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Abstract 
Active network technology supports the deployment and 
execution on the fly of new active services, without 
interrupting the network operation. Active networks are 
composed of special nodes (named Active Router) that 
are able to execute active code to offer the active services. 
This technology introduces some security threats that 
must be solved using a security architecture. We have 
developed a security architecture (ROSA) for an active 
network platform (SARA). Java has been used as 
programming language in order to provide portability, but 
it imposes some performance limitations. This paper 
analyses the penalty of using Java and proposes some 
mechanisms to improve the performance of cryptographic 
implementations in Java.       
 
Key Words 
Active networks, security, cryptography, Java, JNI. 
 

1. Introduction1 
There is a clear trend towards extending the set of 
functions that network routers support beyond the 
traditional forwarding service [1]. Active network [2] 
technology supports the deployment and execution on the 
fly of new active services, without interrupting the 
network operation. In this way, an active network is   able 
to offer dynamically customized network services to 
customers/users. Potential advantages of active 
networking include the opening up of the network to third 
parties, the easy introduction of sophisticated and 
unanticipated network services, and rapid deployment of 
such services. Therefore, Active network technology 
enables fast deployment of new network services tailored 
to the specific needs of end users, among other features. 
Some examples of applications that benefit from the 
active network are mobile IP, reliable multicast, web 
caching and transcoding of a data flow to adapt it to the 
link features. 

                                                           
1 This work has been funded by CICYT under project AURAS. 

An active network has some especial nodes named Active 
routers, which possess the capability of executing active 
code and, as a result,   doing a tailored processing of 
active packets. However, the   possibility of injecting 
active code into active routers introduces security risks 
that must be taken into account.   
SARA [3] (Simple Active Router Assistant) is an active 
router prototype developed by Carlos III University of 
Madrid2 in the context of the IST project GCAP3.  It has 
been proposed a business model for SARA and its 
security risks have been analyzed. As a result a security 
architecture named ROSA (Realistic Open Security 
Architecture for Active Networks) has been proposed 
[4][5].   
Current distributions of SARA prototype are implemented 
in Java language, so ideally it can run over any platform. 
Therefore, ROSA is implemented in Java language in 
order to integrate it into SARA. However, the 
cryptographic processes require intensive use of 
processor, what provokes considerable time consumption. 
When Java is used this time is bigger than when other 
programming languages such as C are chosen, and of 
course, bigger than when cryptographic hardware is used.  
We have analysed some mechanisms to improve the 
performance of the security implementation. In order to 
do so, we propose some improvements   in the security 
implementation: the initiation of cryptographic 
procedures, caching of the session key, the use of faster 
cryptographic providers and the use of JNI (Java Native 
Interface) cryptographic implementation. These 
mechanisms can be generalized to any cryptographic 
implementation in Java. 
Henceforth, we briefly introduce SARA (section 2) and 
the model used to give active services (section 3). Then, 
section 4 is devoted to security threats in the proposed 
model and the security solution, ROSA. After that, in 
section 5, we explain how to provide the confidentiality of 
active packet service by using ROSA. Later, in section 6 
we present some mechanisms to improve the performance 

                                                           
2 SARA home site. http://matrix.it.uc3m.es/~sara 
3 GCAP IST project home page. http://www.laas.fr/GCAP 



of ROSA implementation. Finally, section 7 is dedicated 
to conclusions. 

2. Active networks and SARA platform 
Two different approaches may be used to support 
dynamic network programmability: discrete approach and 
integrated approach.  
The discrete approach means that packets do not include 
the code to be executed in the active routers, but there is a 
separate mechanism to inject programs into an active 
router. Frequently this download is done from a code 
server or other system with the responsibility of storing 
the code. 
The integrated approach denotes that active packets 
(called capsules) not only include user data but they also 
include the code to process   the own packet as well. This 
code is then executed at the active routers, when the 
active packets are propagated   over the network. 
SARA follows the discrete approach and is based on the 
router-assistant paradigm.  It means that active code does 
not run directly on the router processor but on a different 
device, called assistant, which is directly attached to the 
router through a high-speed LAN. Hence, the router only 
has to identify and divert active packets to its assistant. 
Active packets are identified by the router alert option.  
This enables active node location transparency, since 
active packets need not to be addressed to the active 
router for this router to process   them. After the assistant 
performs the requested processing, packets are returned to 
the router in order to be forwarded. The active code 
needed to process active packets is dynamically 
downloaded from Code Servers when it is not locally 
available at the assistant. In this way, safety is checked in 
advance, since only registered harmless-proofed code is 
allowed to run on the network. Thus the presumed target 
scenario is one where a central administrator provides 
active services loaded on the fly from a choice of known 
applications that have been supplied by the customer or 
network manager.  
SARA is available in two platforms: One is fully based on 
Linux (playing roles, router and assistant as a 
development scenario); the other one is a hybrid platform 
where the router used is an Ericsson-Telebit AXI462 
which runs a kernel adapted to work with an active 
assistant. 

3. Packet Exchange process using SARA 
In order to present the security architecture, we first 
introduce the packet exchange process.  In this way, we 
can detect the requirements imposed by security and 
scalability concerns.  
The elements involved in the packet exchange are: 
� Source is the user terminal that generates active 

packets, and sends them towards the Destination.  
� Destination is the terminal that receives the active 

packets sent by the Source. 

� Active Router is a router capable of processing active 
packets. It is also able to obtain the active code 
needed. 

� Code Server is the active code repository that serves 
the Active Routers. 

The packet exchange description depicted in figure 1 is 
described next.  Sometimes the Source needs special 
active processing for a flow of packets between the 
Source itself and Destination.   In that case, the Source 
must send active packets (AP message in figure 1), 
addressed to the Destination. In those packets the Source 
indicates the identification of the active code to be 
executed. When an active packet reaches an Active 
Router, it is examined and the identification of the active 
code is extracted. If the active code is locally available at 
the Active Router, it performs the requested process and 
then forwards the packet towards the Destination. If the 
active code needed is not locally available, the Active 
Router requests it from the Code Server (Cr message). 
The Code Server then sends the requested code to the 
Active Router (Cd message), which now processes the 
packet and forwards it to the next hop. All the Active 
Routers along the path   execute the same procedure until 
the packet reaches the Destination.  The following active 
packets will presumably follow the same path, so the 
Active Routers will be capable of processing them without 
the need of requesting the code from Code Servers again. 

 
4. ROSA specification 
Active networks impose security requirements that have 
been detailed in several documents [6].  Afterwards we 
present a summarized analysis of security threats that 
have been taken into account in the security solution. This 
analysis is made from the point of view of the different 
components of the scenario depicted in last section: 
� Source/User (we consider that there is a user in the 

Source that requests  active services): 
o Users must be capable of requesting authorization 

to the active network to send active packets that 
must be processed by the Active Router. 

o A user requesting an active service must provide 
authentication and non-repudiation. The last 
requirement is especially important when active 
services are provided in a commercial fashion.  

Figure 1.  Packet  exchange procedure 
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Thanks to the providing of non-repudiation, we can 
consider the legal issue requirements. 

o Users expect that the active network is processing 
their active packets only using reliable active code. 

o Source must be capable of being sure that only the 
authorized user is requesting active services on its 
behalf.  

o Source must be the only one capable of controlling 
its active services.  This means that no other user is 
able to insert new active packets or to modify those 
active packets sent by Source, what would interfere 
with the requested active service.  

� Active Router must verify: 
o The user that is sending the active packets is 

authorized to execute the active code at that 
moment.   

o Active code comes from an authorized Code 
Server. 

o Active code has not been maliciously modified. 
� Code Server must be able to: 
o Authenticate Active Routers that are requesting 

active code, since not all the code will be available 
to all routers.  

o Send active code to authorized Active Routers with 
integrity and confidentiality protection, in order to 
prevent unauthorized parties from inspecting or 
modifying the delivered code.  

Destination does not impose requirements since it does 
not demand active services from the network. It should be 
noticed that end-to-end security is out of the scope of this 
security solution. 

4.1. Security Architecture 
We have seen in the previous section, that user must 
request active service to obtain authorization from the 
active network. This requirement introduces a new 
component in the active network architecture, named 
Authorization Server (AS in figure 2).   

 
 
This new component has authorization information about 
the users. Therefore, authentication and authorization may 
be performed when AS receives a service request from a 
Source. Therefore, ROSA is applied in a scenario (figure 

2) composed of the SARA components, Active Router 
(AR) and Code Server (CS), the ROSA component AS, 
and the end systems (Source and Destination). 

4.2. Security mechanisms 
The following processes can be distinguished in the 
security solution: service request, session key generation, 
active packet processing, and code download.  
Afterwards, we present the main mechanisms used in this 
processes. In [5] it is shown a more detailed justification 
for the criteria followed to select these mechanisms   
instead of others. 

4.2.1. Service request and session key 
generation 
A service request message is sent from the Source to the 
AS. This message must be signed using the user private 
key   in order to offer authentication and non-repudiation.   
The user makes use of this request to specify the 
parameters that identify an active session: User identifier 
(U), Service Start Time (SST) end Service End Time 
(SET), the code (Ci), which identifies the active code that 
must process the active packets in the active routers, and 
the IP addresses of Source (IPS) and Destination (IPD).  
These parameters are used by AS to verify authorization 
of authenticated user. If the verification of authorization is 
right, AS accepts the session and gives a session key K to 
the user. In the following section we explain how the 
Source uses K to protect the active packets. 
The Session Key is generated by the AS using a Key 
Derivation Function (KDF) and the following parameters: 
  K=KDF(U, SST, SET, IPS, IPD, Ci, Kci ) 
Where Kci is the secret associated to the active code i.  
Kci is shared by AS and CS. In order to refresh the Kci 
secrets, new secrets for all active codes are periodically 
generated by the AS and sent to the CS via a confidential 
channel. In the next section we see that CS distributes the 
Kci to the Active Routers.  
The communication between Source and AS is performed 
over a TLS session.  This kind of session offers   mutual 
authentication services and confidentiality for the packets 
transferred in both directions.  

4.2.2. Packet protection and verification 
Once Source has requested the service and has received K 
from AS, it generates active packets towards the 
destination within the active session. In other words, 
active packets get the authorization to be sent from the 
Source S to the Destination D within the period of time 
between SET and SST.  They are sent by the user U 
(which knows K) and with the code identifier Ci.  To do 
this, Source protects active packets using a MAC 
(Message Authentication Code), in order to offer 
authentication and integrity services. MAC is generated 
using the hmac mechanism and K.  

MAC = hmac (K, active packet) 
Two different hmac algorithms are supported by the 
current version of ROSA, hmac-md5 and hmac-sha. A 
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field in the SARA header  of the active packets is used to 
select the hmac algorithm used in that packet. 
When an Active Router receives the active packet and the 
associated MAC, it must know K in order to verify 
authentication and integrity of the packet.   
The AR generates K itself using the same KDF algorithm 
as the one used by the AS. To do this, the AR must know 
the values of U, SST, SET, IPS, IPD, Ci and Kci. The 
secret Kci is downloaded from the CS and the rest of 
parameters, are sent inside the active packet. Remember 
that CS shares the secret Kci with AS. 
This solution uses hmac to protect active packets.  This is 
an efficient algorithm, based on symmetric key. But 
symmetric key systems are usually associated with the 
key distribution problem. However, in this case we have 
seen that the key distribution mechanism is done in a 
simpler and more efficient way.         

4.2.3. Code and Kci downloading from Code 
Server 
When an AR receives an active packet, it first verifies that 
the message is not obsolete, i.e. it is within the validity 
period (between SST and SET), and then it verifies the 
availability of the requested active code.  When the code 
(and Kci) is not locally available, the AR downloads it, 
using a secure (TLS) connection, from the CS (Cr and Cd 
in figure 2).  After that, the AR generates K, using U, 
SST, SET, IPS, IPD, the Ci extracted from the active 
packet, and the Kci obtained from the CS when the code 
was downloaded. If the HMAC is validated, it means that 
User is authorized to execute the requested code, so the 
AR processes the packet using the requested code and 
forwards it to the next hop. If any unauthorized user 
changes the session parameters   (U, SST, SET, IPS, IPD, 
Ci) of the packet, the AR generates a different K and the 
verification of HMAC fails.  In this way, these parameters 
act as authorization information that is carried in the 
active packets.   As a result, the active packet is acting as 
a credential.  
The same procedure is repeated on every AR along the 
path until the packet reaches the Destination. The 
subsequent active packets of the flow benefit from cached 
copies of the active code and Kci in every AR. The TLS 
connection provides mutual authentication between CS 
and AR and confidentiality for the active code and Kci.  

4.3. Complete and summarized process 
Next, we summarize the complete process, illustrated in 
figure 2. First, the Source requests authorization to the AS 
(Sr message) to execute an active code Ci in the network 
(getting an active service). Then, after receiving and 
verifying the request, the AS generates K as we explained 
in section 3.2.1. After that, the AS sends an encrypted 
message (Si message), which contains K, to the Source. 
The Source decrypts the message and obtains K. Then, 
the Source generates the active packets (AP message), 
which include the authorization parameters (U, SST, SET, 
IPS, IPD, Ci) and the MAC generated using K. 

When an AR receives the active packet, it first verifies 
that the message is within the validity period (SST, SET), 
and then it verifies the requested active code availability. 
In case the code and/or Kci are not locally available, the 
AR downloads them (Cr and Cd messages).  Afterwards, 
the AR generates K and verifies the integrity and 
authenticity of the packet. The same procedure is repeated 
on every AR along the path until the packet reaches the 
Destination. The subsequent active packets of the flow 
benefit from cached copies of the active code and Kci in 
every AR.  
 Notice that the solution presented is limited to one 
security domain, i.e. one AS providing keys. It is possible 
to extend the solution to multiple domains, but this is 
more than a trivial task and it will be presented in future 
works. 

5. Confidentiality of active payload 
The ROSA specification does not take into account the 
fact that active packets could be confidential since it is not 
a general requirement. However, some active applications 
might require confidentiality in the payload carried by the 
active packets. This means that the payload of active 
packets might have to be encrypted in the Source and 
decrypted in the Destination. This new feature involves 
minimal changes in ROSA implementation. 
 Now, two keys are needed; the session key, used to 
generate the hmac Khmac, and the session key, used to 
encrypt Kencrypt. When the User requests an active service 
to the Authorization Server, the cryptographic procedure 
must be specified: authentication or encryption and 
authentication. The Authorization Server uses the KDF 
function to generate 1) Khmac  or, 2)  Khmac and Kencrypt 
respectively:     
1) Khmac=KDF (U, SST, SET, IPS, IPD, Ci, Kci) 
2) {Khmac, Kencrypt}=KDF (U, SST, SET, IPS, IPD, Ci, Kci) 
The KDF is the same function in both cases   as it is 
usually a hash or hmac algorithm based function.  The 
number of iterations of the KDF function determines the 
number of random bits generated to get one or two keys.   
Next, Source sends active packets to the Destination with 
the payload encrypted, and with the authenticator 
generated by hmac.      
When an active packet arrives to an Active Router, it 
knows if the payload is encrypted looking at the SARA 
header of the packet. If the payload is ciphered, Active 
Router generates both, Khmac and Kencrypt, using the same 
KDF function and the same parameters as the ones used 
by the Authorization Server. Then the Active Router 
verifies authentication of the packet using hmac and 
Khmac. In addition, if the payload is encrypted and it has to 
be read or modified by the Active router, it decrypts this 
payload using the encryption algorithm and Kencrypt. 

6. ROSA Implementation  
SARA is implemented over the Java Virtual Machine of 
Sun. As a result, the current version of SARA uses Sun 



J2SDK 1.4.1 on Linux. Furthermore, the current version 
of the ROSA prototype uses Java language.  
Three main capabilities had to be implemented in Active 
Routers supporting ROSA. First, the capability of 
generating HMAC (either SHA-1 or MD5), used to 
protect packets or to verify the packets that are crossing 
the router, and to generate the session key. Second, 
establishing and managing TLS connections in order to 
download code and keys.  And finally, the third capability 
is decrypting and encrypting confidential payload (when 
using this service).  
Now we will present three mechanisms that allow us to 
improve the performance of the Java based 
implementation. 

6.1. Initializing cryptographic algorithms 
In the early stages of ROSA development we noticed that 
cryptographic algorithms have very high initialization 
times. This is related to internal implementation issues of 
Java cryptographic classes and it is present in all the 
cryptographic providers we have tested. This initialization 
time only appears the first time that a cryptographic 
object (of any kind) is instantiated in our Java programs. 
Furthermore, if the cryptographic object is destroyed and 
then it is instantiated again, the delay will appear once 
more. For instance, if a secure application uses three 
different types of cryptographic objects it will suffer three 
expensive initialization processes (much longer even than 
any computation made by that object). This delay appears 
the first time that a cryptographic object is called by an 
active application. Moreover, the instance of a 
cryptographic object is associated to its application and is 
destroyed when the application ends, so the delay appears 
for every application that calls the cryptographic object. If 
we think of an environment with many secure 
applications being continuously loaded and using 
cryptographic algorithms, we can imagine that the delay 
may become quite noticeable. 
In order to avoid that undesirable effect, we provide a 
mechanism that detects if security is supported by the 
active network platform.  If so, the execution environment 
of active applications creates instances of the 
cryptographic objects that will be used, at start-up time. 
Therefore, the expensive delay of initializing   
cryptographic processes is only suffered once when the 
platform is booted. Furthermore, the instances are 
associated to execution environments and not to the 
applications, so they keep alive permanently.     
We have seen that the time spends in the hmac/hash 
process the first time is 60/10 times bigger than the time 
spends in the same process the following times. So 
initializing the hmac and hash process in ROSA, we 
avoided the degradation of the performance the first time 
that we use the algorithm.    

6.2. Caching session key  
In order to verify every packet crossing the Active Router, 
we have to determine the proper session key for each 

packet. All the packets belonging to the same flow are 
authenticated (and must be verified) using the same 
session key. Therefore, we could use a cache for storing 
the already-computed session keys. This would turn   the 
hmac (remember we use hmac as KDF) computation into 
a cache search, which is faster. Session key caching has 
been confirmed as a good performance improvement in 
the early development stages.  
We have measured the times of the process inside a single 
application (HelloWorld). The percentage of time spends 
in every process is: key generation 12.5%, hmac verifying 
and generation 75%, rest of packet processing 12.5%. So 
we can save about 12.5% of time avoiding session key 
generation by using cache of session key.     

6.3. Choosing a cryptographic provider 
Due to its use of cryptographic services, ROSA makes use 
of Java Cryptography Extension JCE [7]. JCE provides a 
framework and implementations for encryption, key 
generation, key agreement, and MAC algorithms. JCE is 
based on the same design principles found in the Java 
Cryptography Architecture (JCA) [8]: implementation 
independent and, whenever possible, algorithm 
independent.  JCE uses the same provider architecture.  
This means that we can plug providers signed by a 
reliable entity into the JCE framework adding seamlessly 
new implementations or new algorithms when desired. 
This “provider” architecture allows setting dynamically in 
runtime the algorithm implementation to use in each case. 
This allows selecting the fastest implementation of every 
algorithm in order to improve the platform performance 
just making minor changes to the existing code. Our goal 
will be, then, showing which of the freely available 
providers offers the best performance in each of the 
cryptographic services (MAC, Ciphers) needed.  
Moreover, we have built our own provider using the Java 
Native Interface (JNI) [9]. This provider only includes the 
algorithms needed.   Theoretically, it should offer us very 
good performance. However, a JNI implementation 
introduces a disadvantage to be considered.   SARA 
portability is reduced.  
Next we present providers comparison. We have focused 
our attention on optimizing the mechanisms of hmac and 
encryption, which are the most frequently used by the 
active router. We have selected four Java cryptographic 
providers that fulfill the features to provide free and 
reliable Java cryptographic libraries: 
� SunJCE (http://java.sun.com). 
� Cryptix (http://www.cryptix.org). 
� BouncyCastle (BC) (http://www.bouncycastle.org). 
� FlexiProvider (http://www.flexiprovider.de). 
We have compared   the results of Java providers with a 
JNI implementation using the library libgcrypt4, which is 
the GNU cryptographic library implemented in C 
language. Notice that some of the algorithms are not 
supported for all the providers. 

                                                           
4 http://www.gnu.org/directory/security/libgcrypt.html 



Then we have measured the delay introduced by these 
providers for each security procedure: hmac and 
encryption. Tests have been done using a PIII 1.1 GHz, 
256MB, Linux Kernel 2.4.18. 
We compare JNI implementation and JAVA providers of 
hmac-sha1 (figure 3) and hmac-md5 (figure 4). 
The tests have been realized measuring the delay 
introduced by every provider for different packet sizes 
(between 256 bytes and 2048 bytes). 
The results obtained show that the fastest Java provider 
for hmac-md5 is BC and SunJCE is the fastest for hmac-
sha1. Furthermore, we can see that the best Java provider 
implementation is around three times (300%) slower than 
the JNI implementation. 

 

 
Next we have compared the symmetric encryption 
algorithm AES for different Java cryptographic providers 
with the JNI implementation. The results obtained show 
that (figure 5) BC is the fastest Java provider and JNI 
implementation is around three times (300%) faster. 

 
JNI provides better performance than Java providers but 
SARA’s portability is reduced.  Due to this, it must be 
included in SARA the capability of configuring the 
providers (e.g. using a XML configuration file). Such 
providers can be Java security providers or our JNI 
implementation. Therefore, the active router administrator 
must select the cryptographic modules among those 

distributed by SARA.  As a result, if the administrator 
knows that his platform supports the JNI modules, he will 
select them to improve the performance. 

7. Conclusion 
Some mechanisms can be used to improve the 
performance of a Java security implementation (as 
ROSA): initializing cryptographic process in the 
execution environment at start-time, caching frequently 
used session keys, and selecting the fastest Java 
cryptographic providers or JNI implementation.  
We have compared the delays introduced by some Java 
providers in order to select the fastest. From the results of 
our comparison we conclude that we may exploit JCE 
ability    of using different cryptographic providers, to 
select the fastest provider for every algorithm. In this case 
we select SunJCE for hmac-sha1 and BC for hmac-md5 
and AES encryption.  
A better improvement consists on using a JNI 
implementation. The results obtained show that JNI 
implementations introduce an improvement of around 
300% over the best Java provider. But SARA’s portability   
is reduced in this case. Thereby, we have proposed to 
enable the administrator to configure the use of Java or 
JNI cryptographic procedures in SARA implementation. 
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Figure 5.  AES encryption 
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Figure 4.  HMAC-SHA1 
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Figure 3.  HMAC-MD5 

0

20

40

60

80

100

120

140

0,25 0,5 1 1,5 2

Size (KB)

T
im

e 
(u

s)

JAVA-SunJCE JAVA-BC JAVA-Cryptix JNI-Libgcrypt 


