
First steps in Java

Telematics Engineering

M. Carmen Fernández Panadero
<mcfp@it.uc3m.es>

Systems Systems ProgrammingProgramming

Scenary I:
Install and configure the environment

• Today is your first day at work in the programming
department of PROTEL. Your department have to
update an old application with new functionality.

• Your boss provide you a laptop and a URL where you
can download the code developed to date.

• Objective: Be able to edit, compile execute and
debug an existing program.

• Workplan: Download, install and configure the
software in order to test (edit, compile, execute and
debug) the application

mcfp@it.uc3m.es 2010 2

Development
Architecture

-Eclipse
-Netbeans
-J Builder
-Visual Café
- Java Workshop
- Visual Age
- J++

IDEs

Java
code

file.java

Bytecode

Others
file.class

JDK

Compilers

javac file.java

Notepad

Grasp

Editors

EditPlus

Step I: Edit
Step II: Compile

Otros

mcfp@it.uc3m.es 2010 3

4

Execution
Architecture

Applet’s or Aplications Bytecode format

Hardware

Operative System

Class Loader
Bytecode Verifier

Java Class Libraries
(java extension Apis)

Java Class Libraries
(Java Base Apis)

Java Interpreter JIT (Just in Time Compiler)

Java Runtime

Step III: Load
Step IV: Verify
Step V: Execute

java file

Ja
va

 V
irt

u
al

 M
ac

hi
n

e

mcfp@it.uc3m.es 2010 4

What can go wrong ?

• Compile
• Load
• Verify
• Execute

“Syntax Error”
“Class not found Exception”
“Security Exception”
“Null Pointer Exception”

mcfp@it.uc3m.es 2010 5

Where do I start?

• Development environment: JDK
– http://java.sun.com/products/jdk

• Editor: Eclipse
– http://www.eclipse.org

• Documentation: Java API
– http://java.sun.com/javase/6/docs/api/

• Configuration:
– CLASSPATH: Set of directories containing the files.class you

want to execute (not necessary since v1.2).
It must contain, at least, $JAVA_HOME/lib/files.class o .tar

– PATH: Directories to search for executable files
It must contain, at least $JAVA_HOME/bin

mcfp@it.uc3m.es 2010 6

How to configure
Environment Variables

set PATH =c:\jdk1.2\bin;C:\WINDOWS\COMMAND\
set CLASSPATH =c:\jdk1.2\lib\classes.zip;.

set PATH =c:\jdk1.2\bin; %PATH%
set CLASSPATH =c:\jdk1.2\lib\classes.zip; %CLASSPATH%;.

PATH=$JAVA_HOME/bin:/usr/bin
CLASSPATH=$JAVA_HOME/lib/classes.zip:.

PATH=$JAVA_HOME/java/bin: $PATH
CLASSPATH=$JAVA_HOME/lib/classes.zip: $CLASSPATH

Windows 95-98 (Type in MSDOS Window or modify c:\autoexec.bat):

Linux (Type in a terminal window or modify in .bash file to conserve the value):

Preserving the old value of environment variables:

Preserving the old value of environment variables :

mcfp@it.uc3m.es 2010 7

How to configure
Environment Variables

Windows NT
– Start – Control panel – System
– Select: Environment -[look for user and system variables]

Windows 2000
– Start – Control panel – System
– Select: Advanced -[look for user and system variables]

Windows XP
– Start – Control panel – System
– Select: Advanced – click on environment variables

Windows ME
– Start – Program files - Accesories – System tools – System info
– Select: Tools-System configuration
– Select: Environment- [select variable]- click edit

Windows 7
– Start – Control panel – System and Security – system
– System advanced configuration – Advanced options – Environment variables

mcfp@it.uc3m.es 2010 8

Java Language Code Structure

Telematics Engineering
M. Carmen Fernández Panadero

mcfp@it.uc3m.es
2010

SystemSystem ProgrammingProgramming

mcfp@it.uc3m.es 2010 9

Scenary II:
Understanding java code

• Your first programmers’ meeting will be in an hour. By this time
you must have reviewed the code and you must have
understood how the application works.

• Objective: Be fluent reading java structures related with classes,
attributes and methods. Understand, at a glance, a complex
java program with several files.

• Workplan:
– Review Java sintax (identifiers, reserved words, etc.) in order to distinguish between

words from java-language and nomenclature for a specific application
– Identify language structures related with class declaration, attribute declaration

(basic and reference types) and method declaration .
– Draw UML diagrams to represent a set of java files in order to identify object types,

their characteristics (attributes) and behaviour (methods)
– Understand and explain the main method (when exists) to see in which order the

objects are created, the method invoked and the sentences executed

mcfp@it.uc3m.es 2010 10

Code Structure

Program

Members

Attributes

Reference
Type

Methods

Primitive
Type

Classes (files.java)

Normal
Methods

Constructor Main

Special
methods

Object Arrays

String
mcfp@it.uc3m.es 2010 11

How to represent classes and
Objects in java

• Class declaration
• Attribute declaration

(constants or variables)
• Method declaration
• Object creation

• Identifiers
• Reserved words
• Primitive and reference types in Java

OO

Java

mcfp@it.uc3m.es 2010 12

Identifiers

• Identifiers are used to give a name to variables,
methods, classes, objects, and every thing that the
programmer needs to identify.

• Starting with a letter, an underscore or a $ sign
• Case-sensitive and have no maximum length
• By convention:

– The names of variables, methods and objects begin with
lowercase.

– The class names begin with uppercase
– If contain several words use camel-case

likeInThisExample (avoid spaces, underscores and
hyphen)

Identifiers can not be reserved words

mcfp@it.uc3m.es 2010 13

Reserved words

abstract double int static
boolean else interface super
break extends long switch
byte final native synchronized
case finally new this
catch float null throw
char for package throws
class goto private transient*
const * if protected try
continue implements public void
default import return volatile
do instanceOf short while

cast future generic inner
operator outer rest var

Reserved (not used):

Reserved:

mcfp@it.uc3m.es 2010 14

Comments

• 3 Types:
// Implementation comment (1 line)

/* Implementation block comment.
continue
finish */

/** Documentation comment to generate javadoc
@see ref to other class or method
@version information about version number
@author author name
@since Date since code is available
@param Params recived by the method
@return Information and data type returned by the method

@throws Exceptions that throws this method
@deprecated The method is old

*/

For classes
and methods

For classes

For methods

optional

mcfp@it.uc3m.es 2010 15

16

Style

Class declaration

public class Car{
//Attribute declaration
// (color, speed, etc)
//Method declaration
// (start, stop, etc.)

}

Car.java

•File name= class name
•1st letter capitalized
• No blanks
• Camel case MyFirstClass
• Indentation

(modifiers) class className{
//class implementation

}

Sintax

mcfp@it.uc3m.es 2010 16

Break this rule is considered in many compilers as a

syntax error

17

type name;
type name1, name2, name3;
type name = value;

Variable Declaration

public class Car{
//Atribute declaration

String color;
int speed;

//Method declaration
// (start, stop, etc.)

}

Car.java

Style
•Intuitive names
•1st letter capitalized
• No blanks
• Camel case: myVariable
• Indentation

Sintax

Initialize the variable

mcfp@it.uc3m.es 2010 17

Variables

• Variables are fields in which programs store
information

• To declare a variable is to specify its name and type.

• We can find variables:

– As members : Instance and class variables (within a class)

– As local variables (within a method)

– As parameter (within a method declaration).

mcfp@it.uc3m.es 2010 18

Variables

• 3 Types :
– Instance variables
– Class variables
– Local variables

• Variables
– can be initialized in the declaration
– may be declared uninitialized
– when have been not initialized they have a default

value (except local variables)
• Constants (variables that can not been modified):

– Use reserved word: final
– It is mandatory to initialize in declaration

Default values:
numbers = 0

booleans = false
references = null

mcfp@it.uc3m.es 2010 19

Scope

• The scope of a variable is the part of the program over
which the variable name can be referenced.

• Instance or class variable can be referenced inside the
body of the class or fromother classes depending on the
permissions set:
– private
– protected
– public
– friendly

• Local (Can be referenced inside a statement block in
brackets, such as inside a method or inside a while or for
loops)

• Parameters (Can be referenced inside the body of the
method)

mcfp@it.uc3m.es 2010 20

Data Types in Java

• All variables belong to a data type

• The data type determines:
– Thevalues that the variable can take

– Theoperators that can be used

• We will study:
– Primitive types

– Reference types (objects and arrays)

mcfp@it.uc3m.es 2010 21

Primitive types

4 basic primitive types
type literal num of bits double float long int short byte char

double 64-bits X
float 32-bits X X
long 64-bits X X X
int 32 bits X X X X
short 16 bits X X X X X
byte 8 bits X X X X X X

Caracter char Unicode (16 bits) X X X X X
Booleano boolean 1 bit

Real

Entero

mcfp@it.uc3m.es 2010 22

Strings
Declaration , concatenation

• Is a sequence of characters implemented in a class
named String (inside java.lang package)

• Strings creation

• Strings concatenation
– String concatenation uses the overloaded + operator.

String emptyS= new String();

String emptyS = “”;

String message= “hello”

String messageCopy= message;

“this” + “that” // result: “thisthat”

“abc”+ 5 // result: “abc5”

“a” + “b” + “c” // result: “abc”

“a” + 1 + 2 // result: “a12”

1 + 2 + “a” // result: “3a”

1 + (2 + “a”) // result:“12a”

a b c

23

Strings
Comparation

• You must not use relational (<, >, <=, <=) and
equality (==, !=) operators with Strings
– This operators compare the object not the content

• There are specific methods to compare in the
String class
– Method: equals

– Method compareTo

leftSide.equals(rightSide)
• true, if leftSide and rightSide are identical

leftSide=.compareTo(rightSide)
• negative int value, if leftSide is less than rightSide
• 0, if leftSide is equal to rightSide
• positive int value, if leftSide es mayor que rightSide

a b c

mcfp@it.uc3m.es 2010 24

Strings
Useful methods of String class

• Length of an String
– Method: length()
– Don’t forget parenthesis because it is a method length()

• Accessing individual characters inside the String
– Method: charAt(position) ,

• The first position is the String is 0

• SubStrings
– Usar método substring(1stPosIncluded, 1stPosExcluded)

• Returns: a String reference.
• Parameters: the 1st position included and de 1st position

excluded.

String greeting= “hello”;

int len= greeting.length(); // len es 5

char ch = greeting.charAt(1); // ch es ‘e’

String sub= greeting.substring(2,4); // sub es “ll”

a b c

mcfp@it.uc3m.es 2010 25

Strings
Conversion between String and primitive types

• Use calls to the wrapper class that is in java.lang
– They are called wrappers because they wrap the primitive types:

Integer, Double, Float, Double, Character, …
– String conversion

• Methods: toString() , doubleValue() ,... (without parameters)
– String conversion to a primitive type

• Methods: parseInt() , parseFloat() ,...
– String conversion to an object of the wrapper class.

• valueOf() ,… (with parameter)
– Conversion from an object of the wrapper class to a primitive

value
• doubleValue() , intValue() ,... (without parameters)

System.out.println(Integer.toString(55,2));

int x = Integer.parseInt(“75”);

Double y= Double.valueOf(“3.14”).doubleValue();

a b c

mcfp@it.uc3m.es 2010 Review 26

Constants defined by user

• Invariant values of basic types (primitives + String)
• Constants use the final modifier (and sometimes the static too)

– static : Indicates global or class variable. This mean that it is stored only
once. Objects can access this variable using the dot notation,
ClassName.variableName

– final : This modifier Indicates that the value never changes.
– Constants can be public , private o protected

• Dependingg on accesibility that user prefers
– Style: All the characters in UPPERCASE

class Circle {

private static final float PI= 3.14159;

private float radio;

private float area;

public Circle (float radio) {

area= 2 * PI * radio;

}//constructor

}//class Circle

mcfp@it.uc3m.es 2010 Review 27

Reference types

• Its value is a reference (pointer) to the
value represented by this variable.

• Some examples of reference types:
– Arrays
– Classes

– Interfaces

mcfp@it.uc3m.es 2010 Review 28

ClassName name;
ClassName name1, name2;
ClassName name = new Equipment();

An object as an attribute
Object declaration

public class Car{
//Attribute declaration

String color;
int speed;
Equipment standardEquipment;

//method declaration
// (start, stop, etc.)

} Car.java

Style
•Remember that the class (type)
use 1st char capitalized and
identifier (objectName) use
lower-case.

Sintaxis

Object creation
Variables are initialized, but
Object are created !!!

Object declaration
similar to variable declaration, where we put
the type, now we put the name of the class

mcfp@it.uc3m.es 2010
29

• Objects are created with the reserved word new and a
call to the constructor

• Once the object is created, the referece to the object is
reassigned to the memory location where the object is
located

Objects
Declaration , creation , initialization

Student
student1

null

student1
Student student1;

student1 = new Student();

Nati, mcfp@it.uc3m.es 2010 30

• It may be that a referenceto an object does not have any instance assigned

– It has then asigned the special value null null
• Example:

Student student1; // null by default
Student student2;
Student student3;

student1 = new Student(); // value /= null
student2 = new Student(); // value /= null
student3 = null; // value null by assig nment

Objects
Null reference

Student
null

Student

student1 student2 student3

Nati, mcfp@it.uc3m.es 2010 31

• An object can have severeal refereces, known as alias
Student delegated;
delegated = student1;

• ¿What would be the result of comparing the different
references in the figure?

Objects
Alias

null
Student

Juan

null

Student

Juan

Student

Clara

student1

delegated

student2 student3

student5 student4

Nati, mcfp@it.uc3m.es 2010 Review 32

Arrays
¿What is an array?

• It is a set of elements belonging to the same
data type and stored in one place.

• The index [] operator is used to retrieve
individual elements from the array

• The length (attribute) returns the number of
array elements. (do not confuse with the method length()
of the String class)

• Range of index
– From 0 to length – 1

– Be careful! Don’t exceed the maximum length
• Exception: IndexOutOfBoundsException

mcfp@it.uc3m.es 2010 Review 33

An Arrays as an Attribute
Arrays declaration

type ArrayName[];
type [] ArrayName;
type ArrayName[] = new type [arraySize];

Sintaxis

public class Car{
//Array declaration
String equipment [] = newString [10];
// ...

}

To ways to declare an array

Array creation
Variables are initialized, but
Arrays (like objects) are
created!!!

Array creation
When you create an array you
must specify its capacity!!!

mcfp@it.uc3m.es 2010 34

Arrays
Declaration, Creation, Inicialization

• Declaration: Is to assign an identifier to the array and specify
the data type of the elements that will be stored
– It can be done in two ways:

– After the declaration, it has not been allocated memory to store the array
and you can not access its contents

Valores por defecto:
int, short, long = 0
float, double = 0.0
boleanos = false

String = null
Object = null

• Creation: it consists of allocate memory for
the array
– You must use reserved word new and specify

the array
size

– Once the array has been created, its elements
have default values until the array is initialized

ArrayName [] ;
Type [] ArrayName;

arrayName[] = new type[arraySize] ;

mcfp@it.uc3m.es 2010 35

Arrays
Declaration, Creation, Inicialization

• Inicialization: is to assign value to each element
of the array. It can be done in several ways:
– Element by element

– Using a Loop

– Direct assignment

arrayName[0] = element0;

arrayName[1] = element1;

...

for(int i = 0; i < arrayName.length; i++){

arrayName[i] = element-i;

}

arrayName = {elem1, elem2, elem3, ...};

mcfp@it.uc3m.es 2010 36

Arrays

-7
0
3
8
5
-4
6
6
1
2

c[0]
c[1]
c[2]
c[3]
c[4]
c[5]
c[6]
c[7]
c[8]
c[9]

Array length= 10

Index 1st element = 0

Index last element
= length-1

Index nth element = n -1

Index : integer expression: 0 <= index <= length -1

Nati, mcfp@it.uc3m.es 2010 37

Arrays
Memory usage in
array declaration

int[] integers;

Point[] points;

Stack memory Heap memory

integersnull

pointsnull

class Point {
int x;
int y;
Point (int x, int y){

this.x = x;
this.y = y;

}
}

Nati, mcfp@it.uc3m.es 2010 38

integers = new int[3];

points = new Point[2];

Stack memory Heap memory

integers

points

length3

integers[0]0

integers[1]0

integers[2]0

length2

points[0]null

points[1]null

Watch out! This is
not a constructor
call

Nati, mcfp@it.uc3m.es 2010 39

Arrays
Memory usage in
array creation

integers[0] = 7;

points[0] = new Point(1,2);

Stack memory Heap memory

integers

points

length3

integers[0]7

integers[1]0

integers[2]0

length2

points[0]

points[1]null

x 1

y 2

Nati, mcfp@it.uc3m.es 2010 40

Arrays
Memory usage in
array initialization

Arrays (Examples)
Declaration, Creation, Inicialization

int a[] = {1, 2, 3}; //Declaration, creation, initialization

int a[]; //Declaration

a = new int[3] //Creation

a[0]=1; //Initialization

a[1]=2;

a[2]=3;

int a[] = new int[3] //Declaration, Creation

a[0]=1; //Inicialization

a[1]=2;

a[2]=3;

int a[] = new int[3] // Declaration, Creation

for(int i=0; i<a.length;i++){ //initialization

a[i]=i+1;

}

MiClase[] a = {new MiClase(param1), new MiClase(param2), new MiClase(param3)};

MyClass a[]; //Declaration

a = new MyClass[3] //Creation

a[0]=new MyClass(param1);

a[1]=new MyClass(param2);

a[2]=new MyClass(param3);

MyClass a[] = new MiClass[3]

//Initialization

a[0]=new MyClass(param1);

a[1]=new MyClass(param2);

a[2]=new MyClass(param3);

MyClass a[] = new MiClass[3]

//Initialization

for(int i=0; i<a.length;i++){

a[i]=new MiClass(param-i);

}

Arrays with primitive types

Arrays with objects (Reference types)

mcfp@it.uc3m.es 2010 41

Arrays (common errors):
Declaration, creation , inicialization

Sintaxis

public class ArrayExamples{

public static void main(String args[]){

double myArray[];

System.out.println(miArray[0]);

}

}

variable myArray may not have been initialized

compile

Compilation
failure

BAD

When array has beendeclared but not created or initialized, you
have not access to its elements. The program does not compile and
prints anerror message

mcfp@it.uc3m.es 2010 42

Arrays (Common errors):
Declaration, creation, inicialization

public class ArrayExamples2{

public static void main(String args[]){

int myArrayOfIntegers[] = new int[10];

float myArrayOfReals[]= new float[10];

boolean myArrayOfBooleans[] = new boolean[10];

char myArrayOfCharacters[] = new char[10];

String myArrayOfStrings[] = new String[10];

Object myArrayOfObjects[] = new Object[10];

System.out.println(“Integer by default: " + myArrayOfIntegers[0]);

System.out.println("Real by default : " + myArrayOfReals[0]);

System.out.println("Boolean by default : " + myArrayOfBooleans[0]);

System.out.println(“Character by default : " + myArrayOfCharacters[0]);

System.out.println("String by default : " + myArrayOfStrings[0]);

System.out.println("Object by default : " + myArrayOfObjects[0]);

}

}

Integer by default: 0

Real by default : 0.0

Boolean by default : false

Character by default :

String by default : null

Object by default : null

compile

Execute

When the array have beendeclared and created but not
initialized we can retrieve its elemens but they have its
default value

N-dimensional Arrays

• When we need more than one index to
retrieve its elements

A B C

D E F

G H I

0 1 2

0

1

2

r s t
j k l

a b c

a b c

d e f

g h i

c

f

i

l

ñ

q

t

w

z

0 1 2

0

1

2

2
1

0

a[0][2][1]=‘l’

char a[][]; //Declaration

a = new char[3][3] //Creation

a[0][0]=‘A’; //Inicialization
...

char a[][][]; //Declaration

a = new char[3][3][3] //Creation

a[0][0][0]=‘a’
...

a[0][2]=‘C’

mcfp@it.uc3m.es 2010 44

N-dimensional Arrays
Examples

Declaration and creation step by step

//Declaration and creation

String [][]myArray = new String[3][4]

Direct declaration and creation

int [][] myArray ; // Array declaration

myArray = new int[numRows][]; // Creating the reference array for rows

for(int i=0; i<numRows; i++){ // Allocate memory for rows

myArray[i]= new int[numColumns];

} Other examples
// Array 3x3 inicialized to 0

int [][] a= new int[3][3];

int [][] b= {{1, 2, 3},

{4, 5, 6}};

int [][] c = new[3][];

c[0] = new int[5];

c[1] = new int[4];

c[2] = new int[3];

0 0 0

0 0 0

0 0 0

1 2 3

4 5 6

0 0 0 0 0

0 0 0 0

0 0 0

null null null null

null null null null

null null null null

mcfp@it.uc3m.es 2010 45

Arrays
Homework

• Write a program that multiplies two
2-dimensional arrays

nati@it.uc3m.es 2010 46

public class Car{
//Attribute declaration

private String color;
private int speed;

//Method declaration
public void start(){

//implementation of the start method
}
public void goForward(int speed){

//implementation
}
public String getColor(){

//implementation
return color ;

}
}

Method declaration

Car.java

Style

•Intuitive names
•1st letter lower-case
• No blanks
• Camel-case myMethod()
•Indentation

mcfp@it.uc3m.es 2010 47

Method declaration

public class Car{
//...

public void goForward(int speed){
//implementation

}
//...

} Car.java

(modifiers) returnType methodName(type1 param1, type2 param2){
//implementation
return expresion; //not necessary when the returnType is void

}

Method
parameters
(param1, param2)

Result

mcfp@it.uc3m.es 2010 48

Method declaration

public class Car{
//...

public String getColor(){
//implementation

return color ;
}

//...
}

Car.java

(modifiers) returnType methodName(type1 param1, type2 param2){
//implementation
return expresion;

}

Method
parameters
(param1, param2)

Result

mcfp@it.uc3m.es 2010 49

Method declaration

• Methods
– Have 0, 1 or more parameters
– Define the data type of the result in their declaration.

(Except constructors)
– Can have local variables. These variables are not

initialized by default.

• Inside the body a method can not been
initialized other methods.

• If one method produces a result. The last
sentence of its body must be a return sentence

mcfp@it.uc3m.es 2010 50

Constructor methods

• When an object is created, their members are inicialized with the
constructor method

• Constructor methods:
– Havethe same name as their container class
– Have not a returned data type in their declaration

• It is desirable that there be at least one
• There may be several that will be distinguished by the parameters

acepted (overload)
• If there are no declared constructors, a default one is created and

this default constructor initializes all variables to their own
default value.

• If the class has a constructor, the default constructor does not
exists, but programmer can declare a constructor without
parameters with the same function than the default one.

mcfp@it.uc3m.es 2010 51

The main method

• It is the first method than the runtime system
calls to execute an application.

• The parameters of the main: (String args[])
represent an array of Strings that stores the
arguments that we write in command line to run
the application

• void indicates that there are no returned value
• static indicates that it is a global method. This

method is the same for every instance of the
class

java HelloWorldarg1 arg2 ...

mcfp@it.uc3m.es 2010 52

Summary

Program

Members

Attributes

Reference
Type

Methods

Primitive
Type

Class (files.java)

Normal
Methods

Constructor Main

Special
methods

Object Arrays

String
mcfp@it.uc3m.es 2010 53

Imperative Java

Telematics Engineering
M. Carmen Fernández Panadero

<mcfp@it.uc3m.es>

SistemsSistems ProgrammingProgramming

mcfp@it.uc3m.es 2010 54

Scenary III:
Method implementation

• Once the programmers’ meeting have finished, you have to
prove your expertise before integrate into the team. Your boss
ask you to implement several methods. As your first task, the
methods are simple and work independently (do not invoke
other attributes or methods).

• Objective:
– Be able to decompose a problem in order to identify the basic steps for

solving it (algorithms design and representation)
– Use the basic structures of a programming language, variables, operators

and flow control statements (loops, conditionals) to implement an
algorithm

• Work plan:
– Train in the design of algorithms and their representation. Break problems in small

steps in order to resolve them without using code.
– Memorize the syntax of Java in terms of (operators, loops and conditional)
– Train in use java to implement previously designed algorithms
– Take implementing ease and speed. Resolve typical problems (Eg: Array: print all its

elements, retrieve an specific element, swap elements between two positions, sorting)

mcfp@it.uc3m.es 2010 55

Step I: Thinking
What tools have we to represent algorithms?

• Once we thought about the algorithm
structure, we need to represent the
steps to solve it:
– Pseudocode

– Flowcharts, organigrams
• The figures : represent sentences
• the flow lines : represent order in which they

are executed

mcfp@it.uc3m.es 2010 56

Step II: Algorithm implementation
what kind of expressions can we use in the method’s body?

• Variables
• Operators

– By type
• Aritmetical
• Relational
• Logical

– By number of operands
• Unary

• Binary

• Operations with objects
(not for this scenary)
– Object creation

– Attribute and method
invocation

• Flow control structures (can be stacked
and nested)

– Sequence

– Iteration (loops)
• For

• While

• Do-while

– Selection (conditionals)
• If

• If-else

• Switch

• Breaking up the flow of
execution

• Break
• Continue

• Exception (not in this scenary)

mcfp@it.uc3m.es 2010 57

• By number of operands
– Unary (one operand ej: ++, --)
– Binary (two operands ej: &&, %)

• By type of operator
– Assignment (=)
– Aritmetical (+, -, *, /, %)
– Relational (>, >=, <, <=, ==, !=)
– Logical (&&, II, !)
– Conditional operator (condition ?sentence1 : sentence2)

Operators

System.out.println(studentGrade >= 5 ? “pass” : “not pass”);

mcfp@it.uc3m.es 2010 58

• Unary
– i++ (first evaluates then increments)
– ++i (first increments then evaluate)
– Eg if i=3

• i++ result= 3
• ++i result= 4

• Binary (can be abreviated)
– x+=3 equals to x= x+3

• Assignment vs. comparation
– The “=“ operator asigns a value

• Eg. var = 5 , assigns 5 to var

– The “ == “ operator compares
• Eg. var == 5 , returns true (after the previous assignment)

• The conditional operator is harder to understand than a simple
if-else try not to use

Operators
Notes to remember

mcfp@it.uc3m.es 2010 59

• If

• If-else

Selection sentences
(Conditionals)

switch (expression) {
case value1:

sentences1;
break;

case value2:
sentences2;
break;

default:
Sentences3;

}

if(condition) {
sentences1;

}

• switch

if(condition) {
sentences1;

}else{
sentences2;

}

if(condition) {
sentences1;

}else if(condition2){
sentences2;

}else{
sentences3;

}

mcfp@it.uc3m.es 2010 60

• Indent the code contributes to its readability
• Braces { } fix the scope of every element declared

between them
• No braces { } is like to put them only in the first

sentence

Selection sentences
Notes to remember for if and if-else

if (studentGrade >= 5)
System.out.println (“Pass”);

else
System.out.println (“Not pass”);

mcfp@it.uc3m.es 2010 61

Selection sentences
Notes to remember for switch

• Valid expression types: byte, short, int, long y char,
String

• Examples:
– int num=5; switch(num){}

– char character=‘z’ switch(character){}

– String string=“myString” switch(myString){}

• If you don’t use “break ”, all the following code-blocks
will be executed until a “break ” or end of the switch

will be found. .
• It not necessary to place the block-code associated

with each case between braces { }

mcfp@it.uc3m.es 2010 62

• For:

• While:

• Do-while:

Iteration sentences
(Loops)

for(initialization;condition;update) {
sentences;

}

while(condition) {
sentences;

}

do {
sentences;

}while(condition)

mcfp@it.uc3m.es 2010 63

Iteration sentences
(Examples:for)

• Examples

How may times these loops are executed?
What is the value of “i” in each example at the end of the loop?

int i=0;

for (i =0;i<10;)

{ i=i+2;}

int i=0;

for (i=13;i<10; i++)

{ i=i+2;}

int i=4;

for (;i<10;)

{ i=i+2;}

int i=0;

for (; ;)

{ i=i+2;}

int i sum;

for (i =0, sum=5;i<10;sum+=i)

{ i=i+8;}

mcfp@it.uc3m.es 2010 64

Iteration sentences
(Examples:for)

• Examples

How may times these loops are executed?
What is the value of “i” in each example at the end of the loop?

int i=0;

for (i =0;i<10;)

{ i=i+2;}

int i=0;

for (i=13;i<10; i++)

{ i=i+2;}

int i=4;

for (;i<10;)

{ i=i+2;}

int i=0;

for (; ;)

{ i=i+2;}

int i sum;

for (i =0, sum=5;i<10;sum+=i)

{ i=i+8;}

mcfp@it.uc3m.es 2010 65

The one you will use most often

(Memorize it!)

f or (i nt i =0; i <5; i ++) {

/ / sent ences

}

Iteration sentences
Notes to remember

• When the loop has several sentences (in intialization,
comparation or update), they will be separated by commas.

• Nested loops:
– Slows down
– They are used to cover n-dimensional arrays (one loop per

dimension)
• The sentences in a while might not run ever; in a do-while are

executed at least once
• Avoid infinite loops (always check termination condition)
• A “for” loop always can be converted in a “while” one and

vice versa

for(i=0, sum=0 ; i<=n; i++, sum+=n) {
sentences;

}

mcfp@it.uc3m.es 2010 66

Iteration sentences
Comparative

• For vs. while vs do while

• Init: Initialize variables.

• Upd: Update variables.

• Condition: Continue or exit.
• Min exe: minimum number of times the block of code executes.

• Usage: frequency of use of the control structure.

Init Upd Condition Min
Exe

Usage

For Yes Yes Continue 0 High

While Not Not Continue 0 High

do while Not Not Continue 1 Low

mcfp@it.uc3m.es 2010 67

Iteration sentences
Usage patterns

• When to use while or for

Eg: reading a file with while.
Eg: cover an array with for.

for while
The number of iterations is known (Eg array) X
The number of iterations is unknown X
Increase of variables in each cycle X
Variable initialization X X

mcfp@it.uc3m.es 2010 68

break: when breaks appear in a while , for , do-while
or switch causes it to exit the structure in which it
appears.

The loop runs only once and print the message "j = 1. “.

int j=0;

while(j<10){

j++;

break;

System.out.println(“This message is never printed”);

}

System.out.println(“j = ”+j);

Breaking up the flow of execution :
Break sentence.

mcfp@it.uc3m.es 2010 69

continue: when continue appears in a while , for or
do-while block of code, it skips the rest of the sentences
of the loop and continues with the next iteration

The message is never printed

int j=0

while(j<10){

j++;

continue;

System.out.println(“This message is never printed”);

}

Breaking up the flow of execution :
Continue sentence

mcfp@it.uc3m.es 2010 70

Implementing a method :
Step 1.1: Think about the algorithm

• Problem : Write a program that calculates
whether a number n is prime

1 2 3 4 . . . n/2 n

• Step 1: Think about the algorithm (Break
the problem in simple steps)
– Starting by 2, we check for each number if it is an

integer divisor of n
– Only needs repeating until n/2
– Or until we find an integer divisor
– We will use a sentinel

• Boolean variable that will help us control the loop

Nati, mcfp@it.uc3m.es 2010 71

esPrime= false

divisor < n / 2
&&
isPrime

false

true

divisor = 2
isPrime = true

n % divisor == 0

divisor++

true

false

Implementing a method :
Step 1.2: Represent the algorithm

Flowchart

mcfp@it.uc3m.es 2010 72

public boolean isAPrimeNumber (int number) {

int divisor =2;
boolean isPrime = true;

while ((divisor < number/2) && isPrime){
if (number % divisor == 0)

isPrime = false;
divisor++;

}

System.out.println(“The number “ +number);
if (isPrime)

System.out.println(“ is prime.”);
else

System.out.println(“ is not prime.”);

return isPrime;
}

Implementing a method :
Step 2: Writting the code

mcfp@it.uc3m.es 2010 73

Implementing a method :
Examples: working with arrays

• Let’s practice
• Imagine that you have to implements methods to:

– Print an array (practice loops)
– Retrieve an specific element in an array

• Practice: conditionals and nested loops
• Practice comparation using different data types

– Basic types (numbers, characters booleans)

– String comparation
– Object comparation

– Swap two elements in an array (practice auxiliar variables)

– Sort an array (practice copy elements between two arrays)

mcfp@it.uc3m.es 2010 74

Review
Learning outcomes

• After this session you must be able to:
– Install and configure an environment to work with Java
– Understand a program with several files, be able to draw a class

diagram, and know what is the first method that the runtime system
calls to execute the application

– Identify basic structures associated with classes and obje cts
such as declarations of:

• Classes
• Members

– Attributes
» Basic types (primitives, String)
» Reference types (objects and arrays)

– Methods
» main
» constructors
» Normal methods

– Design and implements simple algorithms inside the body of a
method using operators and basic control structures (loops and
conditionals)

mcfp@it.uc3m.es 2010 75

