
Graphical User Interfaces

Systems Programming

Julio Villena Román (LECTURER)

<jvillena@it.uc3m.es>

CONTENTS ARE MOSTLY BASED ON THE WORK BY:

José Jesús García Rueda

GUIs based on Java Swing

Systems Programming

1

Julio Villena Román (LECTURER)

<jvillena@it.uc3m.es>

CONTENTS ARE MOSTLY BASED ON THE WORK BY:

José Jesús García Rueda

Introduction

• What are the GUIs?

• Well known examples…

2

Basic concepts

• Graphical application

• Containers

• Actions

• Events

• Graphical elements:

– Menu bar

– Title bar

– Minimize and maximize buttons

– Closing button

– Scroll

– Window frame

– Icons

– Buttons

– Text areas

3

The wall metaphor

4

The wall metaphor

Frame

contentPane
Panel

5

Creating the wall

• How to create a window in Java?

Window

A window is a high level container

6

import javax.swing.* ;

public class Example extends JFrame {

 /* This methods starts everything*/

 public static void main (String argv[]) {

 Example window= new Example();

 window.setSize (400, 400);

 window.setVisible(true);

 }

}

How to create a window in Java?

A window in Java is

just a class

extending Jframe,

the generic

window.

The classes needed to

build GUIs are included

in the Swing package

The window must be

made visible explicitly
7

Covering the wall with cork

• Every high level container in Swing (windows, for

instance) will be “covered” with a “contentPane”

• The rest of the graphical components will be

placed on it

– Including other containers

Window

window.getContentPane()

8

Adding it to the code

import javax.swing.* ;

public class Example extends JFrame {

 /* This methods starts everything*/

 public static void main (String argv[]) {

 Example window = new Example();

 window.getContentPane().add(…);

 window.setSize (400, 400);

 window.setVisible(true);

 }

}

9

What elements can I “attach to

the cork”?

• In the contentPane you can put elements from the

Swing package:

– Labels: JLabel

– Buttons: JButton

– Text boxes: JTextField, JTextArea

– Checkboxes: JCheckBox

– Option buttons: JRadioButton

– Lists: JList

– Scroll bars: JScrollBar

• All the Swing components extend JComponent

10

And how can I attach them?

 JButton button;

 JLabel label;

 public Example() {

 label = new JLabel(“A label");

 button = new JButton(“A button");

 button.setSize(100, 70);

 getContentPane().add(button);

 getContentPane().add(label);

 }

11

LITTLE PAUSE

 ... A good time to take a look at the Java

API, in order to get to know where to

find information on the different

graphical components and how to use

them...

12

And how can I attach “corks

to the cork”?

• We will use CONTENT PANELS:
 JPanel

• They are medium level containers:

– They simplify the window organization

• A panel may contain other panels

13

Panel hierarchy

14

Example of panel

 JButton button;

 JLabel label;

 JPanel panel;

 public Example() {

 panel = new JPanel();

 getContentPane().add(panel);

 label = new JLabel(“A label");

 button = new JButton(“A button");

 button.setSize(100, 70);

 panel.add(button);

 panel.add(label);

 }

 15

How can I put together all those

components?

• You can use either coordinates…
label.setBounds(100, 70, 50, 50);

• …or LAYOUTS:

– These are like templates to organize graphical

components.

– They are associated to panels.

– We’ll see three types here.

• To use coordinates you have to neutralize

the layout first:
panel.setLayout(null)

• You need to import java.awt.* in order to use

layouts!
16

Example using FlowLayout

JButton button;

JLabel label;

JButton otherButton;

JPanel panel;

public Example() {

 panel = new JPanel();

 getContentPane().add(panel);

 label = new JLabel(“A label");

 button = new JButton(“A button");

 otherButton = new JButton(“Other button");

 panel.add(button);

 panel.add(label);

 panel.add(otherButton);

}

FlowLayout is the default!

(in panels)

It places the elements in a

row, one after the other

17

Example using GridLayout

public Example() {

 panel = new JPanel();

 panel.setLayout(new GridLayout(2, 2));

 getContentPane().add(panel);

 label = new JLabel(“A label");

 button = new JButton(“A button");

 otherButton = new JButton(“Other button");

 panel.add(button);

 panel.add(label);

 panel.add(otherButton);

} It places the elements in

a grid

18

Example with BorderLayout

public Example() {

 panel = new JPanel();

 panel.setLayout(new BorderLayout());

 getContentPane().add(panel);

 label = new JLabel(“A label");

 button = new JButton(“A button");

 otherButton = new JButton(“Other button");

 panel.add(button, BorderLayout.SOUTH);

 panel.add(label, BorderLayout.WEST);

 panel.add(otrobutton, BorderLayout.NORTH);

}

It divides the container in five sections:

North, south, east, west and center

It is the default in high

level containers

19

Events

Systems Programming

20

Julio Villena Román (LECTURER)

<jvillena@it.uc3m.es>

CONTENTS ARE MOSTLY BASED ON THE WORK BY:

José Jesús García Rueda

Session objectives

• Being able to add behaviour to the graphical

elements in the interface…

• …modifying those elements as a result of the actions

on them

• In other words, to cover the whole cycle:

1. Receiving events that take place on the graphical elements

2. Processing them

3. Showing feedback on the screen

21

Graphical application

architecture

Interface Processing Persistence

How is this link created?

22

Anybody listening?

• When users act on the interface, something should

happen.

• For being so, we will have to program events

managers (listeners)

Component Listener

Method

(reply to the

event)

Event

23

Examples of listeners

• WindowListener

– For managing window events

• ActionListener

– For managing buttons and other simple

components events

• You will have to consult the API

constantly!

24

Active waiting

• Once the GUI is “painted” on the screen…

• … the program stays in a “stand-by” mode, not running any

active code

When something happens

on the interface, the

associated listener wakes up

25

import java.awt.event.*;

public class ListenerExample implements ActionListener {

 public void actionPerformed (ActionEvent e) {

 System.out.println(“Inside the listener");

 }

}

And translated into code?

This package includes

the listeners Listeners are

interfaces, usually

This method is awaken

automatically

26

Who listens to whom?

• If we have several graphical components…

• …and we can create as many listeners as we wish…

• Who listens to whom?

• We’ll have to associate, explicitly, the listeners to the

components

• Multiple combinations are possible:

– Several listeners associated to the same component.

– One listener associated to several components.

27

import javax.swing.*;

Import java.awt.event.*;

public class Example2 extends JFrame {

 JButton myButton = new JButton (“Click here");

 ListenerExample myListener = new ListenerExample();

 public Example2 () {

 getContentPane().add(myButton);

 myButton.addActionListener(myListener);

 }

 public static void main (String[] arg) {

 Example2 window = new Example2();

 window.setSize(200, 200);

 window.setVisible(true);

 }

}

How to set up the association?

Creating an

instance of the

corresponding

listener

Associating the

listener to the

component 28

Which part of the listener is

awaken?

• Listeners have different methods to listen to

different events.

• Java automatically invokes the suitable method,

depending on the event.

• The body of these methods will be programmed by

us. We can invoke other methods from these.

• When the method running is over, the program

moves on to stand-by again, awaiting for new events.

• These methods receive an event object as argument.

29

Example: WindowListener

• Among its methods we find:
– void windowClosing (WindowEvent evt)

– void windowOpened (WindowEvent evt)

– void windowClosed (WindowEvent evt)

– void windowIconified (WindowEvent evt)

– void windowDeiconified (WindowEvent evt)

– void windowActivated (WindowEvent evt)

– void windowDeactivated (WindowEvent evt)

30

May I get more information

about an event?

• The event received as an argument by

the listeners’ methods is provided

automatically by Java

• “Asking” to that event object we can

find out more things about what really

happened

• Asking, as always, is done by invoking

methods of the event object

31

import java.awt.event.*;

public class ListenerExample implements ActionListener {

 public void actionPerformed (ActionEvent e) {

 String source = e.getActionCommand();

 System.out.println(“Button: " + source);

 }

}

Example

Argument provided by

Java automatically

It gives back the label of the

component that started the

event

32

Event oriented programming

• GUIs in Java is just an example of a more general and

very important programming technique: Events Oriented

Programming

• In a program everything is sequential: the time when

each action is going to happen is predictable…

• …How can we take into account those events in the

world outside our program that we don’t know exactly

when will happen?

– When will that door open?

– When will this pot of water boil?

– When will the user push this button?

• Programs have mechanisms to react (“wake up”) when

specific events take place outside the program

33

Code organization

• Everything explained about GUIs is under the principles

and rules of the OO programming paradigm…

• …so everything we know about OO up to now is perfectly

valid here

• We have just added new pieces to the meccano…

– …that can be mixed with the rest in the way we consider

most suitable.

• Examples:

– Creating the listeners as independent classes

– Creating the listeners as inner classes

– Making the graphical components themselves act as

listeners

– Associating a listener to more than one graphical component

34

Adapters

• Some listeners interfaces have lots of methods…

• …and we will have to implement them all (listeners are

interfaces)

• Adapters are classes that implement all the methods of a

specific listener

• Being classes, we just have to extend them rewriting the

methods we need

• For every Listener interface, there is an Adapter class:

– WindowListener  WindowAdapter

– KeyListener  KeyAdapter

– MouseListener  MouseAdapter

35

36

