
Object Oriented Programming

Systems Programming

Julio Villena Román (LECTURER)

<jvillena@it.uc3m.es>

CONTENTS ARE MOSTLY BASED ON THE WORK BY:

M.Carmen Fernández Panadero, Raquel M. Crespo García

Carlos Delgado Kloos and Natividad Martínez Madrid

Object BASED programming

Systems Programming

1

Julio Villena Román (LECTURER)

<jvillena@it.uc3m.es>

CONTENTS ARE MOSTLY BASED ON THE WORK BY:

M.Carmen Fernández Panadero, Raquel M. Crespo García

Carlos Delgado Kloos and Natividad Martínez Madrid

Scenario IV:
Declare and implement a class

• Now that you know how to read code and implement your own

methods you will have to design a new class in order to create a

new data type with its characteristics and behavior.

• Objective:

– Be able to declare a class with a set of characteristics (attributes) and

behaviour (methods)

– Be able to create objects and modify or restrict access to their state and

their behavior

• Workplan:
– Memorize the basic nomenclature of the object-oriented programming

– Practice modeling objects with simple examples to distinguish between a class, an

object, its state and behavior

– Review the Java syntax for declaring class attributes, constructors and methods

– Review the mechanism and syntax for message passing between objects

2

Contents

3

• Classes and Objects

• Object encapsulation

– Functional abstraction

– Data abstraction

• Class members (attributes and methods)

• Message passing

• Constructors

• Overloading

Objectives

• Define basic concepts of object based

programming

– Classes, objects

– Members (variables, methods)

– Abstraction and shadowing of information

• Learn the relationship between object and

class

• Create a simple object and be able to model:

– its attributes (with variables)

– its behaviour (with methods)

4

What is an object?

• Objects are (simple/complex) (real/imagined)
representations of things: clock, airplane, bird, etc.

5

What is an object?

• Functional abstraction

– Things that we know that

cars do:

• advance

• stop

• turn right

• turn left

• Data abstraction

– Properties (attributes)

of a car:

• color

• speed

• size

6

• It is a way to group a set of data

(state) and functionality

(behaviour) in the same block of

code that can then be referenced

from other parts of a program

7

What is an object?

Classification of objects

• Class: Set of objects with similar states and

behavior

– We can refer to the “Car” class (any instance in

the classification of cars)

• “My car” is an object, i.e. a particular

instance of the Car class

• The class to which the object belongs is

considered as a new data type

8

Objects vs. Classes

A class is an abstract entity

• It is a kind of data classification

• Defines the behaviour and attributes of a group of
objects with similar structure and similar behaviour

An object is an instance of a class

 An object can be distinguished from other members of the class
by the value of its attributes

Name: MyFerrari
Methods: turn on, advance, stop, ...
Attributes : color = “red”;
 speed = 300Km/h

Class car
Methods: turn on, advance, stop, ...
Atributtes: color , speed, etc.

Class name
Methods (functions)
Attributes (data)

Object MyFerrari
Belongs to the
class Car

• A class is declared, an object is created
9

Object encapsulation

• Encapsulation: explains the links between
behaviour and state to a particular object

• Information hiding: Define which parts of the
object are visible (the public interface) and which
parts are hidden (private)

• The ignition is a public interface mechanism to

start a vehicle

• The implementation of how to really start a car is

private. We only can access this information

introducing the key into the ignition

The object may change but its public interface remains compatible

with the original. This fact facilitates reuse of code

10

Object encapsulation

Objects encapsulate attributes, allowing access to them
only through methods

• Attributes (Variables): Containers of values

• Methods: Containers of functions
An object has:

• State: represented by the values of its attributes

• Behaviour: defined by its methods

Usually:

• Methods are public

• Attributes are private

• There can be private methods

• It is dangerous to have public attributes

CLASS MEMBERS

11

Object Definition

Public Members

• Public members

(describe what an

object can do)

– What the object can

do (methods)

– What the object is

(its abstraction)

Private Members

• How the object does its
work (how it is
implemented)
– For example, the ignition key

interacts with the electric circuit
of the vehicle, the engine, etc.

– In pure object-oriented
systems, state is completely
private and can only be
modified through the public
interface

– Eg: public method stop can
change the value of the private
attribute speed

12

Interactions between objects

• Object modeling describes:

• Objects and

• Their interrelations

• To do a task, an object can delegate some

work to another object, that can be part of

itself, or can be any other object in the system

• Objects interact with each other by sending

messages

13

Message passing

• An object sends a message to another object

 By calling a method (method call / method invocation)

• Messages are handled by the public interface of the receiving object

 We can only call methods from another object that are public or accessible from the

calling object

• The receiving (called) object will react:

• Changing its state, i.e. modifying its attributes, and/or

• Sending other messages, i.e. calling other (public or private) methods from the

same object (from himself) or calling other methods from other objects (public or

accessible from that object)

turnOn
Implementation

P
u

b
li

c
in

te
rf

a
ce

14

Constructors

Ideas to recall

• When an object is created, its members are initialized

using a constructor method

• Constructors:

– Have the same name as the class

– They have no return type (not even void)

• At least 1 constructor is recommended to exist

• Several constructors can exist that are distinguished by

their parameters (overloading)

• A default constructor without parameters is created if no

explicit constructors are defined, that initializes the

attributes to their default values

• If there is a constructor in the class, the default constructor

no longer exits. In that case, if a constructor without

parameters is desired, it needs to be explicitly declared

15

Overloading
What is it?

• Two methods with the same name can be

defined in a class if they have different

parameters

• It is widely used for constructors

• The method actually executed depends on

the parameters passed when it is called

• In this case, no information hiding exists,

both methods can be accessed

16

Overloading
What is it used for?

Classroom
• name

• description

• location

• printName()

• printDescription()

• printDescription(String furniture)

• printLocation()

Although they have equal

names, they are two different

methods, because they have

different parameters

describe the classroom in general

describe the furniture inside the

classroom that is passed as a

parameter

They have different

functionality as shown

in the example

17

Object ORIENTED programming

(basic)

Systems Programming

18

Julio Villena Román (LECTURER)

<jvillena@it.uc3m.es>

CONTENTS ARE MOSTLY BASED ON THE WORK BY:

M.Carmen Fernández Panadero, Raquel M. Crespo García

Carlos Delgado Kloos and Natividad Martínez Madrid

Scenario V:
Reusing code. Inheritance

• Once you are able to create your own classes, you are ready to work in

teams and reuse code developed by your colleagues. Your team will

provide you with a set of classes and you are required to create

specializations or generalizations of them.

• Objective:

– Be able to create a derived class adding some characteristics (attributes) and

behavior (methods) to an existing class.

– Be able to extract all the common code from a set of similar classes in order to

group it into a new parent class so that it is easier to maintain.

– Be able to create objects, and reference and access their attributes and

methods, depending on their position in the inheritance hierarchy and their

modifiers.

• Work plan:
– Memorize the naming related to inheritance

– Memorize the Java syntax related to inheritance (extends) and to reference (super, this)

and access (modifiers) to the different members.

– Know basic inheritance mechanisms, such as attribute hiding, overriding of methods and

overloading of constructors, and know what they are used for and how they are used.

19

Contents

• Basic inheritance concepts

• Inheritance hierarchy

• Overriding I: Attribute Hiding

• Overriding II: Method Overriding

• Constructors of derived classes

• Static and Final Modifiers

• Scope and access

 20

• Mechanism for software reuse

• Allows to define from a class other related classes that

can be a:

– Specialization of the given class. (e.g. “Car” class is a

specialization of the class “Vehicle”)
• Scenario: We have to implement a new class that is very similar to a previous

one but it needs additional information (characteristics and behaviour)

• Solution: Create a class derived from the old one and add it new functionality

without having to rewrite the common code

– Generalization of the given class (e.g. the “Vehicle” class is

a generalization of the “Car” class)
• Scenario: We have a set of similar classes with code that is repeated in every

class and thus difficult to update and maintain (e.g. a letter should be added to

the serial number)

• Solution: We move the code that is repeated to a single site (the parent class)

21

Inheritance
What is it?

Inheritance
What is it?

Resource

• name

• description

• getName()

• getDescription()

Classroom

• name

• description

• location

• getName()

• getDescription()

• getLocation()

computer

• name

• description

• operatingSystem

• getName()

• getDescription()

• getOS()

Classroom

• location

• getLocation()

Computer

• operatingSystem

• getOS()

Resource

• name

• description

• getName()

• getDescription()

public class Classroom extends Resource

public class Computer extends Resource

The attributes and methods that appear in blue in the parent class are repeated in the

subclasses. (Left picture)

It is not necessary to repeat the code, you only have to say that a class extends the

other or inherits from it. (Right picture)

22

• If we define the car class from the vehicle class, it is

said that:

– “car” inherits attributes and methods from “vehicle”

– “car” extends “vehicle”

– “car” is a subclass of “vehicle”

 Derived class

 Child class

– “vehicle” is a superclass of “car”

 Base class

 Parent class

• Inheritance implements the is-a relation

– A car is-a vehicle; a dog is-a mammal, etc.

23

Inheritance
Naming

• The syntax for declaring subclasses is:
class Subclass extends Superclass { ... }

Inheritance
Declaration of subclasses

Person

Student Employee

Professor Secretary

class Person { ... }

class Student extends Person { ... }

class Employee extends Person { ... }

class Professor extends Employee { ... }

class Secretary extends Employee { ... }

24

Inheritance
Subclass

Methods Attributes

Class Student

Inherited from class Person

 firstName

 lastName

 yearBirth

 group

 timetable

 setGroup

 printGroup

 print

25

Inheritance
How is it used?

 public class Person {

protected String firstName;

protected String lastName;

protected int birthYear;

public Person () {

 }

 public Person (String firstName, String lastName,

 int birthYear){

 this.firstName = firstName;

 this.lastName = lastName;

 this.birthYear = birthYear;

}

 public void print(){

 System.out.print("Personal data: " + firstName

 + " " + lastName + " (“

 + birthYear + ")");

}

 }

26

Inheritance
How is it used?

 public class Student extends Person {
 protected String group;
 protected char timetable;

 public Student() {
 }

 public Student(String firstName, String lastName,
 int birthYear) {
 super(firstName, lastName, birthYear);
 }

 public void setGroup(String group, char timetable)
 throws Exception {
 if (group == null || group.length() == 0)
 throw new Exception ("Invalid group");
 if (timetable != 'M' && timetable != 'A')
 throw new Exception ("Invalid timetable");

 this.group = group;
 this.timetable = timetable;
 }

 public void printGroup(){
 System.out.print(" Group " + group + timetable);
 }
 }

27

Inheritance
How is it used?

 public class Test {

 public static void main (String[] args) throws Exception{

 Person neighbour = new Person ("Luisa", "Asenjo Martínez",
1978);

 Student aStudent = new Student ("Juan", "Ugarte López",
1985);

 aStudent.setGroup("66", 'M');

 neighbour.print();

 aStudent.print();

 aStudent.printGroup();

 }

 }

28

Inheritance
Consequences of extension of classes

 Inheritance of the interface

 The public part of the subclass contains the
public part of the superclass
 The Student class contains the method print()

 Inheritance of the implementation

 The implementation of the subclass contains the
implementation of the superclass
 When calling the method of the superclass on an

object of the subclass (aStudent.print()) the
expected behaviour takes place

29

Inheritance
Inheritance hierarchy in Java

• In Java, all classes are related through a
single inheritance hierarchy

• A class can:

– Explicitly inherit from another class, or

– Implicitly inherit from the Object class (defined
in the Java core)

• This is the case both for predefined
classes and for user-defined classes

30

31

Object

Boolean Character Number

Integer

…

Long Float Double

Person

Student Employee

Secretary Professor

Inheritance hierarchy

• this references to the current class object

• super
– references the current object casted as if it was an instance

of its superclass

– With the super reference, the methods of the base class
can be explicitly accessed

– super is useful when overriding methods

 public class Student extends Person {
 // the rest remains the same

 public void print(){

 super.print();

 System.out.print("Group:" + group+ schedule);

 }

 }

this and super references

32

Inheritance
Overriding

• Modification of the elements of the base
class inside the derived class

• The derived class can define:

– An attribute with the same name as one of the
base class → Attribute hiding

– A method with the same signature as one of
the base class → Method overriding

• The second case is more usual

33

Overriding I (Shadowing)
Attribute hiding

• If we define an attribute (variable) in a
subclass with the same name and type that
other one in the superclass, the variable in
the superclass remains hidden.

• We can access one variable or the other
using this and super.
– E.g.: “Car" extends from “Vehicle" and “Vehicle"

extends from “Transport”

– We define the variable String name in the three
classes

– How can we know if we are referring to the name
of transport, the name of the vehicle or the name
of the car?

34

Overriding I (Shadowing)
Attribute hiding

• How can I access hidden variables?

– name (car name)

– this.name (car name)

– super.name (vehicle name)

– ((vehicle)this).name (vehicle name)

– super.super.name (WRONG)

– ((transport)this).name (transport name)

Transport

vehicle

car scooter

convoy

String name = “ground"

String name = “car"

String name = "Ferrari"

Parent class

Variables

Child class:

visibles

Variables

Parent class

hidden

“Granny” class

Child class

35

Overriding I (Shadowing)
Attribute hiding

• When accessing an attribute, the type of
the reference is used for deciding which
value to access

• The attribute of the subclass needs to
have the same name as the one of the
superclass

– But not necessarily the same type

• Not very useful in practice

– Allows the superclasses to define new
attributes without affecting the subclass

36

Overriding I (Shadowing)
Attribute hiding. Example 1

Person p = a;

System.out.println(p.firstName);

Methods Attributes

Class Student

Inherited from class Person

 firstName

 lastName

 yearBirth

 group

 timetable

 setGroup(String s)

 printGroup()

 print()

 firstName

 firstName

Student a = new Student(...);

System.out.println(a.firstName);

37

Overriding I (Shadowing)
Attribute hiding. Example 2

prints SuperStr

prints 7

38

 class SuperShow {
 public String str = "SuperStr";
 }

 class ExtendShow extends SuperShow {
 public int str = 7;
 }

 class Show {
 public static void main (String[] args) {
 ExtendShow ext = new ExtendShow();
 SuperShow sup = ext;
 System.out.println(sup.str);
 System.out.println(ext.str);
 }
 }

Overriding II
Method overriding

• If the subclass defines a method with the same

signature (name + number and type of the parameters)

the method in the superclass is hidden

• If the final modifier is used in a method, this method can

not be overriden

• How can we access hidden methods?

– start() (run the start method of the car)

– this.start() (run the start method of the car)

– super.start() (run the start method of the vehicle)

– super.super.start() (WRONG)

Methods of

the child

class: visible

Methods of

the parent

class: hidden

39

Overriding II
Method overriding

Resource
• name

• description

• getName()

• getDescription()

Classroom
• name

• description

• location

• getName()

• getDescriptoin()

• getLocation()

Computer
• name

• description

• operatingSystem

• getName()

• getDescription()

• getOS()

Classroom
• description

• location

• getLocation()

• getDescription()

Computer
• operatingSystem

• getOS()

Resource
• name

• description

• getName()

• getDescription()

public class Classroom extends Resource

public class Computer extends Resource
super.getDescripcion

this.getDescription()

40

Overriding II
Method overriding

Object

Another ancestor

Superclass

Subclass object
 instance

method(parameters)

message
 method(parameters)?

 method(parameters)?

no

 method(parameters)?

no

 method(parameters)?

no

error
no

41

Overriding II
Method overriding

• When sending a message to an object,

the selected method:

– Depends on the class which the object is

an instance of

– Does not depend on the reference class to

which it is assigned, as in the case of

attributes

42

Overriding II
Method overriding. Example

Both print:

“Extend.show: ExtendStr”

 class SuperShow {
 public String str = "SuperStr";
 public void show() {
 System.out.println("Super.show: " + str);
 }
 }
 class ExtendShow extends SuperShow {
 public String str = "ExtendStr";
 public void show() {
 System.out.println("Extend.show: " + str);
 }
 }
 class TestShow {
 public static void main (String[] args) {
 ExtendShow ext = new ExtendShow();
 SuperShow sup = ext;
 sup.show();
 ext.show();
 }
 }

43

Overriding II

Final methods

• Method overriding is useful for

– Extending the functionality of a method

– Particularizing the functionality of a method to
the derived class

• If it is not desired that subclasses are able
to modify a method or an attribute of the
base class, the reserved word final
should be applied to the method or
attribute

44

Overriding vs. overloading

• Overriding: The subclass substitutes the

implementation of a method of the superclass

– Both methods need to have the same signature

• Overloading: There is more than one method

with the same name but different signature

– The overloaded methods can be declared in the

same class or in different classes in the

inheritance hierarchy

45

Constructors and inheritance

• To create an object, the following steps are
done:
1. The base part is created

2. The derived part is added

– If the base class of the object inherits from another class,
step 1 is applied in the order of the inheritance chain,
until we reach Object

• For example, when creating a Student object,
that extends Person, the steps would be:
1. The part corresponding to Person is created. To do so:

1. The part corresponding to Object is created.

2. The Person elements are added

2. The Student elements are added

46

Constructors and inheritance

• A call to the constructor of the base
class is always done in the constructor
of the derived class.

• This is the first action of the constructor
(always in the first line)

• Two possibilities:

– Not explicitly indicate it

– Explicitly indicate it
(mandatory in the first line)

47

Constructors and inheritance

1.If it is not explicit, Java automatically
inserts a call to super() in the first
line of the constructor of the derived
class

public Student (String firstName, String lastName,

 int yearBirth, String group, char timetable) {

 // Java inserts here a call to super()

 this.firstName = firstName;

 this.lastName = lastName;

 this.birthYear = birthYear;

 this.group = group;

 this.timetable = timetable;

}

48

Constructors and inheritance

2. Explicitly coded

 public Student (String firstName, String lastName,

 int birthYear, String group, char

timetable) {

 super(firstName, lastName, birthYear);

 this.group = group;

 this.timetable = timetable;

}

49

Modifiers and access

Final

• The final modifier can be applied to:
– Parameters: Means that the value of such

parameter cannot be changed inside the method

– Methods: Means that it cannot be overridden in
derived classes

– Classes: Avoid extending the class. It cannot be
inherited.

public void myMethod(final int p1, int p2){} //p1 value cannot be changed

public final void myMethod(){} //myMethod cannot be overridden

public final class myClass(){} //myClass cannot be extended

50

• static modifier

• Static members exist only once per class,

independently of the number of instances

(objects) of the class that have been created

or even if none (instances) exists.

• Static members can be accessed using the

class name.

• An static method cannot access non-static

members directly, it must first create an

object.

Modifiers and access
Static (static members)

51

Modifiers and access
Static. Some rules

– Static members are invoked with:

– Non static members require an instance (object) in order to

be accessed.

– Non static members are invoked with:

– When a static member is invoked (called) from inside the

same class, the class name can be deleted. I.e. it can be

written:

objectName.normalMethod();

objectName.normalAttribute;

ClassName.staticMethod();

ClassName.staticAttribute;

ClassName objectName = new ClassName();

staticMethod();

staticAttribute;

ClassName.staticMethod();

ClassName.staticAttribute;
instead of:

52

MODIFIERS class method attribute

a
c
c
e

s
s

public
Accesible to any other class

(friendly) Accessible only to classes in the same package

protected Accessible to the class and its subclasses

private Applied to inner classes Accessible only inside the class

o
th

e
r

abstract Cannot be instantiated

For inheriting from them

At least 1 abstract method

Has no code

It is implemented in the

subclasses or child classes

final Cannot be extended.

It is a leaf in the inheritance

tree.

Cannot be overridden.

It is constant and cannot

be modified in the child

classes.

Its value cannot be changed, it

is constant .

It is normally used together

with static.

static Maximum level class.

It is the same for all of the

class objects.

Use:

ClassName.method ();

It is the same for all of the

class objects.

53

Object ORIENTED programming

(advanced)

Systems Programming

54

Julio Villena Román (LECTURER)

<jvillena@it.uc3m.es>

CONTENTS ARE MOSTLY BASED ON THE WORK BY:

M.Carmen Fernández Panadero, Raquel M. Crespo García

Carlos Delgado Kloos and Natividad Martínez Madrid

Contents

• Polymorphism

• Dynamic binding

• Casting. Types compatibility

• Abstract classes and methods

– Partial implementations

– Polymorphism with abstract classes

• Interfaces (concept and implementation)

– Multiple inheritance

– Polymorphism with interfaces

• Packages

• Exceptions

55

Inheritance
Inheritance hierarchy in Java

• In Java, all classes are related through a
single inheritance hierarchy

• A class can:

– Explicitly inherit from another class, or

– Implicitly inherit from the Object class (defined
in the Java core)

• This is the case both for predefined
classes and for user-defined classes

56

Polymorphism
What is it?

• Capacity of an object for deciding which method to apply,

depending on the class it belongs to

– A call to a method on a reference of a generic type (e.g.

base class or interface) executes different implementations

of the method depending on which class the object was

created as

• Poly (many) + morph (form)

– One function, different implementations

• Allows to design and implement extensible systems

– Programs can process generic objects (described by

references of the superclass)

– The specific behaviour depends on the subclasses

– New subclasses can be added later

57

Polymorphism
Exercise

• Program a class:
– Shape, which represents a bi-dimensional shape

(parallelepiped), with two attributes, one per each dimension,
and an area() method that calculates the area. Its default
return value is 0.

– Triangle, which extends the Shape class and overrides the
area() method

– Rectangle, which extends Shape and overrides the area()
method

– ShapeList, which has an attribute of type array of Shape, and
a method totalArea() that returns the sum of the areas of all
the shapes

• What should be changed in ShapeList if a new class
Ellipse is added?

58

Polymorphism: dynamic binding

• The power of method overriding is that the correct

method is properly called, even though when

referencing the object of the child class through a

reference of the base class

• This mechanism is called “dynamic binding”

– Allows detecting during running time which method is

the proper one to call

• The compiler does not generate the calling code

during compiling time

– It generates code for calculating which method to call

59

Casting (Type conversion)
Syntax and terminology

• Syntax:
(type) identifier

• Two types of casting:
– widening: a subclass is used as an instance of

the superclass (e.g.: calling a method of the
parent class which has not been overriden).
Implicit.

– narrowing: The superclass is used as an instance
of one subclass. Explicit conversion.

• Casting can only be applied to parent and
child classes, not to sibling classes

60

Casting (Type conversion)
Widening or upcasting

1. Upcasting: compatibility upwards

(towards the base class)

– An object of the derived class can always

be used as an object of the base class

(because it implements an “is-a”

relationship)

 Person p = new Student();

61

Casting (Type conversion)
Narrowing or downcasting

2. Downcasting: compatibility downwards
(towards the derived classes)

– Downcasting cannot be applied by default,
because an object of the base class is not
always an object of the derived class

Student s = new Person(); // wrong

– It is only possible when the reference of the base
class actually points to an object of the derived
class

– In these cases, an explicit casting must be
applied

62

Casting (Type conversion)
Explicit and implicit

Reference to superclass

Reference to subclass Object of subclass

Object of superclass

Automatic upcasting

Explicit downcasting Explicit upcasting if ambiguous

(e.g. Method overriding

63

 public class Test2 {

 public static void main (String[] args) {

 Person p1;

 //implicit upcasting - works

 Student s1 = new Student();

 p1 = s1;

 Student s2;

 //implicit downcasting – does not work

 s2 = p1; //error because no explicit casting is done

 //explicit downcasting - works

 s2 = (Student) p1; // p1 actually references an
 // instance of class Student

Casting (Type conversion)
Example

A student is

always a person

(implicit)

A person is not

always a student

If someone, besides being a person, is also a student

(not always happens), (s)he can be required stuff as

a student, but must be explicitly stated that (s)he

will be treated as a student.

64

 Person p2 = new Person();

 Student s3;

 //implicit downcasting – does not work

 s3 = p2; //compiler error

 //explicit downcasting – does not works sometimes

 //ClassCastException will be thrown

 //because p2 does not refer to a Student object

 s3 = (Student) p2; //error

 //implicit downcasting – does not work

 Student s4 = new Person(); //error

 }

 }

A person not

always is a

student. It

cannot be

implicitly

assumed.

A person is

sometimes a

student, but if

not (it has not

been created as

such), it cannot

be treated as

such, not even

though explicitly

trying.

A person is not always a student. It cannot be

assumed implicitly.

Casting (Type conversion)
Example

65

• Syntax:

 object instanceOf class

– Checks if an object is really an instance of a
given class

• Example:

 public Student check(Person p) {

 Student s = null;

 if (p instanceOf Student)

 s = (Student) p;

 return s;

 }

Casting (Type conversion)
instanceof operator

66

• An abstract class is a class that has at least one

abstract method (not implemented, without

code).

• It declares the structure of a given abstraction,

without providing all the implementation details

(i.e. without implementing completely every

method)

Abstract classes
What is an abstract class?

Message

Email SMS Fax VoiceMessage

67

Abstract classes
Characteristics

• Classes and methods are defined as abstract

using the reserved word abstract

• The abstract modifier cannot be applied to:

– constructors

– static methods

– private methods

public abstract class Shape{...}

68

• Abstract classes cannot be instantiated

– References to abstract classes can exist

– But they point to objects of classes derived of the

abstract class

• Abstract classes can be extended

• In an abstract class, there can be both

– abstract methods

– non abstract methods

Abstract classes
Characteristics

Shape fig = new Rectangle(2,3);

69

Abstract classes
Purpose: partial implementations

• Abstract classes are normally used for representing

partially implemented classes

– Some methods are not implemented but declared

• The objective of partial implementations is to provide

a common interface to all derived classes

– Even though in cases when the base class has not

information enough to implement the method

70

• Methods declared but no implemented in
abstract classes
abstract returnType name(parameters);

– Methods are declared abstract using the reserved
word abstract

• Classes inheriting from the abstract class
must implement the abstract methods of the
superclass
– Or they will be abstract themselves too

Abstract classes
abstract methods

NOTE: No brackets! They are not

implemented, thus only a semicolon (;)

follows the declaration

71

Abstract classes
How are they used?

Classroom
• location

• getLocation()

• describe()

Computer
• operatingSystem

• getOperatingSystem()

• describe()

Resource
• name

• description

• getName()

• describe()

public class Classroom extends Resource

public class Computer extends Resource

The Resource class is abstract

because one of its methods
describe() has no code

All classes extending Resource

must provide the implementation of
the describe() method (with its

code)

public abstract class Resource

* Grey color indicates “having no code”

** Bold indicates “having code”

*

** **

72

 abstract class Shape { // any parallelepiped
 double dim1;
 double dim2;

 Shape(double dim1, double dim2) {
 this.dim1 = dim1;
 this.dim2 = dim2;
 }

 abstract double area();
 }

 class Rectangle extends Shape {
 Rectangle(double dim1, double dim2) {
 super(dim1,dim2);
 }
 double area() {
 return dim1*dim2; // rectangle area
 }
 }

Abstract classes
How are they used? Example

73

Abstract classes
Polymorphism

Classroom
•location

•getLocation()

•describe()

Computer
•operatingSystem

•getOperatingSystem()

•describe()

Resource
•name

•description

•getName()

•describe()

public class Classroom extends Resource{…}

public class Computer extends Resource{…}

*

** **

public class ResourcesTest{

 public static void main(String args[]){

 Resource[] myResources = new Resource[3];

 myResources[0] = new Classroom(“classroom1");

 myResources[1] = new Computer("PC1");

 myResources[2] = new Classroom("classroom2");

 for(int i=0; i<myResources.length;i++){

 myResources[i].describe();

 }

 }

}

** Bold means “having code”

* Grey color means “having no code”

An array of objects of type

Resource (abstract)
Array elements are instances of

a concrete (non-abstract) class

(computer and classroom)

A call to the describe method on objects of type

Resource and during running time it will be

checked which type of object is contained

(Computer or Classroom) and the proper

method will be called. – Dynamic binding

74

public abstract class Resource{…}

Interfaces
What is an interface?

• Interfaces take the abstract class concept one step
further
– All methods in the interface are abstract

– They could be thought of as “like” a “pure” abstract class

• Interfaces are always public
– Interface attributes are implicitly public, static and final
– Interface methods have no access modifiers, they are

public

• Interfaces are implemented by classes
– A class implements an interface defining the body of all

the methods
– An abstract class implements an interface implementing

or declaring abstracts the methods
– A class can implement one or more interfaces (~multiple

inheritance)

75

Interfaces
What is an interface?

• An interface is a pure design element

– What to do

• A class (including abstract ones) is a mix of design

and implementation

– What to do and how

• Interfaces represent a complete abstraction of a

class

– An interface abstracts the public characteristics and

behaviors of their implementations (how those behaviours

are executed)

• Different classes can implement the same interface

in different ways

76

Interfaces
How are they used?

Circle
•radius
•area()

Parallelepiped
•dim1, dim2
•area()

Shape
•area()

public class Circle implements Shape

public class Parallelepiped implements Shape

Shape is not a class, it is an

interface, it just defines the

behavior but not the implementation

All classes implementing Shape

must provide an implementation

for all methods declared in Shape

(or declared them abstract)

public interface Shape

implements

Rectangle
•area()

extends

77

• Syntax:
<public> interface name {
type variable = value;
returnType method(parameters);

}

– public modifier is optional (interfaces are public)

– All methods are implicitly abstract and public

– Interface attributes are public, static and
final

• They represent constants

Interfaces
Declaration

NOTE: No brackets!! As the method is

not implemented, only a semicolon (;)

follows the declaration

78

• If a class implements an interface, it implements all

abstract methods declared in such interface

• Represented with the reserved word implements

class MyClass implements Interface1, Interface2 {

...

}

class DerivedClass extends BaseClass

 implements Interface1, Interface2 {

 ...

}

Interfaces
Implementation

79

• Define an interface for printable objects

– Method void print()

• Modify the Rectangle and Email

classes so that they implement the
Printable interface

Interfaces
Use. Example

80

 interface Printable {

 void print();

}

class Email extends Message

 implements Printable {

 public void print() {

 System.out.println(“Printing email”);

 System.out.println(message);

 }

NOTE: No brackets!! It is not

implemented, thus just a semicolon (;)

follows the declaration

Interfaces
Use. Example

81

public class Rectangle extends Shape implements Printable {

[...]

public void print(){

System.out.println(“Printing Rectangle (" + dim1 + “x" + dim2 + ")");

StringBuffer res = new StringBuffer();

for (int i = 0; i <= dim1+1; i++)

res.append("* ");

res.append("\n");

for (int j = 0; j < dim2; j++){

res.append("* ");

for (int i = 1; i <= dim1; i++)

res.append(" ");

res.append("*");

res.append("\n");

}

for (int i = 0; i <= dim1+1; i++)

res.append("* ");

System.out.println(res);

}

}

Interfaces
Use. Example

82

Interfaces
Use. Extending interfaces with inheritance

• Interfaces can be extended (inherited)

too

• Interface inheritance adds the methods

to be included in the classes

implementing the interfaces

– The class implementing the derived

interface must include all the methods

declared in both the derived as well as the

base interfaces

83

• A well-designed program will include
interfaces and extensions of classes

• In the future, programmers can easily
modify it:
– Extending the implementation, or

– Implementing the interface

WindowListener WindowAdapter

MyWindowListener

Interfaces
Use. Example

extends

implements

implements

84

Interfaces
Purpose. Multiple inheritance

Class C

ClassA

 method1

Class B

 method1

C c = new C();

method1() // ????

• Java does not allow multiple inheritance

• Similar functionality is provided with interfaces

extends extends

85

Interfaces
Purpose. Multiple inheritance

Class C

Class A

 method1

interface B

 method1

C c = new C();

c.method1() // OK

• A class extends only one base class

• But can implement several interfaces

extends implements

86

Interfaces
 Purpose. Multiple inheritance

• Simple inheritance of implementations

– Extension on just one class

• Multiple inheritance of interfaces

– Implementation of several interfaces

Implementation of several interfaces

87

• Polymorphism: “one interface, multiple
methods”

• Interfaces support dynamic resolution of
methods during execution time (dynamic
binding)

• What is the difference between interface
implementation and inheritance?

– Interfaces do not belong to the hierarchy of
inheritance

Interfaces
 Purpose. Polymorphism

88

Exercise: JavaRanch

89

Exercise: JavaRanch

 import java.awt.* ;

 public interface Shape

 {

 public void draw(Graphics g);

 }

 import java.awt.* ;

 public class Circle implements Shape

 {

 private int x ;

 private int y ;

 private int wide ;

 private int high ;

 private Color color ;

 Circle(int x , int y , int wide , int high , Color color)

 {

 this.x = x ;

 this.y = y ;

 this.wide = wide ;

 this.high = high ;

 this.color = color ;

 }

 public void draw(Graphics g)

 {

 g.setColor(color);

 g.fillOval(x , y , wide , high);

 }

 }

90

Exercise: JavaRanch

 import java.awt.* ;

 public class Box implements Shape

 {

 private int x ;

 private int y ;

 private int wide ;

 private int high ;

 private Color color ;

 Box(int x , int y , int wide , int high , Color color)

 {

 this.x = x ;

 this.y = y ;

 this.wide = wide ;

 this.high = high ;

 this.color = color ;

 }

 public void draw(Graphics g)

 {

 g.setColor(color);

 g.fillRect(x , y , wide , high);

 }

 }

91

Exercise: JavaRanch

 import java.awt.* ;

 public class Poly implements Shape

 {

 int[] x ;

 int[] y ;

 private Color color ;

 Poly(int[] x , int[] y , Color color)

 {

 this.x = x ;

 this.y = y ;

 this.color = color ;

 }

 public void draw(Graphics g)

 {

 g.setColor(color);

 g.fillPolygon(x , y , x.length);

 }

 }

92

Exercise: JavaRanch

 import java.awt.* ;

 public class ShowShapes extends Frame {

 static int[] vx = { 200 , 220 , 240 , 260 , 280 , 250 , 230 };

 static int[] vy = { 150 , 150 , 190 , 150 , 150 , 210 , 210 };

 static Shape[] shapes = {

 // J

 new Box(50 , 70 , 100 , 20 , Color.red) ,

 new Box(90 , 70 , 20 , 110 , Color.blue) ,

 new Circle(50 , 150 , 60 , 60 , Color.green) ,

 new Circle(70 , 170 , 20 , 20 , Color.white) ,

 new Box(50 , 90 , 40 , 90 , Color.white) ,

 // a

 new Circle(130 , 150 , 60 , 60 , Color.green) ,

 new Box(170 , 180 , 20 , 30 , Color.blue) ,

 new Circle(150 , 170 , 20 , 20 , Color.white) ,

 // v

 new Poly(vx , vy , Color.black) ,

 // a

 new Circle(290 , 150 , 60 , 60 , Color.green) ,

 new Box(330 , 180 , 20 , 30 , Color.blue) ,

 new Circle(310 , 170 , 20 , 20 , Color.white) ,

 };

 ShowShapes() {

 setBounds(200 ,150 , 400 , 250);

 setVisible(true);

 }

 public void paint(Graphics g) {

 for(int i = 0 ; i < shapes.length ; i++)

 shapes[i].draw(g);

 }

 public static void main(String[] args) {

 new ShowShapes();

 }

 }

 93

Object Orientation Summary

• Class (actual)

– All methods are implemented

• Abstract class

– At least one method is not implemented

but just declared

– abstract modifier

• Interface

– No implementation at all

– Reserved word: interface

94

Object Orientation Summary

• Class (actual or abstract)

– Can extend (extends) only one base class

(simple inheritance)

– Can implement (implements) one or more

interfaces (multiple inheritance)

• Reserved word: extends

• Interface

– Can extend (extends) one or more

interfaces

95

Packages

• A package groups classes and interfaces

• The hierarchies in a package correspond to

the hierarchies of folders in disk

• Dots are used for referring to subpackages,

classes and interfaces in a package

– E.g.: The Applet class in package java.applet

provided by Java is imported when programming an

applet

– The java.applet.Applet class is in the java/applet

folder

import java.applet.Applet;

96

97

Packages

• Using packages created by others

– Include in the classpath the path to the folder containing the
package. E.g.: assuming PackageByOther is in c:\java\lib

(Windows) or /opt/lib/ (Linux)

– In the class using the package, the corresponding import

sentence must be included before the class declaration

• Creating my own packages

– Save the classes in a folder named as the package

– All classes belonging to the package must include the following

sentence as the first one:

import PackageByOther.*;

set CLASSPATH=c:\PackageByOther;%CLASSPATH%

setenv CLASSPATH /opt/lib/PackageByOther:$CLASSPATH
(Windows)

(Linux)

package myOwnPackage;

MODIFIERS class method attribute

a
c
c
e

s
s

public
Accesible to any other class

(friendly) Accessible only to classes in the same package

protected Accessible to the class and its subclasses

private Applied to inner classes Accessible only inside the class

o
th

e
r

abstract Cannot be instantiated

For inheriting from them

At least 1 abstract method

Has no code

It is implemented in the

subclasses or child classes

final Cannot be extended.

It is a leaf in the inheritance

tree.

Cannot be overridden.

It is constant and cannot

be modified in the child

classes.

Its value cannot be changed, it

is constant .

It is normally used together

with static.

static Maximum level class.

It is the same for all of the

class objects.

Use:

ClassName.method ();

It is the same for all of the

class objects.

98

Exceptions

• What they are

• Purpose

• Type

• Use

Ignore End Catch Throw

Exception

99

Exceptions: What are they?

• Events that prevent the normal

execution of the program

• When an exception occurs, an exception

object is created and it is passed to the

execution control system

• The execution control system:

– Searchs for a fragment of code that

handles the exception

– If no handling code is found, the program

ends
100

Exceptions: Purpose

• For separating the code for error handling (try-

catch) from the normal code

• For propagating errors in the calls stack
(throws)

• For grouping and differentiating types of errors

(as exceptions are objects, they can be

grouped into classes)

• Every method must:
– Either catch (catch)
– Or throw (throws)

 any exception happening during its execution

101

Exceptions: Types

• Two main types:
– Runtime exceptions (RuntimeException)

• Not checked in compile time

• E.g.: NullPointerException, ArithmeticException,
NumberFormatException,
IndexOutOfBoundException, etc.)

– Exceptions checked during compile time

• E.g.: Input/output exceptions (IOException,

FileNotFoundException, EOFException)
• User-defined (MyException)

• During compile time, it is checked that any
exception (except runtime exceptions) are:
– either caught

– or declared to be thrown in the methods where they
can happen

102

Exceptions: Use

• Exceptions appear:

– Implicitly (when an error happens)

– Explicitly: throw new MyException(message)

• What to do:

– Handle the exception:

• Enclose in a try{} block sentences that may generate

exceptions

• Enclose in the catch(MyException e){} block the sentences to

be executed for handling the exception

– Throw the exception:

• public void myMethod throws MyException

• The finally{} block encloses the code that should

always be executed

103

