
Recap

Julio Villena Román (LECTURER)

<jvillena@it.uc3m.es>

CONTENTS ARE MOSTLY BASED ON THE WORK BY:

M.Carmen Fernández Panadero and Natividad Martínez Madrid

Systems Programming

First steps in Java

Systems Programming

1

Julio Villena Román (LECTURER)

<jvillena@it.uc3m.es>

CONTENTS ARE MOSTLY BASED ON THE WORK BY:

M.Carmen Fernández Panadero and Natividad Martínez Madrid

Scenario I:
Install and configure the environment

• Today is your first day at work in the programming department

of PROTEL. Your department has to update an old application

with new functionality

• You are provided with a laptop to work and a URL from where to

download the code developed up to date

• Objective: Be able to edit, compile execute and debug an

existing program.

• Workplan: Download, install and configure the software in order

to test (edit, compile, execute and debug) the application

2

Development

Architecture

• Eclipse

• Netbeans

• J Builder

• Visual Café

• Java Workshop

• Visual Age

• J++

IDEs

Java

code

file.java

Bytecode

Others
file.class

JDK

Compilers

javac file.java

Notepad

Grasp

Editors

EditPlus

Step I: Edit

Step II: Compile

Others

3

Execution

Architecture

Applet’s or Aplications Bytecode format

Hardware

Operative System

Class Loader

Bytecode Verifier

Java Class Libraries
(Java extension Apis)

Java Class Libraries
(Java Base Apis)

Java Interpreter JIT (Just in Time Compiler)

Java Runtime

Step III: Load

Step IV: Verify

Step V: Execute

 java file

Ja
v

a
V

ir
tu

al
 M

ac
h

in
e

4

What can go wrong?

• Compile

• Load

• Verify

• Execute

“Syntax Error”

“Class not found Exception”

“Security Exception”

“Null Pointer Exception”

5

Where do I start?

• Development environment: JDK
http://www.oracle.com/technetwork/Java/index.html

• Editor: Eclipse
http://www.eclipse.org

• Documentation: Java API
http://docs.oracle.com/Javase/7/docs/api/

6

Config (if needed)

• Configuration:

– CLASSPATH: Set of directories containing the files.class

you want to execute (not necessary since v1.2).

 It must contain, at least, $JAVA_HOME/lib/files.class

– PATH: Directories to search for executable files

 It must contain, at least, $JAVA_HOME/bin

7

How to configure

Environment Variables

set PATH=c:\jdk1.2\bin;C:\WINDOWS\COMMAND\

set CLASSPATH=c:\jdk1.2\lib\classes.zip;.

set PATH=c:\jdk1.2\bin;%PATH%

set CLASSPATH=c:\jdk1.2\lib\classes.zip;%CLASSPATH%;.

PATH=$JAVA_HOME/bin:/usr/bin

CLASSPATH=$JAVA_HOME/lib/classes.zip:.

PATH=$JAVA_HOME/Java/bin:$PATH

CLASSPATH=$JAVA_HOME/lib/classes.zip:$CLASSPATH

Windows 95-98 (Type in MSDOS Window or modify c:\autoexec.bat):

Linux (Type in a terminal window or modify in .bash file to conserve the value):

Preserving the old value of environment variables:

Preserving the old value of environment variables :

8

How to configure

Environment Variables

Windows NT
– Start – Control panel – System

– Select: Environment – [look for user and system variables]

Windows 2000
– Start – Control panel – System

– Select: Advanced – [look for user and system variables]

Windows XP
– Start – Control panel – System

– Select: Advanced – click on environment variables

Windows ME
– Start – Program files - Accesories – System tools – System info

– Select: Tools-System configuration

– Select: Environment – [select variable]- click edit

Windows 7, 8, 8.1
– Start – Control panel – System and Security – system

– System advanced configuration – Advanced options – Environment variables

 9

Java Language Code Structure

Systems Programming

10

Julio Villena Román (LECTURER)

<jvillena@it.uc3m.es>

CONTENTS ARE MOSTLY BASED ON THE WORK BY:

M.Carmen Fernández Panadero and Natividad Martínez Madrid

Scenario II:

Understanding Java code

• Your first meeting as a programmer will be in an hour. By this

time you must have reviewed the code and you must have

understood how the application works

• Objective: Be fluent in reading Java structures related with

classes, attributes and methods. Understand, at a glance, a

complex Java program with several files

• Workplan:
– Review Java syntax (identifiers, reserved words, etc.) in order to distinguish between

words from Java-language and naming for a specific application

– Identify language structures related with class declaration, attribute declaration

(basic and reference types) and method declaration

– Draw UML diagrams to represent a set of Java files in order to identify object types,

their characteristics (attributes) and behaviour (methods)

– Understand and explain the main method (when exists) to see in which order the

objects are created, the methods invoked and the sentences executed

11

Code Structure

Program

Members

Attributes

Reference

Type

Methods

Primitive

Type

Classes (files.java)

Normal

Methods

Constructor Main

Special

methods

Object Arrays

String
12

How to represent classes

and objects in Java

• Class declaration

• Attribute declaration
(constants or variables)

• Method declaration

• Object creation

• Identifiers

• Reserved words

• Primitive and reference types in Java

OO

Java

13

• Identifiers are used to give a name to variables,
methods, classes, objects, and everything that the
programmer needs to identify

• Starting with a letter, an underscore or a $ sign

• Case-sensitive, no maximum length

• By convention:
– The names of variables, methods and objects begin with

lowercase.

– The class names begin with uppercase

– If there are several words, use camel-case
likeInThisExample (avoid spaces, underscores and
hyphen)

Identifiers

Identifiers can not be reserved words

14

Reserved words

abstract double int static

boolean else interface super

break extends long switch

byte final native synchronized

case finally new this

catch float null throw

char for package throws

class goto private transient*

const * if protected try

continue implements public void

default import return volatile

do instanceOf short while

cast future generic inner

operator outer rest var

Reserved (not used):

Reserved:

15

Comments

Three types:

 // Implementation comment (1 line)

/* Implementation block comment.

 continue

 finish */

/**Documentation comment to generate Javadoc

 @see ref to other class or method

 @version information about version number

 @author author name

 @since Date since code is available

 @param Params recived by the method

 @return Information and data type returned by the method

 @throws Exceptions that throws this method

 @deprecated The method is old

 */

For classes

and methods

For classes

For methods

optional

16

Style

Class declaration

public class Car {

 // Attribute declaration

 // (color, speed, etc.)

 // Method declaration

 // (start, stop, etc.)

}

Car.java

• File name = class name

• 1st letter capitalized

• No blanks

• Camel case: MyFirstClass

• Indentation

(modifiers) class className {

 // class implementation

}

Syntax

Breaking this rule is considered in many compilers as a

syntax error

17

type name;

type name1, name2, name3;

type name = value;

Variable Declaration

public class Car{

 //Atribute declaration

 String color;

 int speed;

 //Method declaration

 // (start, stop, etc.)

}

Car.java

Style

• Intuitive names

• 1st letter capitalized

• No blanks

• Camel case: myVariable

• Indentation

Syntax

Initialize the variable

18

Variables

• Variables are fields in which programs store

information

• “To declare a variable” means to specify its

name and type

• We can find variables:

– As members: Instance and class variables (within a

class)

– As local variables (within a method)

– As parameters (within a method declaration)

19

Variables

• Three types:

– Instance variables

– Class variables

– Local variables

• Variables

– can be initialized in the declaration

– may be declared uninitialized
• when have been not initialized they have a default

value (except local variables)

• Constants (variables that can not be modified):

– Use reserved word: final

– Mandatory to be initialized in declaration

Default values:

numbers = 0

booleans = false

references = null

20

Scope

• The scope of a variable is the part of the program
over which the variable name can be referenced

• Instance or class variables can be referenced
inside the body of the class or from other classes
depending on the permissions set:
– private

– protected

– public

– friendly

• Local variables can be referenced inside a
statement block in brackets, such as inside a method
or inside a while or for loops

• Parameters can be referenced only inside the body
of the method

21

Data Types in Java

• All variables belong to a data type

• The data type determines:

– The values that the variable can take

– The operators that can be used

• We will study:

– Primitive types

– Reference types (objects and arrays)

22

Primitive types

 4 basic primitive types
type literal num of bits double float long int short byte char

double 64-bits X

float 32-bits X X

long 64-bits X X X

int 32 bits X X X X

short 16 bits X X X X X

byte 8 bits X X X X X X

Character char Unicode (16 bits) X X X X X

Boolean boolean 1 bit

Real

Integer

23

Strings
Declaration, concatenation

• Sequence of characters implemented in a class
named String (in java.lang package)

• Strings creation

• Strings concatenation
– String concatenation uses the overloaded + operator

String emptyS = new String();

String emptyS = “”;

String message = “hello”

String messageCopy = message;

“this” + “that” // result: “thisthat”

“abc” + 5 // result: “abc5”

“a” + “b” + “c” // result: “abc”

“a” + 1 + 2 // result: “a12”

1 + 2 + “a” // result: “3a”

1 + (2 + “a”) // result: “12a”

a b c

24

Strings
Comparation

• You must not use relational (<, >, <=, <=) and
equality (==, !=) operators with Strings
– This operators compare the object not the content

• There are specific methods to compare in the
String class
– Method: equals

– Method compareTo

leftSide.equals(rightSide)

• true, if leftSide and rightSide are identical

leftSide.compareTo(rightSide)

• negative int value, if leftSide is less than rightSide

• 0, if leftSide is equal to rightSide

• positive int value, if leftSide es mayor que rightSide

a b c

25

Strings
Useful methods of String class

• Length of an String
– Method: length()

– Don’t forget parenthesis because it is a method

• Accessing individual characters inside the String
– Method: charAt(position),

• The first position is the String is 0

• SubStrings
– Method substring(1stPosIncluded, 1stPosExcluded)

• Returns: a String reference

• Parameters: the 1st position included and the 1st position
excluded

String greeting = “hello”;

int len = greeting.length(); // len is 5

char ch = greeting.charAt(1); // ch is ‘e’

String sub = greeting.substring(2,4); // sub is “ll”

a b c

26

Strings
Conversion between String and primitive types

• Use calls to the wrapper class that is in java.lang
– They are called wrappers because they wrap the primitive types:
Integer, Double, Float, Double, Character, …

– String conversion
• Methods: toString(…), doubleValue()

– String conversion to a primitive type
• Methods: parseInt(…), parseFloat(…)

– String conversion to an object of the wrapper class
• valueOf(…)

– Conversion from an object of the wrapper class to a primitive
value
• doubleValue(), intValue()

System.out.println(Integer.toString(55, 2));

int x = Integer.parseInt(“75”);

Double y = Double.valueOf(“3.14”).doubleValue();

a b c

27

Constants defined by user

• Invariant values of basic types (primitives + String)

• Constants use the final modifier (and sometimes the static too)
– static: Indicates global or class variable. This mean that it is stored only

once. Objects can access this variable using the dot notation,
ClassName.variableName

– final: This modifier Indicates that the value never changes.

– Constants can be public, private or protected
• Depending on accesibility that user prefers

– Style: All the characters in UPPERCASE

class Circle {

 private static final float PI = 3.14159;

 private float radio;

 private float area;

 public Circle (float radio) {

 area = 2 * PI * radio;

 } //constructor

} //class Circle

28

Reference types

• Its value is a reference (pointer) to the

value represented by this variable.

• Some examples of reference types:

– Arrays

– Classes

– Interfaces

29

ClassName name;

ClassName name1, name2;

ClassName name = new Equipment();

An object as an attribute
Object declaration

public class Car{

 //Attribute declaration

 String color;

 int speed;

 Equipment standardEquipment;

 //method declaration

 // (start, stop, etc.)

}

Car.java

Style
• Remember that the class

(type) uses 1st char

capitalized and identifier

(objectName) uses lower-

case
Syntax

Object creation
Variables are initialized,

but Objects are created

Object declaration
similar to variable declaration, where we

put the type, now we put the name of the

class 30

• Objects are created with the reserved word new and a
call to the constructor

• Once the object is created, the reference to the object is
reassigned to the memory location where the object is
located

Objects
Declaration, creation, initialization

Student

student1

null

student1

Student student1;

student1 = new Student();

31

• It may happen that a reference to an object has no instance assigned
– Then the special value null is used

• Example:
Student student1; // null by default

Student student2;

Student student3;

student1 = new Student(); // value /= null

student2 = new Student(); // value /= null

student3 = null; // value null by assignment

Objects
Null reference

Student
null

Student

student1 student2 student3

32

• An object can have several references, known as alias
Student delegate;

delegate = student1;

• What would be the result of comparing the different
references in the figure?

null
Student

Juan

null

Student

Juan

Student

Clara

student1

delegated

student2 student3

student5 student4

Objects
Alias

33

Arrays
What is an array?

• It is a set of elements belonging to the same

data type and stored in one place

• The index [] operator is used to retrieve
individual elements from the array

• The length (attribute) returns the number of
array elements. (do not be confused with the method
length() of the String class)

• Range of index
– From 0 to length – 1

– Be careful! Don’t exceed the maximum length

• Exception: IndexOutOfBoundsException

34

An Array as an Attribute
Array declaration

type ArrayName[];
type [] ArrayName;

type ArrayName[] = new type [arraySize];

Syntaxis

public class Car{

 //Array declaration

 String equipment[] = new String [10];

 // ...

}

Ways to declare an array

Array creation
Variables are initialized,

but Arrays (like objects)

are created

Array creation
When you create an array you

must specify its capacity
35

Arrays
Declaration, Creation, Initialization

• Declaration: To assign an identifier to the array and specify
the data type of the elements that will be stored
– It can be done in two ways:

– No memory to store the array is allocated in the declaration, thus
you can not access its contents yet

Default values:

int, short, long = 0

float, double = 0.0

booleans = false

String = null

Object = null

• Creation: it consists on allocating memory

for the array

– You must use reserved word new and specify

the array size

– Once the array has been created, its elements

have default values until the array is initialized

Type ArrayName[];
Type[] ArrayName;

arrayName[] = new type[arraySize];

36

Arrays
Declaration, Creation, Initialization

• Initialization: is to assign value to each element
of the array. It can be done in several ways:
– Element by element

– Using a Loop

– Direct assignment

arrayName[0] = element0;

arrayName[1] = element1;

...

for(int i = 0; i < arrayName.length; i++){

 arrayName[i] = element-i;

}

arrayName = {elem1, elem2, elem3, ...};

37

Arrays

-7
0
3
8
5
-4
6
6
1
2

c[0]
c[1]
c[2]
c[3]
c[4]
c[5]
c[6]
c[7]
c[8]
c[9]

Array length= 10

Index 1st element = 0

Index last element
= length-1

Index nth element = n -1

Index : integer expression: 0 <= index <= length -1

38

Arrays
Memory usage in array declaration

 int[] integers;

Point[] points;

Stack memory Heap memory

integers null

points null

class Point {

 int x;

 int y;

 Point (int x, int y){

 this.x = x;

 this.y = y;

 }

}

39

 integers = new int[3];

points = new Point[2];

Stack memory Heap memory

integers

points

length 3

integers[0] 0

integers[1] 0

integers[2] 0

length 2

points[0] null

points[1] null

Watch out! This is

not a constructor

call

Arrays
Memory usage in array creation

40

integers[0] = 7;

points[0] = new Point(1,2);

Stack memory Heap memory

integers

points

length 3

integers[0] 7

integers[1] 0

integers[2] 0

length 2

points[0]

points[1] null

x 1

y 2

Arrays
Memory usage in array initialization

41

Arrays (examples)
Declaration, Creation, Inicialization

int a[] = {1, 2, 3}; / /Declaration, creation, initialization

int a[]; //declaration

a = new int[3] //creation

a[0]=1; //initialization

a[1]=2;

a[2]=3;

int a[] = new int[3] //declaration, creation

a[0]=1; //initialization

a[1]=2;

a[2]=3;

int a[] = new int[3] // declaration, creation

for(int i=0; i<a.length;i++){ //initialization

 a[i]=i+1;

}

MyClass[] a = {new MyClass(param1), new MyClass(param2), new myClass(param3)};

MyClass a[]; //declaration

a = new MyClass[3] //creation

a[0]=new MyClass(param1);

a[1]=new MyClass(param2);

a[2]=new MyClass(param3);

MyClass a[] = new MyClass[3]

//initialization

a[0]=new MyClass(param1);

a[1]=new MyClass(param2);

a[2]=new MyClass(param3);

MyClass a[] = new MyClass[3]

//initialization

for(int i=0; i<a.length;i++){

 a[i]=new MyClass(param-i);

}

Arrays with primitive types

Arrays with objects (reference types)

42

 Arrays (common errors):
Declaration, Creation, Initialization

Syntaxis

public class ArrayExamples{

 public static void main(String args[]){

 double myArray[];

 System.out.println(myArray[0]);

 }

}

variable myArray may not have been initialized

compile

Compilation

failure
WRONG

When an array has been declared but not created or

initialized, you have no access to its elements. The program

does not compile and prints an error message

43

Arrays (Common errors):
Declaration, creation, inicialization

public class ArrayExamples2{

 public static void main(String args[]){

 int myArrayOfIntegers[] = new int[10];

 float myArrayOfReals[]= new float[10];

 boolean myArrayOfBooleans[] = new boolean[10];

 char myArrayOfCharacters[] = new char[10];

 String myArrayOfStrings[] = new String[10];

 Object myArrayOfObjects[] = new Object[10];

 System.out.println(“Integer by default: " + myArrayOfIntegers[0]);

 System.out.println("Real by default : " + myArrayOfReals[0]);

 System.out.println("Boolean by default : " + myArrayOfBooleans[0]);

 System.out.println(“Character by default : " + myArrayOfCharacters[0]);

 System.out.println("String by default : " + myArrayOfStrings[0]);

 System.out.println("Object by default : " + myArrayOfObjects[0]);

 }

}

Integer by default: 0

Real by default : 0.0

Boolean by default : false

Character by default :

String by default : null

Object by default : null

compile

Execute

When the array has been declared and created

but not initialized we can retrieve its elements but

they have their default value 44

N-dimensional Arrays

• When we need more than one index to
retrieve its elements

A B C

D E F

G H I

0 1 2

0

1

2

a b c

d e f

g h i

c

f

i

l

ñ

q

t

w

z

0 1 2

0

1

2

2
1

0

a[0][2][1]=‘l’

char a[][]; //declaration

a = new char[3][3] //creation

a[0][0]=‘A’; //initialization
...

char a[][][]; //declaration

a = new char[3][3][3] //creation

a[0][0][0]=‘a’ // initialization

...

a[0][2]=‘C’

45

N-dimensional Arrays

Examples

Declaration and creation step by step

//Declaration and creation

String [][]myArray = new String[3][4]

Direct declaration and creation

int [][] myArray ; // Array declaration

myArray = new int[numRows][]; // Creating the reference array for rows

for(int i=0; i<numRows; i++) // Allocate memory for rows

 myArray[i]= new int[numColumns];

Other examples

// Array 3x3 inicialized to 0

int [][] a= new int[3][3];

int [][] b= {{1, 2, 3},

 {4, 5, 6}};

int [][] c = new[3][];

c[0] = new int[5];

c[1] = new int[4];

c[2] = new int[3];

0 0 0

0 0 0

0 0 0

1 2 3

4 5 6

0 0 0 0 0

0 0 0 0

0 0 0

null null null null

null null null null

null null null null

46

public class Car{

 //Attribute declaration

 private String color;

 private int speed;

 //Method declaration

 public String getColor(){

 //implementation

 return color;

 }

 public void start(){

 //implementation

 }

 public void goForward(int speed){

 //implementation

 }

}

Method declaration

Car.java

Style

• Intuitive names

• 1st letter lower-case

• No blanks
• Camel-case myMethod()

• Indentation

47

Method declaration

public class Car{

 //...

 public String getColor(){

 //implementation

 return color;

 }

 //...

}

Car.java

(modifiers) returnType methodName(type1 param1, type2 param2){

 //implementation

 return expression;

}

Method
parameters

(param1, param2)
Result

48

Method declaration

public class Car{

 //...

 public void goForward(int speed){

 //implementation

 }

 //...

} Car.java

(modifiers) void methodName(type1 param1, type2 param2){

 // implementation

}

Method
parameters

(param1, param2)

49

Method declaration

• Methods

– Have 0, 1 or more parameters

– Define the data type of the result in their declaration

(except constructors)

– Can have local variables. These variables are not

initialized by default

• A method cannot contain other methods inside

its body

• If one method produces a result, the last

sentence of its execution must be a return

sentence

50

Constructor methods

• When an object is created, their members are initialized
with the constructor method

• Constructor methods:

– Have the same name as their container class

– Do not have a returned data type in their declaration

• It is desirable that there be at least one

• There may be several that will be distinguished by the
parameters acepted (overload)

• If there are no declared constructors, a default one is
created and this default constructor initializes all
variables to their own default value

• If the class has a constructor, the default constructor does
not exists, but the programmer can declare a constructor
without parameters with the same function than the default
one.

51

The main method

• It is the first method than the runtime system
calls to execute an application.

• The parameters of the main (String args[])
represent an array of Strings that stores the
arguments that are written in the command
line to run the application

• void indicates that there are no return values

• static indicates that it is a global method. This
method is the same for every instance of the
class

java HelloWorld arg1 arg2...

52

Imperative Java

Systems Programming

53

Julio Villena Román (LECTURER)

<jvillena@it.uc3m.es>

CONTENTS ARE MOSTLY BASED ON THE WORK BY:

M.Carmen Fernández Panadero and Natividad Martínez Madrid

Scenario III:

Method implementation

• Once the programmers’ meeting has finished, you have to show

your expertise before integrating into the team. Your boss asks

you to implement several methods. As your first task, the

methods are simple and work independently (do not invoke other

attributes or methods)

• Objective:

– Be able to decompose a problem in order to identify the basic steps for

solving it (algorithms design and representation)

– Use the basic structures of a programming language, variables, operators

and flow control statements (loops, conditionals) to implement an algorithm

• Work plan:
– Train in the design of algorithms and their representation. Break problems in small steps

in order to resolve them without using code.

– Memorize the syntax of Java in terms of (operators, loops and conditionals)

– Train in use Java to implement previously designed algorithms

– Take implementing ease and speed. Resolve typical problems (eg: in arrays, print all its

elements, retrieve an specific element, swap elements between two positions, sorting)

54

Step I: Thinking
What tools do we have to represent algorithms?

• Once we have thought about the

algorithm structure, we need to

represent the steps to solve it:

– Pseudocode

– Flowcharts, organigrams

• Figures: represent sentences

• Flow lines: represent order in which they are

executed

55

Step I: Thinking
Flowcharts vs Pseudocode

56

Step II: Algorithm implementation
What kind of expressions can we use in the method body?

• Variables

• Operators

– By type
• Aritmetical

• Relational

• Logical

– By number of operands

• Unary

• Binary

• Operations with objects

(not for this scenary)

– Object creation

– Attribute and method

invocation

• Flow control structures (can be stacked

and nested)

– Sequence

– Iteration (loops)

• For

• While

• Do-while

– Selection (conditionals)

• If

• If-else

• Switch

• Breaking up the flow of

execution
• Break

• Continue

• Exception (not in this scenary)

57

• By number of operands

– Unary (one operand ej: ++, --)

– Binary (two operands ej: &&, %)

• By type of operator

– Assignment (=)

– Aritmetical (+, -, *, /, %)

– Relational (>, >=, <, <=, ==, !=)

– Logical (&&, II, !)

– Conditional operator (condition?sentence1:sentence2)

Operators

System.out.println(studentGrade >= 5 ? “pass” : “not pass”);

58

• Unary
– i++ (first evaluates then increments)

– ++i (first increments then evaluate)

– Eg if i=3

• i++ result = 3

• ++i result = 4

• Binary (can be abbreviated)

– x+=3 equals to x= x+3

• Assignment vs. comparison

– The “=“ operator assigns a value
• Eg. var = 5, assigns 5 to var

– The “ == “ operator compares
• Eg. var == 5, returns true (after the previous assignment)

• The conditional operator is harder to understand than a simple
if-else try not to use

Operators
Notes to remember

59

• If

• If-else

Selection sentences
(Conditionals)

switch (expression) {
case value1:

 sentences1;

 break;

case value2:

 sentences2;

 break;

default:

 sentences3;

}

if(condition) {

 sentences1;

}

• switch

if(condition) {

 sentences1;

}else{

 sentences2;

}

if(condition) {

 sentences1;

}else if(condition2){

 sentences2;

}else{

 sentences3;

}

60

• Indent the code contributes to its readability

• Braces { } fix the scope of every element declared

between them

• No braces { } is like to put them only in the first

sentence

Selection sentences
Notes to remember for if and if-else

if (studentGrade >= 5)

 System.out.println (“Pass”);

else

 System.out.println (“Not pass”);

61

Selection sentences
Notes to remember for switch

• Valid expression types: byte, short, int, long, char,

String

• Examples:
– int num=5; switch(num){}

– char character=‘z’ switch(character){}

– String string=“myString” switch(myString){}

• If you do not use “break”, all the following code-

blocks will be executed until a “break” or end of the

switch is found

• It not necessary to place the block-code associated
with each case between braces { }

62

• For:

• While:

• Do-while:

Iteration sentences
(Loops)

for(initialization;condition;update) {

 sentences;

}

while(condition) {

 sentences;

}

do {

 sentences;

}while(condition);

63

Iteration sentences
(Examples: for)

• Examples

How many times these loops are executed?

What is the value of “i” in each example at the end of the loop?

int i=0;

for (i =0;i<10;)

{ i=i+2;}

int i=0;

for (i=13;i<10; i++)

{ i=i+2;}

int i=4;

for (;i<10;)

{ i=i+2;}

int i=0;

for (; ;)

{ i=i+2;}

int i sum;

for (i =0, sum=5;i<10;sum+=i)

{ i=i+8;}

64

Iteration sentences
(Examples: for)

• Examples

How many times these loops are executed?

What is the value of “i” in each example at the end of the loop?

int i=0;

for (i =0;i<10;)

{ i=i+2;}

int i=0;

for (i=13;i<10; i++)

{ i=i+2;}

int i=4;

for (;i<10;)

{ i=i+2;}

int i=0;

for (; ;)

{ i=i+2;}

int i sum;

for (i =0, sum=5;i<10;sum+=i)

{ i=i+8;}

65

Iteration sentences
Notes to remember

• When the loop has several sentences (in initialization,
comparation or update), they will be separated by commas

• Nested loops:

– Program slows down

– They are used to cover n-dimensional arrays (one loop per
dimension)

• The sentences in a while might not run ever; in a do-while
are executed at least once

• Avoid infinite loops (always check termination condition)

• A “for” loop always can be converted into a “while” one,
and viceversa

for(i=0, sum=0 ; i<=n; i++, sum+=n) {

 sentences;

}

66

Iteration sentences
Comparative

• for vs. while vs do while

• Init: Initialize variables

• Upd: Update variables

• Condition: Continue or exit

• Min exe: minimum number of times the block of code executes

• Usage: frequency of use of the control structure

Init Upd Condition Min

Exe

Usage

for Yes Yes Continue 0 High

while Not Not Continue 0 High

do while Not Not Continue 1 Low

67

Iteration sentences
Usage patterns

• When to use while or for

E.g.: reading a file with while

E.g.: cover an array with for

for while

The number of iterations is known (eg array) X

The number of iterations is unknown X

Increase of variables in each cycle X

Variable initialization X X

68

 break: causes to break the execution and exit the
structure in a while, for, do-while or switch

 The loop runs only once and prints the message “j = 1”

int j=0;

while(j<10){

 j++;

 break;

 System.out.println(“This message is never printed”);

}

System.out.println(“j = ”+j);

Breaking up the flow of execution:
Break sentence

69

 continue: when continue appears in a while, for or

do-while block of code, it skips the rest of the sentences

of the loop and continues with the next iteration

 The message is never printed

int j=0

while(j<10){

 j++;

 continue;

 System.out.println(“This message is never printed”);

}

Breaking up the flow of execution:
Continue sentence

70

Implementing a method:
Step 1.1: Think about the algorithm

• Problem: Write a program that calculates
whether a number n is prime
 1 2 3 4 . . . n/2 . . . n

• Step 1: Think about the algorithm (split the
problem into simpler steps)
– Starting by 2, we check for each number if it is an

integer divisor of n

– Only needs repeating until n/2

– Or until we find an integer divisor

– We will use a sentinel
• Boolean variable that will help us control the loop

71

isPrime= false

divisor < n / 2

&&

isPrime

false

true

 divisor = 2

 isPrime = true

n % divisor == 0

divisor++

true

false

Implementing a method:
Step 1.2: Represent the algorithm

Flowchart

72

 public boolean isAPrimeNumber (int number) {

 int divisor =2;
 boolean isPrime = true;

 while ((divisor < number/2) && isPrime){
 if (number % divisor == 0)
 isPrime = false;
 divisor++;

 }

 System.out.println(“The number “ +number);
 if (isPrime)
 System.out.println(“ is prime.”);
 else
 System.out.println(“ is not prime.”);

 return isPrime;
 }

Implementing a method:
Step 2: Write the code

73

Implementing a method:
Examples: working with arrays

• Let’s practice

• Imagine that you have to implements methods to:

– Print an array (practice loops)

– Retrieve a specific element in an array

• Practice: conditionals and nested loops

• Practice comparation using different data types

– Basic types (numbers, characters booleans)

– String comparation

– Object comparation

– Swap two elements in an array (practice auxiliar variables)

– Sort an array (copy elements between two arrays)

74

Review
Learning outcomes

• After this session you must be able to:
– Install and configure an environment to work with Java

– Understand a program with several files, be able to draw a class
diagram, and know what is the first method that the runtime system
calls to execute the application

– Identify basic structures associated with classes and objects
such as declarations of:

• Classes

• Members
– Attributes

» Basic types (primitives, String)

» Reference types (objects and arrays)
– Methods

» main

» constructors

» Normal methods

– Design and implements simple algorithms inside the body of a
method using operators and basic control structures (loops and
conditionals)

75

