
PERFORMANCE ANALYSIS OF A SECURITY ARCHITECTURE FOR ACTIVE
NETWORKS IN JAVA

Bernardo Alarcos1, Enrique de la Hoz2, Marifeli Sedano3, María Calderón4

1,2 Engineering Telematic Area, Alcalá University, Crta. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares
3 Department of Telematic Systems Engineering, UPM, ETSI Telecommunication, C. Universidad S/N, 28040, Madrid

4 Department of Telematic Engineering, University Carlos III of Madrid, Av. Universidad 30, 28911, Leganés
(Madrid), Spain

1,2{bernardo,enrique}@aut.uah.es, 3marifeli@gsi.dit.upm.es, 4maria@it.uc3m.es

Abstract
Active network technology supports the deployment and
execution on the fly of new active services, without
interrupting the network operation. Active networks are
composed of special nodes (named Active Router) that
are able to execute active code to offer the active services.
This technology introduces some security threats that
must be solved using a security architecture. We have
developed a security architecture (ROSA) for an active
network platform (SARA). Java has been used as
programming language in order to provide portability, but
it imposes some performance limitations. This paper
analyses the penalty of using Java and proposes some
mechanisms to improve the performance of cryptographic
implementations in Java.

Key Words
Active networks, security, cryptography, Java, JNI.

1. Introduction1
There is a clear trend towards extending the set of
functions that network routers support beyond the
traditional forwarding service [1]. Active network [2]
technology supports the deployment and execution on the
fly of new active services, without interrupting the
network operation. In this way, an active network is able
to offer dynamically customized network services to
customers/users. Potential advantages of active
networking include the opening up of the network to third
parties, the easy introduction of sophisticated and
unanticipated network services, and rapid deployment of
such services. Therefore, Active network technology
enables fast deployment of new network services tailored
to the specific needs of end users, among other features.
Some examples of applications that benefit from the
active network are mobile IP, reliable multicast, web
caching and transcoding of a data flow to adapt it to the
link features.

1 This work has been funded by CICYT under project AURAS.

An active network has some especial nodes named Active
routers, which possess the capability of executing active
code and, as a result, doing a tailored processing of
active packets. However, the possibility of injecting
active code into active routers introduces security risks
that must be taken into account.
SARA [3] (Simple Active Router Assistant) is an active
router prototype developed by Carlos III University of
Madrid2 in the context of the IST project GCAP3. It has
been proposed a business model for SARA and its
security risks have been analyzed. As a result a security
architecture named ROSA (Realistic Open Security
Architecture for Active Networks) has been proposed
[4][5].
Current distributions of SARA prototype are implemented
in Java language, so ideally it can run over any platform.
Therefore, ROSA is implemented in Java language in
order to integrate it into SARA. However, the
cryptographic processes require intensive use of
processor, what provokes considerable time consumption.
When Java is used this time is bigger than when other
programming languages such as C are chosen, and of
course, bigger than when cryptographic hardware is used.
We have analysed some mechanisms to improve the
performance of the security implementation. In order to
do so, we propose some improvements in the security
implementation: the initiation of cryptographic
procedures, caching of the session key, the use of faster
cryptographic providers and the use of JNI (Java Native
Interface) cryptographic implementation. These
mechanisms can be generalized to any cryptographic
implementation in Java.
Henceforth, we briefly introduce SARA (section 2) and
the model used to give active services (section 3). Then,
section 4 is devoted to security threats in the proposed
model and the security solution, ROSA. After that, in
section 5, we explain how to provide the confidentiality of
active packet service by using ROSA. Later, in section 6
we present some mechanisms to improve the performance

2 SARA home site. http://matrix.it.uc3m.es/~sara
3 GCAP IST project home page. http://www.laas.fr/GCAP

of ROSA implementation. Finally, section 7 is dedicated
to conclusions.

2. Active networks and SARA platform
Two different approaches may be used to support
dynamic network programmability: discrete approach and
integrated approach.
The discrete approach means that packets do not include
the code to be executed in the active routers, but there is a
separate mechanism to inject programs into an active
router. Frequently this download is done from a code
server or other system with the responsibility of storing
the code.
The integrated approach denotes that active packets
(called capsules) not only include user data but they also
include the code to process the own packet as well. This
code is then executed at the active routers, when the
active packets are propagated over the network.
SARA follows the discrete approach and is based on the
router-assistant paradigm. It means that active code does
not run directly on the router processor but on a different
device, called assistant, which is directly attached to the
router through a high-speed LAN. Hence, the router only
has to identify and divert active packets to its assistant.
Active packets are identified by the router alert option.
This enables active node location transparency, since
active packets need not to be addressed to the active
router for this router to process them. After the assistant
performs the requested processing, packets are returned to
the router in order to be forwarded. The active code
needed to process active packets is dynamically
downloaded from Code Servers when it is not locally
available at the assistant. In this way, safety is checked in
advance, since only registered harmless-proofed code is
allowed to run on the network. Thus the presumed target
scenario is one where a central administrator provides
active services loaded on the fly from a choice of known
applications that have been supplied by the customer or
network manager.
SARA is available in two platforms: One is fully based on
Linux (playing roles, router and assistant as a
development scenario); the other one is a hybrid platform
where the router used is an Ericsson-Telebit AXI462
which runs a kernel adapted to work with an active
assistant.

3. Packet Exchange process using SARA
In order to present the security architecture, we first
introduce the packet exchange process. In this way, we
can detect the requirements imposed by security and
scalability concerns.
The elements involved in the packet exchange are:
� Source is the user terminal that generates active

packets, and sends them towards the Destination.
� Destination is the terminal that receives the active

packets sent by the Source.

� Active Router is a router capable of processing active
packets. It is also able to obtain the active code
needed.

� Code Server is the active code repository that serves
the Active Routers.

The packet exchange description depicted in figure 1 is
described next. Sometimes the Source needs special
active processing for a flow of packets between the
Source itself and Destination. In that case, the Source
must send active packets (AP message in figure 1),
addressed to the Destination. In those packets the Source
indicates the identification of the active code to be
executed. When an active packet reaches an Active
Router, it is examined and the identification of the active
code is extracted. If the active code is locally available at
the Active Router, it performs the requested process and
then forwards the packet towards the Destination. If the
active code needed is not locally available, the Active
Router requests it from the Code Server (Cr message).
The Code Server then sends the requested code to the
Active Router (Cd message), which now processes the
packet and forwards it to the next hop. All the Active
Routers along the path execute the same procedure until
the packet reaches the Destination. The following active
packets will presumably follow the same path, so the
Active Routers will be capable of processing them without
the need of requesting the code from Code Servers again.

4. ROSA specification
Active networks impose security requirements that have
been detailed in several documents [6]. Afterwards we
present a summarized analysis of security threats that
have been taken into account in the security solution. This
analysis is made from the point of view of the different
components of the scenario depicted in last section:
� Source/User (we consider that there is a user in the

Source that requests active services):
o Users must be capable of requesting authorization

to the active network to send active packets that
must be processed by the Active Router.

o A user requesting an active service must provide
authentication and non-repudiation. The last
requirement is especially important when active
services are provided in a commercial fashion.

Figure 1. Packet exchange procedure

CrCode Request

Code Download

Active packet

Cd

AP

R Router
AR Active Router
CS Code server
D Destination
S Source

CS

D AR AR
R

R
S AP

AP
AP

Cr Cr

Cd Cd

Thanks to the providing of non-repudiation, we can
consider the legal issue requirements.

o Users expect that the active network is processing
their active packets only using reliable active code.

o Source must be capable of being sure that only the
authorized user is requesting active services on its
behalf.

o Source must be the only one capable of controlling
its active services. This means that no other user is
able to insert new active packets or to modify those
active packets sent by Source, what would interfere
with the requested active service.

� Active Router must verify:
o The user that is sending the active packets is

authorized to execute the active code at that
moment.

o Active code comes from an authorized Code
Server.

o Active code has not been maliciously modified.
� Code Server must be able to:
o Authenticate Active Routers that are requesting

active code, since not all the code will be available
to all routers.

o Send active code to authorized Active Routers with
integrity and confidentiality protection, in order to
prevent unauthorized parties from inspecting or
modifying the delivered code.

Destination does not impose requirements since it does
not demand active services from the network. It should be
noticed that end-to-end security is out of the scope of this
security solution.

4.1. Security Architecture
We have seen in the previous section, that user must
request active service to obtain authorization from the
active network. This requirement introduces a new
component in the active network architecture, named
Authorization Server (AS in figure 2).

This new component has authorization information about
the users. Therefore, authentication and authorization may
be performed when AS receives a service request from a
Source. Therefore, ROSA is applied in a scenario (figure

2) composed of the SARA components, Active Router
(AR) and Code Server (CS), the ROSA component AS,
and the end systems (Source and Destination).

4.2. Security mechanisms
The following processes can be distinguished in the
security solution: service request, session key generation,
active packet processing, and code download.
Afterwards, we present the main mechanisms used in this
processes. In [5] it is shown a more detailed justification
for the criteria followed to select these mechanisms
instead of others.

4.2.1. Service request and session key
generation
A service request message is sent from the Source to the
AS. This message must be signed using the user private
key in order to offer authentication and non-repudiation.
The user makes use of this request to specify the
parameters that identify an active session: User identifier
(U), Service Start Time (SST) end Service End Time
(SET), the code (Ci), which identifies the active code that
must process the active packets in the active routers, and
the IP addresses of Source (IPS) and Destination (IPD).
These parameters are used by AS to verify authorization
of authenticated user. If the verification of authorization is
right, AS accepts the session and gives a session key K to
the user. In the following section we explain how the
Source uses K to protect the active packets.
The Session Key is generated by the AS using a Key
Derivation Function (KDF) and the following parameters:
 K=KDF(U, SST, SET, IPS, IPD, Ci, Kci)
Where Kci is the secret associated to the active code i.
Kci is shared by AS and CS. In order to refresh the Kci
secrets, new secrets for all active codes are periodically
generated by the AS and sent to the CS via a confidential
channel. In the next section we see that CS distributes the
Kci to the Active Routers.
The communication between Source and AS is performed
over a TLS session. This kind of session offers mutual
authentication services and confidentiality for the packets
transferred in both directions.

4.2.2. Packet protection and verification
Once Source has requested the service and has received K
from AS, it generates active packets towards the
destination within the active session. In other words,
active packets get the authorization to be sent from the
Source S to the Destination D within the period of time
between SET and SST. They are sent by the user U
(which knows K) and with the code identifier Ci. To do
this, Source protects active packets using a MAC
(Message Authentication Code), in order to offer
authentication and integrity services. MAC is generated
using the hmac mechanism and K.

MAC = hmac (K, active packet)
Two different hmac algorithms are supported by the
current version of ROSA, hmac-md5 and hmac-sha. A

CS

D

R Router
AR Active Router
CS Code server
AS Authorization Server
D Destination
S Source

AR AR
R

R
S

AS

Service Request

Service Information

Code Request

Code Download

Active packet

Cr

Figure 2. ROSA architecture

Cd

AP

Sr

Si

AP
AP

AP

Sr

Si

Cr Cr

Cd Cd

field in the SARA header of the active packets is used to
select the hmac algorithm used in that packet.
When an Active Router receives the active packet and the
associated MAC, it must know K in order to verify
authentication and integrity of the packet.
The AR generates K itself using the same KDF algorithm
as the one used by the AS. To do this, the AR must know
the values of U, SST, SET, IPS, IPD, Ci and Kci. The
secret Kci is downloaded from the CS and the rest of
parameters, are sent inside the active packet. Remember
that CS shares the secret Kci with AS.
This solution uses hmac to protect active packets. This is
an efficient algorithm, based on symmetric key. But
symmetric key systems are usually associated with the
key distribution problem. However, in this case we have
seen that the key distribution mechanism is done in a
simpler and more efficient way.

4.2.3. Code and Kci downloading from Code
Server
When an AR receives an active packet, it first verifies that
the message is not obsolete, i.e. it is within the validity
period (between SST and SET), and then it verifies the
availability of the requested active code. When the code
(and Kci) is not locally available, the AR downloads it,
using a secure (TLS) connection, from the CS (Cr and Cd
in figure 2). After that, the AR generates K, using U,
SST, SET, IPS, IPD, the Ci extracted from the active
packet, and the Kci obtained from the CS when the code
was downloaded. If the HMAC is validated, it means that
User is authorized to execute the requested code, so the
AR processes the packet using the requested code and
forwards it to the next hop. If any unauthorized user
changes the session parameters (U, SST, SET, IPS, IPD,
Ci) of the packet, the AR generates a different K and the
verification of HMAC fails. In this way, these parameters
act as authorization information that is carried in the
active packets. As a result, the active packet is acting as
a credential.
The same procedure is repeated on every AR along the
path until the packet reaches the Destination. The
subsequent active packets of the flow benefit from cached
copies of the active code and Kci in every AR. The TLS
connection provides mutual authentication between CS
and AR and confidentiality for the active code and Kci.

4.3. Complete and summarized process
Next, we summarize the complete process, illustrated in
figure 2. First, the Source requests authorization to the AS
(Sr message) to execute an active code Ci in the network
(getting an active service). Then, after receiving and
verifying the request, the AS generates K as we explained
in section 3.2.1. After that, the AS sends an encrypted
message (Si message), which contains K, to the Source.
The Source decrypts the message and obtains K. Then,
the Source generates the active packets (AP message),
which include the authorization parameters (U, SST, SET,
IPS, IPD, Ci) and the MAC generated using K.

When an AR receives the active packet, it first verifies
that the message is within the validity period (SST, SET),
and then it verifies the requested active code availability.
In case the code and/or Kci are not locally available, the
AR downloads them (Cr and Cd messages). Afterwards,
the AR generates K and verifies the integrity and
authenticity of the packet. The same procedure is repeated
on every AR along the path until the packet reaches the
Destination. The subsequent active packets of the flow
benefit from cached copies of the active code and Kci in
every AR.
 Notice that the solution presented is limited to one
security domain, i.e. one AS providing keys. It is possible
to extend the solution to multiple domains, but this is
more than a trivial task and it will be presented in future
works.

5. Confidentiality of active payload
The ROSA specification does not take into account the
fact that active packets could be confidential since it is not
a general requirement. However, some active applications
might require confidentiality in the payload carried by the
active packets. This means that the payload of active
packets might have to be encrypted in the Source and
decrypted in the Destination. This new feature involves
minimal changes in ROSA implementation.
 Now, two keys are needed; the session key, used to
generate the hmac Khmac, and the session key, used to
encrypt Kencrypt. When the User requests an active service
to the Authorization Server, the cryptographic procedure
must be specified: authentication or encryption and
authentication. The Authorization Server uses the KDF
function to generate 1) Khmac or, 2) Khmac and Kencrypt
respectively:
1) Khmac=KDF (U, SST, SET, IPS, IPD, Ci, Kci)
2) {Khmac, Kencrypt}=KDF (U, SST, SET, IPS, IPD, Ci, Kci)
The KDF is the same function in both cases as it is
usually a hash or hmac algorithm based function. The
number of iterations of the KDF function determines the
number of random bits generated to get one or two keys.
Next, Source sends active packets to the Destination with
the payload encrypted, and with the authenticator
generated by hmac.
When an active packet arrives to an Active Router, it
knows if the payload is encrypted looking at the SARA
header of the packet. If the payload is ciphered, Active
Router generates both, Khmac and Kencrypt, using the same
KDF function and the same parameters as the ones used
by the Authorization Server. Then the Active Router
verifies authentication of the packet using hmac and
Khmac. In addition, if the payload is encrypted and it has to
be read or modified by the Active router, it decrypts this
payload using the encryption algorithm and Kencrypt.

6. ROSA Implementation
SARA is implemented over the Java Virtual Machine of
Sun. As a result, the current version of SARA uses Sun

J2SDK 1.4.1 on Linux. Furthermore, the current version
of the ROSA prototype uses Java language.
Three main capabilities had to be implemented in Active
Routers supporting ROSA. First, the capability of
generating HMAC (either SHA-1 or MD5), used to
protect packets or to verify the packets that are crossing
the router, and to generate the session key. Second,
establishing and managing TLS connections in order to
download code and keys. And finally, the third capability
is decrypting and encrypting confidential payload (when
using this service).
Now we will present three mechanisms that allow us to
improve the performance of the Java based
implementation.

6.1. Initializing cryptographic algorithms
In the early stages of ROSA development we noticed that
cryptographic algorithms have very high initialization
times. This is related to internal implementation issues of
Java cryptographic classes and it is present in all the
cryptographic providers we have tested. This initialization
time only appears the first time that a cryptographic
object (of any kind) is instantiated in our Java programs.
Furthermore, if the cryptographic object is destroyed and
then it is instantiated again, the delay will appear once
more. For instance, if a secure application uses three
different types of cryptographic objects it will suffer three
expensive initialization processes (much longer even than
any computation made by that object). This delay appears
the first time that a cryptographic object is called by an
active application. Moreover, the instance of a
cryptographic object is associated to its application and is
destroyed when the application ends, so the delay appears
for every application that calls the cryptographic object. If
we think of an environment with many secure
applications being continuously loaded and using
cryptographic algorithms, we can imagine that the delay
may become quite noticeable.
In order to avoid that undesirable effect, we provide a
mechanism that detects if security is supported by the
active network platform. If so, the execution environment
of active applications creates instances of the
cryptographic objects that will be used, at start-up time.
Therefore, the expensive delay of initializing
cryptographic processes is only suffered once when the
platform is booted. Furthermore, the instances are
associated to execution environments and not to the
applications, so they keep alive permanently.
We have seen that the time spends in the hmac/hash
process the first time is 60/10 times bigger than the time
spends in the same process the following times. So
initializing the hmac and hash process in ROSA, we
avoided the degradation of the performance the first time
that we use the algorithm.

6.2. Caching session key
In order to verify every packet crossing the Active Router,
we have to determine the proper session key for each

packet. All the packets belonging to the same flow are
authenticated (and must be verified) using the same
session key. Therefore, we could use a cache for storing
the already-computed session keys. This would turn the
hmac (remember we use hmac as KDF) computation into
a cache search, which is faster. Session key caching has
been confirmed as a good performance improvement in
the early development stages.
We have measured the times of the process inside a single
application (HelloWorld). The percentage of time spends
in every process is: key generation 12.5%, hmac verifying
and generation 75%, rest of packet processing 12.5%. So
we can save about 12.5% of time avoiding session key
generation by using cache of session key.

6.3. Choosing a cryptographic provider
Due to its use of cryptographic services, ROSA makes use
of Java Cryptography Extension JCE [7]. JCE provides a
framework and implementations for encryption, key
generation, key agreement, and MAC algorithms. JCE is
based on the same design principles found in the Java
Cryptography Architecture (JCA) [8]: implementation
independent and, whenever possible, algorithm
independent. JCE uses the same provider architecture.
This means that we can plug providers signed by a
reliable entity into the JCE framework adding seamlessly
new implementations or new algorithms when desired.
This “provider” architecture allows setting dynamically in
runtime the algorithm implementation to use in each case.
This allows selecting the fastest implementation of every
algorithm in order to improve the platform performance
just making minor changes to the existing code. Our goal
will be, then, showing which of the freely available
providers offers the best performance in each of the
cryptographic services (MAC, Ciphers) needed.
Moreover, we have built our own provider using the Java
Native Interface (JNI) [9]. This provider only includes the
algorithms needed. Theoretically, it should offer us very
good performance. However, a JNI implementation
introduces a disadvantage to be considered. SARA
portability is reduced.
Next we present providers comparison. We have focused
our attention on optimizing the mechanisms of hmac and
encryption, which are the most frequently used by the
active router. We have selected four Java cryptographic
providers that fulfill the features to provide free and
reliable Java cryptographic libraries:
� SunJCE (http://java.sun.com).
� Cryptix (http://www.cryptix.org).
� BouncyCastle (BC) (http://www.bouncycastle.org).
� FlexiProvider (http://www.flexiprovider.de).
We have compared the results of Java providers with a
JNI implementation using the library libgcrypt4, which is
the GNU cryptographic library implemented in C
language. Notice that some of the algorithms are not
supported for all the providers.

4 http://www.gnu.org/directory/security/libgcrypt.html

Then we have measured the delay introduced by these
providers for each security procedure: hmac and
encryption. Tests have been done using a PIII 1.1 GHz,
256MB, Linux Kernel 2.4.18.
We compare JNI implementation and JAVA providers of
hmac-sha1 (figure 3) and hmac-md5 (figure 4).
The tests have been realized measuring the delay
introduced by every provider for different packet sizes
(between 256 bytes and 2048 bytes).
The results obtained show that the fastest Java provider
for hmac-md5 is BC and SunJCE is the fastest for hmac-
sha1. Furthermore, we can see that the best Java provider
implementation is around three times (300%) slower than
the JNI implementation.

Next we have compared the symmetric encryption
algorithm AES for different Java cryptographic providers
with the JNI implementation. The results obtained show
that (figure 5) BC is the fastest Java provider and JNI
implementation is around three times (300%) faster.

JNI provides better performance than Java providers but
SARA’s portability is reduced. Due to this, it must be
included in SARA the capability of configuring the
providers (e.g. using a XML configuration file). Such
providers can be Java security providers or our JNI
implementation. Therefore, the active router administrator
must select the cryptographic modules among those

distributed by SARA. As a result, if the administrator
knows that his platform supports the JNI modules, he will
select them to improve the performance.

7. Conclusion
Some mechanisms can be used to improve the
performance of a Java security implementation (as
ROSA): initializing cryptographic process in the
execution environment at start-time, caching frequently
used session keys, and selecting the fastest Java
cryptographic providers or JNI implementation.
We have compared the delays introduced by some Java
providers in order to select the fastest. From the results of
our comparison we conclude that we may exploit JCE
ability of using different cryptographic providers, to
select the fastest provider for every algorithm. In this case
we select SunJCE for hmac-sha1 and BC for hmac-md5
and AES encryption.
A better improvement consists on using a JNI
implementation. The results obtained show that JNI
implementations introduce an improvement of around
300% over the best Java provider. But SARA’s portability
is reduced in this case. Thereby, we have proposed to
enable the administrator to configure the use of Java or
JNI cryptographic procedures in SARA implementation.

References
[1] Wetherall, D. J., Legedza, U., Guttag, J. Introducing
new Internet services: Why and How. IEEE Network
Magazine,12(3), 1998, 12-19.
[2] Tennenhouse, D. L., Wetherall, D. J. Towards an
Active Network Architecture. Computer Communication
Review, 26(2), 1996, 5-18.
[3] Larrabeiti, D., Calderón, M., Azcorra, A., Urueña, M.
A practical approach to network-based processing, Proc.
4th International Workshop on Active Middleware
Services, Edinburgh, Scotland, 2002.
[4] M. Bagnulo, B. Alarcos, M. Calderón, M. Sedano,
Providing Authentication & Authorization mechanisms
for active service charging, International workshop on
Internet Charging and QoS Technologies ICQT'2002,
Zurich, Switzerland, 2002, 337-346.
[5] M. Bagnulo, B. Alarcos, M. Calderón, M. Sedano,
ROSA: Realistic Open Security Architecture for active
networks, Proc. 4th International Working Conference
IWAN'2002, Zurich, Switzerland, 2002, 204-215.
[6] AN Security Working Group, Security Architecture
for Active Nets, 2001.
[7] Java Cryptography Extension (JCE) Reference Guide
http://java.sun.com/j2se/1.4/docs/guide/security/jce/JCER
efGuide.html
[8] Java Cryptography Architecture API
http://java.sun.com/j2se/1.4.1/docs/guide/security/Crypto
Spec.html
[9] Java Native Interface Specification
http://java.sun.com/j2se/1.4.1/docs/guide/jni/spec/jniTOC
.doc.html

Figure 5. AES encryption

0
50

100
150
200
250
300
350

0,25 0,5 1 1,5 2

Size (KB)

T
im

e
(u

s)

JAVA-Flexi JAVA-BC JAVA-Cryptix JNI-Libgcrypt

Figure 4. HMAC-SHA1

0

50

100

150

200

250

300

0,25 0,5 1 1,5 2

Size (KB)

Ti
m

e
(u

s)

JAVA-SunJCE JAVA-BC JAVA-Cryptix JNI-Libgcrypt

Figure 3. HMAC-MD5

0

20

40

60

80

100

120

140

0,25 0,5 1 1,5 2

Size (KB)

T
im

e
(u

s)

JAVA-SunJCE JAVA-BC JAVA-Cryptix JNI-Libgcrypt

