Systems Programming

Trees

Julio Villena Román (Lecturer)

jvillena@it.uc3m.es

CONTENTS ARE MOSTLY BASED ON THE WORK BY:
Carlos Delgado Kloos, M.Carmen Fernández Panadero and Raquel M.Crespo García

Contents

- Concept
- Non recursive definition
- Recursive definition
- Examples
- Terminology
- Key concepts
- Properties
- Implementation
- Sequence-based
- Linked structure
- Basic operations
- Traversals
- Particular cases
- Binary search trees
- Binary heaps

Quote

"The structure of concepts is formally called a hierarchy and since ancient times has been a basic structure for all Western knowledge. Kingdoms, empires, churches, armies have all been structured into hierarchies. Tables of contents of reference material are so structured, mechanical assemblies, computer software, all scientific and technical knowledge is so structured..."

Robert M. Pirsig:
Zen and the Art of Motorcycle Maintenance

Tress

Concept and characteristics
A tree is a non-linear data structure that stores the elements hyerarchically

(Generalization of lists)

Examples

- File system

- Structure of a book or a document
- Arithmetic expressions

Tress
 Concept and characteristics

- Trees can be defined in two ways:
- Non-recursive definition
- Recursive definition

Non-recursive definition

Recursive definition

Non-recursive definition

- A tree consists of a set of nodes and a set of edges, such that:
- There is a special node called root
- For each node c, except for the root, there is one edge from another node p (p is parent of c, c is one of the children of p)
- For each node there is a unique path (sequence of edges) from the root
- Nodes without children are called leaves

Example

Recursive definition (1)

- A tree is
- A node
- or a node and subtrees connected to the node by means of an edge to its root

Recursive definition (2)

- A tree is
- empty
- or a node and zero or more non-empty subtrees connected to the node by means of an edge to its root

Trees

Recursive definition

Trees

Recursive definition

Trees

Recursive definition

Trees

Recursive definition

Trees

Recursive definition

Terminology

- A node is external, if it doesn't have children (it is a leaf)
- A node is internal, if it has one or more children
- A node is ancestor of another one, if it is its parent or an ancestor of its parent
- A node is descendent of another one, if the latter is ancestor of the former
- The descendents of a node determine a subtree where this node acts as the root

Terminology

- A path from one node to another one, is a sequence of consecutive edges between the nodes.
- Its length is the number of edges it is composed of.
- The depth of a node is the length of the path from the root to this node.
- The height of a tree is the depth of the deepest node.
- The size of a tree is the number of nodes.

Example

Terminology and properties
Size of the tree: $\mathbf{1 1}$ Height of the tree: $\mathbf{3}$

Node	Height	Depth	Size	Internal / External
\mathbf{a}	3	0	11	Internal
\mathbf{b}				
\mathbf{c}	0	1	1	External
\mathbf{d}	1	1	2	Internal
\mathbf{e}				
\mathbf{f}	0	2	1	External
\mathbf{g}	0	2	1	External
\mathbf{h}				
\mathbf{i}				
\mathbf{j}				
\mathbf{k}				

Terminology

Ordered tree

- A tree is ordered, if for each node there exists a linear ordering for its children.

Terminology

Binary tree

- A binary tree is an ordered tree, where each node has 0,1 or 2 children (the left and the right child).
- Full binary tree: each node is either a leaf or possesses exactly 2 children
- Complete binary tree: all levels except possibly the last are full, and the last level has all its nodes to the left side

BTree interface

```
public interface BTree<E> {
    static final int LEFT = 0;
    static final int RIGHT = 1;
    boolean isEmpty();
    E getInfo() throws BTreeException;
    BTree<E> getLeft() throws BTreeException;
    BTree<E> getRight() throws BTreeException;
    void insert(BTree<E> tree, int side) throws BTreeException;
    BTree<E> extract(int side) throws BTreeException;
    String toStringPreOrder();
    String toStringInOrder();
    String toStringPostOrder();
    String toString(); // preorder
    int size();
    int height();
    boolean equals(BTree<E> tree);
    boolean find(BTree<E> tree);
```


Implementations

- Array-based implementation
- Based on a linked structure

Array-based implementation

$\mathbf{p (\text { root }) = 1}$
$p(x$. left $)=2^{*} p(x)$
$p(x . r i g h t)=2^{*} p(x)+1$

III)

Implementation based on a linked structure

Linked Binary Node (LBNode)
Linked Binary Tree (LBTree)

- Each tree (LBTree) has a root node (LBNode attribute)
- Each root node LBNode contains two trees (LBTree attributes), which can be empty (null)

LBNode class (recursive tree)

```
public class LBNode<E> {
    private E info;
    private BTree<E> left;
    private BTree<E> right;
    public LBNode(E info, BTree<E> left, BTree<E> right) {...}
    public E getInfo() {...}
    public void setInfo(E info) {...}
    public BTree<E> getLeft() {...}
    public void setLeft(BTree<E> left) {...}
    public BTree<E> getRight() {...}
    public void setRight(BTree<E> right) {...}
}
```


LBTree class... (recursive tree)

```
public class LBTree<E> implements BTree<E> {
private LBNode<E> root;
public LBTree() {
        root = null;
}
public LBTree(E info) {
        root = new LBNode<E>(info, new LBTree<E>, new
    LBTree<E>);
    }
public boolean isEmpty() {
    return (root==null);
}
```


... LBTree class (recursive tree)

```
public E getInfo() throws BTreeException {
    if (isEmpty()) {
        throw new BTreeException("empty trees do not have info");
    }
    return root.getInfo();
}
public BTree<E> getLeft() throws BTreeException {
    if (isEmpty()) {
        throw new BTreeException("empty trees do not have a left child");
    }
    return root.getLeft();
}
public BTree<E> getRight() throws BTreeException {
    if (isEmpty()) {
        throw new BTreeException("empty trees do not have a right child");
    }
    return root.getRight();
}
```


Binary node (non-recursive)

```
public class LBNode<E> {
    private E info;
        private LBNode<E> left;
    private LBNode<E> right;
        public LBNode() {
        this(null);
    }
    public LBNode(E info) {
        this(info,null,null);
    }
    public LBNode(E info, LBNode<E> l, LBNode<E> r) {
        this.info = info;
        left = l;
        right = r;
    }
}
```


Basic algorithms

- Size (number of nodes)
- Depth of a node
- Height
- Traversals
- Euler
- Pre-, in- and post-order
(To simplify, we assume binary trees)

... LBTree class (recursive tree)

```
public int size() {
    if (isEmpty())
        return 0;
    else
        return 1 + root.getLeft().size() + root.getRight().size();
}
public int height() {
    if (isEmpty())
        return -1;
    else {
            int leftHeight = root.getLeft().height();
            int rightHeight = root.getRight().height();
            if (leftHeight > rightHeight)
                return 1 + leftHeight;
            else
                return 1 + rightHeight;
    }
                            1+Math.max(leftHeight, rightHeight);
}
```


Euler traversal

Preorder traversal

- First the node
- Then its children (recursively)

Postorder traversal

- First the children trees (recursively)
- Then the node

Inorder (symmetric) traversal

- First the left tree (recursively)
- Then the node
- Finally, the right tree (recursively)

$(A+B)^{*}(C-D)$

Example

Infix	Prefix	Postfix
$A+B$	$+A B$	$A B+$
$A+B-C$	$-+A B C$	$A B+C-$
$(A+B)^{*}(C-D)$	$*+A B-C D$	$A B+C D-*$

Activity

- Visualize expressions as trees
http://www.cs.jhu.edu/~goodrich/dsa/05trees/Demol/

\quad Evaluate
$\left(\left((4+3)^{*}(2-1)\right)^{*}(311)\right)-\left((2+5)^{*}(1+1)\right)$
Result is 7

Postfix notation

- HP calculators, RPN=Reverse Polish Notation
- Stack to store objects
- Eg: X X X X XX

LBTree class: inorder (recursive tree)

public String toStringInOrder() \{ if (isEmpty()) \{ return "";
\} else \{
return root.getLeft().toStringInOrder() + root.getInfo().toString() + " " + root.getRight().toStringInOrder(); \}
\}

Properties of binary trees

- Let
- E=Number of external nodes
- I=Number of internal nodes
- N=Size=E+I
- H=Height
- then

$$
\begin{aligned}
& -\mathrm{E}=\mathrm{I}+1 \\
& -\mathrm{H}+1 \leq \mathrm{E} \leq 2^{H} \quad \mathrm{H} \leq I \leq 2^{H}-1 \quad 2^{*} \mathrm{H}+1 \leq \mathrm{N} \leq 2^{H+1}-1 \\
& -\log _{2}(\mathrm{~N}+1)-1 \leq \mathrm{H} \leq(\mathrm{N}-1) / 2
\end{aligned}
$$

Binary search trees

- A binary search tree is a binary tree where for each node n,
- all the keys in the left subtree are smaller (or equal) than the key of n
- and all those of the right subtree larger (or equal)

Example

$\sqrt{1}$ 2 $\sqrt{3}$

Example

Operations

- Search
- Insertion
- Extraction

Search

Searching " 3 ":

- $3<4$: go to left subtree
- $3>2$: go to right subtree
- $3=3$: element found

Insertion

Inserting "6":

- $6<7$: go to left subtree
- 6>2: go to right subtree
- when hole: insert

Extraction (1)

Extracting " 5 ":

- if leaf: extract
- if degenerate: replace by child

Extraction (2)

Extracting " 2 ":

- if 2 children: replace by
- largest at left, or
- smallest at right subtree

Activity

- See animation of binary search trees
h七tp://www.ibr.cs.tu-
bs.de/courses/ss98/audii/applets/BST/BST-Example.html

Find 8.0's successor
large \vee none \vee rigid \vee Pause

Heaps

- A binary heap is a complete binary tree where every node has a key greater(*) than or equal to the key of its parent.
- Usually, heaps refer to binary heaps
* It could also be defined as less or equal (the order criteria is arbitrary)
- Utitity
- Priority queues
- Sorting algorithm

Heaps properties

- A heap fulfils two properties:
- Heap property: for each node n (except for the root), its key is larger or equal than the one of its parent.
- Completeness

Example: heap property

But not complete

Example: complete heap

Sequence-based implementation

$p($ root $)=1$
p(x.left)=2* $p(x)$
$p(x . r i g h t)=2^{*} p(x)+1$

(II) Universidad

Insert

Insert

Insert

Insert

Insert

Extract

Extract

Extract

Activity

- Try out the form in

http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Prior ity-Q/

Activity

- Try out the applet in

http://www.cosc.canterbury.ac.nz/mukundan/dsal/MinHea pAppl.html

