Linked Lists

Systems Programming



Data Structures

* Abstraction that represents a collection of
data in a program in order to ease its
manipulation.

* The suitability of a data structure depends on
the nature of the data to be stored and how
that data will be manipulated



Linear Data Structures

* Organize data as a sequence, where each piece of
data has a preceding datum (except the first one)
and a succeeding datum (except the last one)

 Examples of linear data structures:
— Arrays
— Linked lists
— Stacks
— Queues
— Doubly ended queues



Arrays

* Arrays have two main advantages for storing
linear data collections:

— Random access: any position in the array can be
accessed in constant time.

— Efficient use of memory when all the positions of
the array are in use, because the array is stored in
consecutive memory positions.



Arrays

Disadvantages (l):

— Static size: a size must be established when the array
is created, and cannot be changed later. The main
problems it poses are:

* |Inefficient use of memory when more positions than needed
are reserved, because of being the array sized for the worst
case

* It may happen at run-time that more positions than reserved
are needed

— Need of contiguous memory:

* Even having the system enough free memory, it may happen
that there is not enough contiguous space, due to memory

fragmentation



Arrays

Disadvantages (ll):

— Some operations on the array have a sub-
optimum cost:

* Insertions and removals of data in the first position or
intermediate positions need data to be moved to
consecutive memory positions

* Concatenation of arrays: data has to be copied to a new
array

 Partition of an array in several pieces: data needs to be
copied to new arrays



Linked Lists

* Ordered sequence of nodes in which each

node stores:

— A piece of data

— A reference pointing to the next node

e Nodes do not need to be in consecutive
memory positions

first \

next —

—>| next —

next —

> null




The Node Class

Public class Node {
private Object info;
private Node next;

public Node (Object info) {..}

public Node getNext () {..}

public void setNext (Node next) {..}
public Object getInfo() {..}

public void setInfo (Object info) {..}



Inserting a node at the beginning

INolole

— > —t— —t—> null

newNode

\
(

—t—> null

Node newNode = new Node(info);



Inserting a node at the beginning

INolole

— > —t— —t—> null

newNode

\
®

newNode .setNext(first);



Inserting a node at the beginning

first

O | &

— > —t— —t—> null

newNode

\ |
@

first = newNode;



Removing the first node

N@® O D

— > —t— —t—> null




Removing the first node

"\

/

data

O

-,

— > —te3 null

Object data = first.getInfo();

13



Removing the first node

first

® O

——

/

data

-,

— > —te3 null

first = first.getNext();

14



Removing the first node

first

/.\O S,

data




Inserting a node at an intermediate
position

previous

newNode

\

> null

™~

O

S —

— > —te3 null

Node newNode = new Node(info);

16



Inserting a node at an intermediate
position

previous

newNode

\

1

™~

O

S —

— > —te3 null

newNode.setNext(previous.getNext())

17



Inserting a node at an intermediate

newNode

\

position

previous

™~

—

O

1

/

/

—t—> null

previous.setNext(newNode)

18



Removing an intermediate node

previous

N B @

—— —— — > null




Removing an intermediate node

previous data

NO S @

—— —— — > null

Object data = previous.getNext().getInfo();

20



Removing an intermediate node

previous data
first \ \
—_— — e NUI|
7

previous.setNext(previous.getNext().getNext())

21



Removing an intermediate node

previous data

N S S

R — e NU|

()




. Traversing the linked list

N
NO O O ©

—_— —_— —_— e NU|
Node current = first;
while (current != null) {

current = current.getNext ()

}

23



Traversing the list: looking for the last
nhode

* A reference steps the list until a node is

reached whose reference to the next node is
null:

public Node searchLastNode () {
Node last = null;

Node current = first;
1f (current != null) {
while (current.getNext () !'= null) {
current = current.getNext ()
}
last = current;

}

return last;



Traversing the list: looking for a piece
of data

* A reference steps the list until the piece of
information is reached. A counter is used in
order to return its position in the list:

public int search (Object info) {
int pos = 1;

Node current = first;
while (current != null
&& !'current.getInfo().equals(info)) {
pos += 1;
current = current.getNext():;
}
1f (current != null)
return pos;
else

return -1;



Advantages of Linked Lists

Inserting and extracting nodes have a cost
that do not depend on the size of the list

Concatenation and partition of lists have a
cost that do not depend on the size of the list

There is no need for contiguous memory

Memory actually in use at a given instant
depends only on the number of data items
stored in the list at that instant



Disadvantages of Linked Lists

e Accessing to arbitrary intermediate positions
has a cost that depends on the size of the list

* Each node represents an overhead in memory
usage



