whose reference to the next node is 
null:

public Node searchLastNode() {

Node last = null;

Node current = first;

if (current != null) {

while (current.getNext() != null) {

current = current.getNext();

}

last = current;

}

return last;

}

24



Traversing the list: looking for a piece 
of data

• A reference steps the list until the piece of 
information is reached. A counter is used in 
order to return its position in the list:

public int search(Object info) {

int pos = 1;

Node current = first;

while (current != null

&& !current.getInfo().equals(info)) {

pos += 1;

current = current.getNext();

}

if (current != null)

return pos;

else

return -1;

}
25



Advantages of Linked Lists

• Inserting and extracting nodes have a cost 
that do not depend on the size of the list

• Concatenation and partition of lists have a 
cost that do not depend on the size of the list

• There is no need for contiguous memory

• Memory actually in use at a given instant 
depends only on the number of data items 
stored in the list at that instant

26



Disadvantages of Linked Lists

• Accessing to arbitrary intermediate positions 
has a cost that depends on the size of the list

• Each node represents an overhead in memory 
usage

27


