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Introduction 

• What are the GUIs? 

• Well known examples… 
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Basic concepts 

• Graphical application 

• Containers 

• Actions 

• Events 

• Graphical elements: 

– Menu bar 

– Title bar 

– Minimize and maximize buttons 

– Closing button 

– Scroll 

– Window frame 

– Icons 

– Buttons 

– Text areas 
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The wall metaphor 
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The wall metaphor 

Frame 

contentPane 
Panel 
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Creating the wall 

• How to create a window in Java? 

Window 

A window is a high level container 
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import javax.swing.* ; 

 

public class Example extends JFrame {   

     

 /* This methods starts everything*/ 

 public static void main (String argv[]) { 

   

  Example window= new Example(); 

   

  window.setSize (400, 400); 

  window.setVisible(true); 

   

 }  

}  

 

How to create a window in Java? 

A window in Java is 

just a class 

extending Jframe, 

the generic 

window.  

The classes needed to 

build GUIs are included 

in the Swing package 

The window must be 

made visible explicitly 
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Covering the wall with cork 

• Every high level container in Swing (windows, for 

instance) will be “covered” with a “contentPane” 

• The rest of the graphical components will be 

placed on it 

– Including other containers 

Window 

window.getContentPane() 
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Adding it to the code 

import javax.swing.* ; 

 

public class Example extends JFrame {   

   

 /* This methods starts everything*/ 

 public static void main (String argv[]) { 

   

  Example window = new Example(); 

 

  window.getContentPane().add(…); 

   

  window.setSize (400, 400); 

  window.setVisible(true); 

   

 }  

}  
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What elements can I “attach to 

the cork”?  

• In the contentPane you can put elements from the 

Swing package: 

– Labels:  JLabel 

– Buttons:  JButton 

– Text boxes: JTextField, JTextArea 

– Checkboxes: JCheckBox 

– Option buttons: JRadioButton 

– Lists:  JList 

– Scroll bars: JScrollBar 

• All the Swing components extend JComponent 
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And how can I attach them?  

 JButton button; 

 JLabel label; 

  

 public Example() { 

  

  label = new JLabel(“A label"); 

  button = new JButton(“A button"); 

  button.setSize(100, 70); 

  getContentPane().add(button); 

  getContentPane().add(label); 

  

 }   
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LITTLE PAUSE 

 ... A good time to take a look at the Java 

API, in order to get to know where to 

find information on the different 

graphical components and how to use 

them... 
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And how can I attach “corks 

to the cork”?  

• We will use CONTENT PANELS: 
 JPanel 

• They are medium level containers: 

– They simplify the window organization 

• A panel may contain other panels 

13 



Panel hierarchy 
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Example of panel 

 JButton button; 

 JLabel label; 

 JPanel panel; 

  

 public Example() { 

  

  panel = new JPanel(); 

  getContentPane().add(panel); 

   

  label = new JLabel(“A label"); 

  button = new JButton(“A button"); 

  button.setSize(100, 70); 

  panel.add(button); 

  panel.add(label); 

  

 }   
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How can I put together all those 

components?  

• You can use either coordinates… 
label.setBounds(100, 70, 50, 50); 

• …or LAYOUTS: 

– These are like templates to organize graphical 

components.  

– They are associated to panels.  

– We’ll see three types here. 

• To use coordinates you have to neutralize 

the layout first: 
panel.setLayout(null) 

• You need to import java.awt.* in order to use 

layouts!  
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Example using FlowLayout 

JButton button; 

JLabel label; 

JButton otherButton; 

JPanel panel; 

 

public Example() { 

  panel = new JPanel(); 

  getContentPane().add(panel); 

  

  label = new JLabel(“A label"); 

  button = new JButton(“A button"); 

  otherButton = new JButton(“Other button"); 

  panel.add(button); 

  panel.add(label); 

  panel.add(otherButton); 

}   

 
FlowLayout is the default!  

(in panels) 

It places the elements in a 

row, one after the other 
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Example using GridLayout 

public Example() { 

 

  panel = new JPanel(); 

  panel.setLayout(new GridLayout(2, 2)); 

  getContentPane().add(panel); 

  

  label = new JLabel(“A label"); 

  button = new JButton(“A button"); 

  otherButton = new JButton(“Other button"); 

  panel.add(button); 

  panel.add(label); 

  panel.add(otherButton); 

 

}   It places the elements in 

a grid 
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Example with BorderLayout 

public Example() { 

  

  panel = new JPanel(); 

  panel.setLayout(new BorderLayout()); 

  getContentPane().add(panel); 

   

  label = new JLabel(“A label"); 

  button = new JButton(“A button"); 

  otherButton = new JButton(“Other button"); 

  panel.add(button, BorderLayout.SOUTH); 

  panel.add(label, BorderLayout.WEST); 

  panel.add(otrobutton, BorderLayout.NORTH); 

 

}   

 
It divides the container in five sections: 

North, south, east, west and center 

It is the default in high 

level containers  
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Events 

Systems Programming 
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Session objectives 

• Being able to add behaviour to the graphical 

elements in the interface… 

• …modifying those elements as a result of the actions 

on them  

• In other words, to cover the whole cycle: 

1. Receiving events that take place on the graphical elements 

2. Processing them 

3. Showing feedback on the screen 
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Graphical application 

architecture 

Interface              Processing    Persistence 

How is this link created? 
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Anybody listening? 

• When users act on the interface, something should 

happen.  

• For being so, we will have to program events 

managers (listeners) 

Component Listener 

Method 

(reply to the 

event) 

Event 
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Examples of listeners 

• WindowListener 

– For managing window events 

• ActionListener 

– For managing buttons and other simple 

components events 

• You will have to consult the API 

constantly!  
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Active waiting 

• Once the GUI is “painted” on the screen… 

• … the program stays in a “stand-by” mode, not running any 

active code 

When something happens 

on the interface, the 

associated listener wakes up 
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import java.awt.event.*; 

 

public class ListenerExample implements ActionListener { 

 

   public void actionPerformed (ActionEvent e) { 

    

      System.out.println(“Inside the listener"); 

    

   } 

 

} 

And translated into code? 

This package includes 

the listeners Listeners are 

interfaces, usually 

This method is awaken 

automatically 
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Who listens to whom? 

• If we have several graphical components… 

• …and we can create as many listeners as we wish… 

• Who listens to whom? 

 

• We’ll have to associate, explicitly, the listeners to the 

components 

• Multiple combinations are possible: 

– Several listeners associated to the same component. 

– One listener associated to several components. 
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import javax.swing.*; 

Import java.awt.event.*;  

 

public class Example2 extends JFrame { 

 

   JButton myButton = new JButton (“Click here"); 

   ListenerExample myListener = new ListenerExample(); 

   

   public Example2 () { 

         getContentPane().add(myButton); 

         myButton.addActionListener(myListener); 

   } 

    

   public static void main (String[] arg) { 

         Example2 window = new Example2(); 

         window.setSize(200, 200); 

         window.setVisible(true); 

      } 

} 

How to set up the association? 

Creating an 

instance of the 

corresponding 

listener 

Associating the 

listener to the 

component 28 



Which part of the listener is 

awaken? 

• Listeners have different methods to listen to 

different events.  

• Java automatically invokes the suitable method, 

depending on the event.  

• The body of these methods will be programmed by 

us. We can invoke other methods from these. 

• When the method running is over, the program 

moves on to stand-by again, awaiting for new events. 

• These methods receive an event object as argument.  
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Example: WindowListener 

• Among its methods we find: 
– void windowClosing (WindowEvent evt) 

– void windowOpened (WindowEvent evt) 

– void windowClosed (WindowEvent evt) 

– void windowIconified (WindowEvent evt) 

– void windowDeiconified (WindowEvent evt) 

– void windowActivated (WindowEvent evt) 

– void windowDeactivated (WindowEvent evt) 
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May I get more information 

about an event?  

• The event received as an argument by 

the listeners’ methods is provided 

automatically by Java 

• “Asking” to that event object we can 

find out more things about what really 

happened 

• Asking, as always, is done by invoking 

methods of the event object 
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import java.awt.event.*; 

 

public class ListenerExample implements ActionListener { 

 

   public void actionPerformed (ActionEvent e) { 

    

      String source = e.getActionCommand(); 

      System.out.println(“Button: " + source); 

    

   } 

 

} 

Example 

Argument provided by 

Java automatically 

It gives back the label of the 

component that started the 

event 
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Event oriented programming 

• GUIs in Java is just an example of a more general and 

very important programming technique: Events Oriented 

Programming 

• In a program everything is sequential: the time when 

each action is going to happen is predictable… 

• …How can we take into account those events in the 

world outside our program that we don’t know exactly 

when will happen?  

– When will that door open?  

– When will this pot of water boil? 

– When will the user push this button?  

• Programs have mechanisms to react (“wake up”) when 

specific events take place outside the program  
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Code organization 

• Everything explained about GUIs is under the principles 

and rules of the OO programming paradigm… 

• …so everything we know about OO up to now is perfectly 

valid here 

• We have just added new pieces to the meccano… 

– …that can be mixed with the rest in the way we consider 

most suitable.  

• Examples: 

– Creating the listeners as independent classes 

– Creating the listeners as inner classes 

– Making the graphical components themselves act as 

listeners 

– Associating a listener to more than one graphical component 
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Adapters 

• Some listeners interfaces have lots of methods… 

• …and we will have to implement them all (listeners are 

interfaces) 

• Adapters are classes that implement all the methods of a 

specific listener 

• Being classes, we just have to extend them rewriting the 

methods we need 

• For every Listener interface, there is an Adapter class: 

– WindowListener  WindowAdapter 

– KeyListener       KeyAdapter 

– MouseListener  MouseAdapter 
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