
etvvork Support for
M ulticas t Applications

Maria Calderon, Marifeli Sedano, irturo Azcorra, and Cristian Alonso
UPM

Abstract
This article analyzes the necessity and feasibility of designing a protocol for active
networks that supports multicasting a plications with different characteristics in

elements required by multicast applications, and from this study a network service
description is given. The advantages of providing this service over active networks
are studied. The service description is then used a s the set of requirements for the
design of the RMANP protocol, which is capable of providin the service over
active network technology. T h e n a prototype implementation OF RMANP over the
Active Node Transport System (ANTS) is presented, and some data for the evalua-
tion of its performance is provided. Finally, the m a i n conclusions are that active
networks provide flexible support for the development of new network services, but
fur ther improvements in runtime efficiency are required.

terms of data loss tolerance. The artic P e begins with a presentation of the service

raditional teleservices have been divided into telecom-
munications services (e.g., telephone, TV, or radio) and
data services (e.g., remote terminal, file transfer, or e-
mail), each with different requirements in terms of

transfer rate, data loss probability, transit delay, delay-jitter
specifications, and relationships between session participants.
These different requirements led to the design of network
technologies tailored (down to the physical layer) for the spe-
cific service to be supported. Throughout the recent past, dif-
ferent technological advances in signal digitization, data
compression, data processing, and data transmission have
resulted in the design of new classes of teleservices. Mobility,
portability, multipoint-to-multipoint, multipoint-to-point,
guaranteed variable transfer rates, flow synchronization, and
a continuous range of throughput, transit delay, and delay-jit-
ter values are some examples of the requirements placed on
the network by teleservices existing today. This situation is
leading to the design of an integrated network based on tech-
nologies providing an “open” network service as a means to
support a broad range of teleservices while being prepared to
integrate new technologies in order to adapt to changing
requirements. Much effort has been made in developing a
packet- (and cell-) switched networking technology that pro-
vides multiple classes of guaranteed transfer rates, while a t
the same time providing low transit delay and delay-jitter.
However, considerably less effort has been made in develop-
ing a networking technology that supports a broad range of
functional requirements.

In this sense, active networks [l, 21 represent a major
breakthrough since they introduce a technology that will pro-
vide an integrated open network, in terms of not only quality
of service (QoS), but also functional behavior. Per-packet and

per-session specific processing at each network node enables
new network services to be deployed across the network as
soon as the teleservices that require them are ready. However,
this flexibility provided by active network technology should
not lead to a situation in which each implementation, or each
teleservice, uses its own specifically designed packets and
associated procedures on the active network platform.

In this context, the purpose of this article is to define a net-
work service appropriate for the requirements of multicast
applications, design a protocol based on active networks that
provides this service, and present an implementation proto-
type over the Active Network Transport System (ANTS) [3]
used to validate the concept. The next section describes the
attributes of the applications considered to share network
requirements, and the service elements supporting these
requirements. We then discuss the advantages of using active
network technology, justifying the convenience and feasibility
of designing an integrated network protocol RMANP is pre-
sented, a protocol designed on active networks capable of
providing the services defined in the section below. We cover
the most relevant aspects of the implementation prototype
carried out on ANTS and provide performance evaluation
data. In the last section we describe the conclusions derived
from this work.

A Description of Service Elements for
Multicast Applications
We have analyzed a series of characteristics or attributes in
order to identify the elements composing an adequate com-
munications service for multicast applications. The character-

46 0890-8044/98/$10.00 0 1998 IEEE IEEE Network * MayiJune 1998

istics chosen to determine the network requirements, and
therefore the network service, are:

Number of senders and receivers in the multicast application
session.

Mix of reliable and unreliable - This attribute indicates
whether the multicast application needs to send both reliable
and unreliable data in the same multicast application session.
Reliability t ime - This is the tolerable delay from the
expected arrival time of a packet. It is closely related to
delay-jitter. Some applications process data with a certain
lifetime, after which the information becomes irrelevant to
them. Although this type of application would rather
receive everything, they tolerate some probability of losing
data. Examples are most real-time applications and those
that send state updates and periodically resynchronize send-
ing the full state.

Delay bound - This is an upper limit on end-to-end data
transfer delay imposed by applications.
Openlclosed session - If the session is closed the applica-
tion indicates the identity of the participants. On the other
hand, if the session is open the application does not indi-
cate who the participants are going to be, and in principle
allows any system to join the session.
Known receivers - This attribute indicates whether the
application needs to know the identity of its receivers.
Some applications need to know their receivers, for exam-
ple, the case where a single receiver failure is sufficiently
important for the whole session to be interrupted.
Synchronized start - Some applications require that all par-
ticipants (sender(s) and receivers) be present at start time.
Ordering - The most usual ordering types required by
applications are sender-based and total.
In order to produce a network service description, we

attempt to relate the different application attributes and gen-
eralize their implications. First, the number of receivers is
dependent on the type of session. In open sessions the proto-
col should support a very large number (up to hundreds of
thousands) of receivers, but in closed sessions the number
might be much lower. Second, we consider that providing
three types of per-packet reliability might cover most cases.
These types are unreliable, time-constrained reliable, and reli-
able. Third, all applications have a certain delay bound, which
should be preserved even for large andlor sparse groups.
Finally, we have abstracted the requirements relating to
openlclosed session, known receivers, and synchronized start
into three session types, described below.

In addition to the previous aspects there are some general
service requirements needed by multicast applications. The
absence of duplicated packets is generally desirable. A flow con-
trol mechanism that adapts to the effective network bandwidth
is necessary in order to minimize packet losses. A related prob-
lem is that receivers can be heterogeneous regarding their
processing capabilities and the characteristics (bandwidth and
delay) of the path that connects them to the sender. The exis-
tence of just one slow receiver can slow down the communica-
tion to an extent that is unacceptable for the application.

Based on these considerations, we propose a generic multi-
cast service, supplied by a service provider by means of a spe-
cific protocol, to support multicast applications with the
following service elements.

Data Service - This element allows an application to choose
between three types of reliability for each data packet sent:
unreliable, time-constrained reliable, and reliable. In unreliable
packet service, the service provider does not guarantee in any
way the delivery of that packet. In time-constrained reliable
service, the service provider guarantees that it will do its best

(store the packet, request retransmissions, retransmit packets,
etc.) in order to ensure that all receivers get that packet
before the associated time expires. Finally, in reliable service
the provider ensures that the packet will be delivered to all
receivers. In this case, if the service provider is unable to
deliver data to a specific receiver, it will notify the application
of this fact.

Session Service - This service element provides primitives to
establish, manage, and terminate sessions. These can be one
of three modes: open group, controlled open group, and closed
group. In an open group any receiver is allowed to join the
session, and the application is not informed of the identity of
receivers. In a controlled open group any receiver is allowed
to join, and the service provider will notify the application on
every receiver that joins or leaves the multicast session. In
both of the previously mentioned session modes, if a receiver
joins a session after it has been initiated, the service provider
will not resend data previously sent. In a closed group the
application indicates to the service provider the identity of the
receivers that must join the session. If one or more of the
authorized receivers does not join the session, the service
provider will notify its identity(ies) to the application. The
provider will also inform the application of any receiver that
leaves the session. Packets sent in the open group should have
a time-constrained reliability or no reliability at all. Packets
sent in the controlled open or closed group can be of any of
the three reliability types.

Flow Control Service - This service element will allow the
source to adapt to the available end-to-end bandwidth of all
receivers. Additionally this service element is in charge of
identifying the receiver(s) that are slowing down the through-
put of the session in case where this situation arises. This is
done only in controlled open group or closed group service
modes. In case this event occurs, the application will be noti-
fied of the identity of the slower receivers, and it may choose
to request their expulsion or to slow down the flow of data to
accommodate it to the speed these receivers support.

Advantages of Active Networks to
Support the Service Elements
The traditional approach has consisted of implementing tai-
lored solutions for each specific application at the application
layer. Another approach has been provision of reliable multi-
cast service by means of an end-to-end protocol [4, 51. In this
article we propose to provide the required service using active
network support. The idea of a network that provides addi-
tional services which simplify the tasks needed to achieve reli-
able multicast has already been proposed in the past [6-81.
Benefits of using intermediate processing have already been
quantitatively evaluated. Published simulation studies have
shown that:

If some intermediate points perform acknowledgment
(ACK) aggregation and buffering, implosion problems are
avoided and protocol throughput is increased [9].
It is better to do local recovery from intermediate systems
than from other end systems that participate in a multicast
session [lo].
With the introduction of active networks the development

of complex enhanced networking services (e.g., to provide
reliable multicast service) becomes feasible. In the following
paragraphs we will prove that active networks can greatly sim-
plify the provision of some of the service elements required by
multicast applications.

IEEE Network May/June 1998 47

The fact that the number of receivers zs high causes two asso-
ciated problems: ACK implosion and/or negative ACK
(NACK) implosion. Focusing on the ACK implosion problem,
active networks can perform A C K fusing at active nodes
between the receivers and the source. ACK fusing consists of
sending just one ACK from a given active node toward the
source of each n ACKs received. The new ACK carries the
fused information of all n ACKs. In respect to the NACK
implosion problem, active networks can perform NACKfilter-
ing at active nodes between the receivers and the source.
NACK filtering consists of the recording in active nodes of
the NACK capsules (see [2] for the definition of capsule)
already sent toward the sender. That is, they remember the
data already requested, and when a NACK is received it is
forwarded only if it asks for different data.

In relation to reliability time and delay bound, active net-
works offer two possibilities:

They perform soft state caching of multicast data at some
intermediate active nodes.
They perform intermediate sequence control.

Data caching allows the implementation of a local recovery
scheme that avoids all retransmissions having to be made
from the sender. When an active node receives a NACK trav-
eling toward the source, and has the requested multicast data
in its cache, the node filters the NACK and retransmits the
requested data. Intermediate sequence control consists of each
active node controlling the multicast data it processes. When
a sequence number gap is detected, a NACK capsule is gener-
ated toward the source.

Finally, the support of active networks in relation to the
knowledge of the identity of receivers at the sender is based on
an aggregation function. Receivers can indicate their identity
by sending an ACK (or some other type of status) toward the
sender. Given the possibility in active networks of carrying out
the aggregation of these capsules, the sender can be aware of
its receiver’s identity without the problem of capsule implo-
sion. Instead of processing one capsule from each receiver,
the sender will process a reduced number of capsules, each
with information related to many receivers.

Besides the specific requisites of multicast applications, in
multicast communication protocols the objective of optimizing
network resources is important, and active networks offer, in
this aspect, the possibility of performing recovery with restrict-
ed scope and retransmission filtering. Recovery with restricted
scope avoids the retransmission of a requested data capsule
through all outgoing interfaces of a given active node. In this
case, active network support consists of recording through
which interfaces a NACK capsule for a given packet has
arrived, and retransmission of that data capsule can be
restricted to only these interfaces. Active nodes use retrans-
mission filtering to prevent multiple retransmissions of the
same capsule if it has been requested in parallel by a given set
of receivers or active nodes which can be reached via the
same network interface.

Reliable Multicast Active Network Protocol

The network service outlined above will be partially provided
by the Reliable Multicast Active Network Protocol (RMANP),
described below. It provides the data service and session service
elements. The flow control service element is not supported.
This protocol is designed for active network technology.

We assume that RMANP works on top of an unreliable
network in which packets can be lost, duplicated, or reordered.
RMANP relies on the existence of an active multicast routing
service that handles receiver subscriptions from the group,

and creates and maintains the multicast distribution tree. The
current design of RMANP has the restriction that multicast
routes from the source to the receivers, and unicast routes
from the receivers to the source must be coincident (at least)
at the active nodes. No assumption on the size of memory
available at active nodes is made. RMANP is designed so that
state information stored at active nodes can be flushed at any
time; this is the “soft state” concept implied by [ll, 121.

Capsule Types
Each capsule has an associated code to be executed in the
active nodes when the capsules arrives a t them. We have
defined one type of capsule for each independent processing
unit in the protocol. We have created different types of cap-
sules for original and retransmitted data, even though they
have the same format, in order to load the code needed to
process retransmissions when the arrival of a NACK capsule
occurs. We have defined an independent capsule for the unre-
liable data (UR capsule) because the only processing to be
done with these data are replication and forwarding. We have
the same capsule type (data capsule) for reliable data (RE
flow) and time-constrained reliable data (T-RE flow) since
their processing is very similar. The flow type is identified by
the Flow field of the data capsule. The Flow field is also pre-
sent in retransmission, ACK, multiple ACK (MACK), and
NACK capsules. The term direct descendants of a given active
node will be used to denote all receivers or active nodes that
can be reached downstream from the given node without
passing through other active nodes.

A brief explanation of most relevant capsule types follows.

UR Capsule - This capsule carries data that the application
wants to send unreliably.

Data and Retransmission Capsules - These capsules contain
data that the application wants to send reliably (RE flow) or
reliably but restricted to a certain reliability time (T-RE flow).
The Mack-Required field is used by the source to ask those
active nodes that have receivers as their direct descendants to
send a MACK capsule. The Data-RT field contains the relia-
bility time to be used by active nodes and receivers in a T-RE
flow.

ACK Capsule - This capsule carries cumulative acknowledg-
ments for R E or T-RE data.

MACK Capsule - This capsule carries multiple accumulative
acknowledgments. They are generated at the source’s request
by setting the Mack-Required flag in a data or retransmission
capsule. This capsule carries the number of receivers that are
direct descendants of the active node that generated this cap-
sule, and for each receiver its address and highest sequence
number (RE or T-RE flow) acknowledged.

NACK Capsule - This capsule requests retransmission of RE
or T-RE data. The Sequence-number field contains the base
value used to calculate which capsules are requested. The
Fields-number field indicates the number of
Seq-Individ-NACK fields inside this capsule. Each Seq-Indi-
vid-NACK field is used to calculate the range of individual
sequence numbers that are requested by the sender of this
capsule. I t has three subfields: Offset, Seq-n-NACK, and
nack-c. The Offset subfield indicates the offset from the last
sequence number of the preceding field. The Seq-n-NACK
subfield contains the number of consecutive capsules request-
ed (negatively acknowledged) starting with the next one indi-
cated by the offset field. The nack-c subfield contains how

IEEE Network 0 MayiJune 1998 48

1419
L - - -

many NACK4 havc alrcady bccn \ent for
this rangc of secluonce numbsrc. ..- I I . ._ - - ~

The zesien oi this caosule is based on the ‘able I . A NAc‘K capsu1e.
one describYed in [13]. 1; order to clarify this
capsule format, Table 1 shows the NACK
fields used to request the retransmission of capsules with
sequence numbers from 1420 to 1432 for the third time, and
capsule 1440 for the second time.

RRf Capsule - The rejected receivers list (RRL) capsule is
multicast from the source and contains the addresses of the
receivers to be rejected from the RMANP session.

Elements that Participate in an RMANP Session
R E and T-RE data capsules generated in the same session
will be treated by RMANP as two data flows with indepen-
dent sequence numbers and state information. The only dif-
ference between the processing of RE and T-RE data capsules
is that the removal of a T-RE data capsule can be triggered by
the expiration of its associated reliability time (Data-RT).
From now on, all the processing will be explained for RE data
capsules, and T-RE processing will only be highlighted when
differences appear.

Source - The source stores RE and T-RE data capsules gen-
erated until the corresponding MACK capsules have been
received with information from all receivers. In the case of T-
RE data capsules, they are also removed when their Data-RT
(the reliability time of the session) expires. The application is
responsible for choosing the type of session service it requires
for each RMANP session opened. The characteristics of the
three session services are:

Open group - Only UR and T-RE data capsules are used.
In this kind of session the source does not have any infor-
mation related to the receivers connected to the session.
Controlled open group - All types of capsules (UR, RE,
and T-RE data) are allowed in this session type. The source
controls the receivers that are connected during the session
by periodically requesting receiver status information. This
request is done by setting the Mack-Required flag in RE or
T-RE data or retransmission capsules. The source entity
will inform the application about which receivers join or
leave the session. If the application requests it, the source
can promote the expulsion of any receiver by multicasting
an RRL capsule.
Closed group - The application indicates the list of receivers
that should participate in the session. When the RMANP
session is initiated, the source entity unicasts an invitation to
each of those receivers. If one (or more) receiver(s) has not
answered positively, the source entity will notify the applica-
tion of this fact, which decides between aborting or continu-
ing the session. Then, if new receivers connect they are
automatically expulsed (using RRL capsule). In other aspects,
this session type is similar to the controlled open group.

Receiver - Receivers send ACK capsules toward the source with
the sequence numbers they have correctly received. ACK capsules
are generated every certain number of data capsules received, or
after a given ACK timer expires. Each time a capsule loss is
detected the receiver unicasts a NACK capsule containing the
range of lost sequence numbers to the source. When a loss
occurs, a NACK timer is started (unless it is already running)
in order to periodically generate a NACK capsule containing
the sequence numbers (each range with its associated NACK
count) of all those capsules whose retransmission is being
expected. The NACK count (nack-c field) associated with
each sequence number range is used to indicate how many

times the NACK time has elapsed while waiting for this range.
In the case of T-RE data capsules, the same process takes
place, except that after their associated Data-RT has elapsed
their retransmission is not requested anymore.

Active Node -Active nodes maintain state information for
each multicast session (source and group) and for each of
their direct descendants. Active nodes perform the following
tasks.

Data Caching and Buffer Release - In addition to the state
information corresponding to its direct descendants, the active
node keeps information for itself. It records the highest R E
and T-RE accumulated sequence numbers it has buffered or
that have been acknowledged by all its direct descendants,
and the RE and T-RE sequence numbers buffered above the
accumulated number. When a multicast R E or T-RE data
capsule is received, the active node stores it if there is space
available (datu caching).

When a certain number of data capsules have been
received, the active node unicasts an ACK capsule toward the
source (ACK fusing) with the cumulative sequence number
that has already been acknowledged by all its direct descen-
dants or been stored by the active node itself. The generation
of acknowledgments for capsules not yet acknowledged by all
direct descendants, but stored in the active node, tries to
avoid storing a given capsule in all active nodes that exist
between a receiver and the source.

When an ACK capsule is received from one of its direct
descendants, it is processed (in order to actualize the corre-
sponding R E and T-RE sequence numbers of the direct
descendants and of the active node itself) and is not fonvard-
ed. An ACK capsule has different meanings depending on
whether it was generated by a receiver or an active node. If a
receiver generates it, the ACK means that the receiver itself
has received the capsule. If an active node generates the
ACK, it means that either the active node has stored the cor-
responding data capsule, or all its direct descendants have
acknowledged that capsule. Each data capsule is stored at an
active node until all its direct descendants have acknowledged
it, or the soft state storage time for that capsule has expired.

An active node will generate one MACK capsule toward
the source upon the arrival of a data or retransmission cap-
sule with the Mack-Required field set. Each MACK capsule
carries the current acknowledgment information regarding all
direct descendants of the active node that are receivers of the
session (aggregation function). Only active nodes that have
receivers as direct descendants will generate MACK capsules.
MACK capsules are not processed at any intermediate active
node as they travel to the source.

Retransmissions - Retransmissions in RMANP are based on
the mechanisms proposed in (141. Here we will use “interface”
to denote an interface of the active nodes that leads to direct
descendants. Active nodes use two type of records with state
information that supports the retranSmiSSion process. One
retransmission-info record is created for each retransmitted
data capsule. This record holds a NACK count value (nack-c)
for each network interface through which the capsule was
retransmitted. It is used to filter unnecessary retransmissions
that may occur when many receivers that can be accessed
through a given interface do request retransmissions for a

IEEE Network May/June 1998 A9

H Figure 1 . RMANP session topology.

given capsule. One nack-supression-info record is created for
each sequence number requested by the active node. It holds
the nack-c value of the last NACK sent for this sequence
number and a bitmap with as many entries as the number of
interfaces of the active node. The bitmap indicates through
which interfaces NACK capsules for this sequence number
were received.

Active nodes or receivers start the retransmission process
when they detect the loss of data capsules (intermediate
sequence control), and they generate a NACK capsule with the
requested sequence numbers and their associated nack-c.
NACK capsules are processed at the first active node they
visit on their way toward the source, and are not necessarily
forwarded. When an active node receives a NACK capsule, it
analyzes all the sequence numbers and nack-c fields con-
tained in it. For each pair (sequence number, nack-c) the
node carries out the following functions:
0 It checks if the retransmission request for the sequence

number has already been attended to (retransmission filter-
ing) or not. If it has been attended, no more processing is
done. Otherwise, the processing proceeds to the following
point. To check if the retransmission has been attended to,
it verifies that the retransmision-info record (associated with
this sequence number and incoming interface) exists, and
that the nack-c in the record is higher than or equal to the
nack-c being processed.

* It checks if it has the requested data locally stored. In this
case, it performs the retransmission (local recovery), and no
more processing is done. Otherwise, the processing pro-
ceeds to the next point. The retransmission is performed by
sending (in multicast) the data capsule only through the
specific interface where the NACK capsule arrived (recovery
with restricted scope) and actualizes its retransmission-info
record to filter further retransmissions.

0 I t checks if a negative acknowledgment has not already
been sent. In this case, a NACK has to be sent for sequence
number and nack-c being processed, and it writes the
nack-c being processed into the nack-c of the nack-supres-
sion-info record. Otherwise, no NACK has to be sent

(NACK filtering). In either case, it has to set
the bit of the nack-supression-info record cor-
responding to the interface through which this
NACK was received. To check if the negative
acknowledgment has already been sent, it veri-
fies that the nack-supression-info record
(associated to this sequence number) exists
and that the nack-c in the record is higher
than or equal to the nack-c being processed.
When the processing of all the sequence num-

bers is finished, it will generate a single (or no)
NACK capsule to request all the sequence num-
bers needed.

When a retransmission capsule arrives at an
active node, if the nack-supression-info record
corresponding to the capsule exists it forwards
the capsule only through the interfaces which are
set in the associated bitmap (recovery with
restricted scope). After that , it updates the
retransmission-info record for that sequence
number. If no nack-supression-info record is
found (cache space is low, active node drops,
etc.) the active node caches the data in the
retransmission capsule. If no cache space is avail-
able, the capsule is forwarded in normal multi-
cast mode and its associated retransmission-info
record updated.

Management of Receivers/Active Nodes - RMANP does not
need specific procedures to treat either distribution tree joins,
leaves and modifications of receiverslnodes, or active node
information losses. If a descendant of an active node leaves a
given RMANP session, its associated state information at its
active node ancestor will disappear when its time to live
expires. When a new direct descendant joins the current ses-
sion, ACKs and NACKs are received from it, and the active
node creates the new necessary information accordingly. If, as
a result of reorganizations of the distribution tree, an active
node or receiver changes its relative position within the tree,
the protocol will treat it as a session leave and subsequent ses-
sion join.

Implementation of RMANP Over ANTS
The ANTS Platform
The Active Node Transport System (ANTS [3, 151) is a Java-
based toolkit for experimenting with active networks. It pro-
vides a node runtime and protocol programming model that
allow users to customize the processing of their capsules. The
main features of ANTS v. 1.2 are:
0 Each capsule carries a protocol and capsule identifiers that

point to the Java code required to process the capsule at
each active node. The code is demand-loaded at active
nodes when the first capsule of a given type arrives. There-
fore, an active node will never load protocol code it does
not need.
In order to load the code, it is requested of the previous
active node that processed the capsule. The objective is to
receive the code from the closest possible place. The code
is retained for some time at the node in order to reduce the
number of requests for code-loading. All capsules of the
same protocol and type share the same code at the node.

., Each active node has an LRU cache memory to implement
a soft-state information repository. A time-to-live value is
associated with each stored item. Items are removed when
their associated time to live expires. In case there is not
enough memory to store a new item, the oldest item is

50 IEEE Network 0 MayiJune 1998

automatically removed to free
enough space to store the new one.
ANTS uses UDP for active nodes to
communicate with each other, and
both the platform and capsule code
are executed as a user-level process.
One advantage of being coded in

Java is portability, but it has the draw-
back of reduced execution perfor-
mance. Based on our work over the
ANTS platform, we judge that it is a
user-friendly and powerful support
environment. However, we have intro-
duced two modifications of ANTS that
we have found useful for the develop-
ment of RMANP. First, we have incor-
porated a method that allows checking
at any given moment whether there is
cache space available. This is useful in
memory shortage situations in which it
is better to discard a new item than to erase an old one. For
example, in RMANP it is better to avoid caching a new data
capsule instead of erasing protocol state information. Also, we
have added a method that explicitly removes an item from the
cache. In RMANP this allows memory used by cached data
capsules that have been acknowledged to be freed without
having to wait for their time to live.

RMANP Proto?/pe and Evaluation Testbed
An RMANP prototype has been implemented in Java using
the primitives supplied by ANTS v. 1.2 (the code is available
at http://escorpio.ls.fi.upm.es/RMANP.html). The current ver-
sion implements the reliable delivery data service (RE flow)
and the unreliable delivery data service (UR flow). The cap-
sules that have been implemented are therefore those that are
required for these two services (see the fourth section). Relat-
ed capsules are bound in groups in order to reduce the delay
caused by demand loading of code. The following three
groups have been defined: (data, ACK, and MACK capsules),
(retransmission and NACK capsules), and (UR capsule). The
Java code has been byte-code compiled using Java Developers
Kit (JDK) v. 1.1.3.

To test the performance of the system and to understand
its limitations and strengths we have conducted an experiment
running ANTS over the Java interpreter (Java Virtual
Machine, JVM) of JDK v. 1.1.3. The active network topology
of the RMANP session used is shown in Fig. 1.

In the experiment, the source sent one 3000-kbyte file using
R E data capsules, each with 1024 bytes of data. The source
injected RE data capsules into the active network at a rate of 20
causuleds. UR causules were sent. interleaved with RE

by the capsules. As a reference value,
the TCP object code in a Linux kernel
v. 2.0.3 is 42,392 bytes.

Notice that each capsule group will
only be loaded at an active node when
required. For example, the retransmis-
sion capsule group will not be loaded at
active nodes where no NACKs are being
processed. These performance implica-
tions were taken into account during
the design of RMANP (e.g., for the
definition of two different capsules for
data and retransmission, in spite of
them both having the same fields).

The memory required at active
nodes to keep the associated RMANP
state information is dependent on the
session topology. Each active node
requires 49 bytes/RMANP session in
which it is involved. In addition to

that, 21 bytes are required for each of its direct descendants.
Ten additional bytes are needed for each capsule lost, and
each group of eight network interfaces used at the active
node. Finally, storage for cached data and data in transit is
required. This is not differential to any network-based retrans-
mission technique, since the nodes will only be able to locally
retransmit the data they are storing. Notice that the byte-code
stored at the active nodes is shared by all RMANP sessions,
and the state information values grow linearly (with low fac-
tors) with session size. Based on these results we consider that
the memory requirements of the RMANP implementation
over active networks are acceptable.

Capsule Processing Times
Our second performance study has consisted of analyzing the
processing times needed to process the RMANP capsules in
active nodes. We estimated the average processing time asso-
ciated with capsules by recording the real-time values using a
Java native method invoking the gettimeofday() system call.
Table 3 shows the average real time used at an active node for
processing the different capsule types. Notice that the CPU
time must be below these figures. Notice also that these fig-
ures do not include all the processing carried out on the cap-
sule, because the OS and the ANTS platform perform
standard processing over each incoming capsule before invok-
ing the specific code required to process it.

These processing times are considered unacceptably high in
relation to the processing power of the supporting machine.
Still, we judge the results very promising because the execution
performance can be improved in different ways. In addition to

' Tab'e 2. Byte-c0de sizes ofRMANpcap-
sules and Tcp Object 'Ode*

data capsules at a i average rate of 4 capsules/s. The pro-
cessing measurements were made at the active node
labeled AN2. The AN2 node ran alone on a Pentium
MMX 166 MHz with 128 Mbytes of RAM under Linux.
The other nodes of the experiment ran on different
machines connected by 10 Mb/s Ethernet.

Memory Requirements
Our first performance study consisted of analyzing the
memory requirements at the active nodes. We mea-
sured the memory required to store the code associated
with RMANP capsules and the memory required to
store the state information associated with the RMANP
session. Table 2 shows the byte-code sizes for RMANP
capsules. The table presents the three capsule groups,
and also the byte-code size of auxiliary objects shared W Table 3. Processing times of RMANP capsules.

IEEE Network MayiJune 1998 51

http://escorpio.ls.fi.upm.es/RMANP.html

fine-tuning the implementation, an improvement can be obtained
by machine-code compilation of active networking platforms.
Since capsule code cannot be compiled (one might not expect all
active nodes to be homogeneous in terms of OS and hardware),
improvements in Java interpretation and/or Java fast compila-
tion are required for acceptable performance. Performance
improvements can also obtained by introducing in the archi-
tecture of active networks standard fields in the capsule head-
er to request processing shortcuts. This suggestion is similar to
the idea of hop-by-hop vs. end-to-end options in IPv6. As an
application example, the MACK capsules of RMANP only
require processing at the destination. If they could be tagged
for just forwarding at intermediate nodes it would result in
overall pefformance improvements.

Finally, we consider the combination of two approaches to
capsule code distribution, demand-loading and capsule-carry-
ing, to be convenient. Demand-loading is appropriate for the
protocol code modules which must be available at the node
throughout the session, and these modules are reused by ses-
sions of different users of this specific protocol. Capsule-carry-
ing is convenient for seldom used procedures or capsule types,
in which the delay caused by demand-loading is not worth the
saving in bandwidth and reusability. Although not explicitly
addressed in the experiment, an example in RMANP is the
code associated with session establishment and release. This
code could be carried only in the capsules used for session
establishment and release, not demand-loaded, because it is
not required throughout the session.

Conclusion
We believe that our definition of a multicast network service
that supports different classes of packet loss tolerances will
simplify and accelerate the development of new multicast
applications and teleservices. I t has been shown that the
design of a protocol which provides this service is feasible:
RMANP provides a range of multicast session and data trans-
fer services to its user applications, while keeping protocol
complexity reasonably low.

Based on our work on the ANTS platform, we judge that it
is a user-friendly and powerful support environment. We have
also pointed out areas in which ANTS could be improved,
such as its cache management features, capsule processing
shortcuts, and support for protocol software structuring. The
RMANP prototype has acceptable capsule code sizes and
data-segment memory requirements. However, the figures for
execution time are not acceptable. As described in the previ-
ous section, we do not believe that this is caused by an intrin-
sic drawback of either RMANP or active networking. Future
versions of active networking platforms should take into
account that runtime performance is an important require-
ment in order to support high data rates and/or a large num-

In relation to active network technology itself we believe
that, based on the work described in this article, it provides
the capability needed for fast development and deployment of
sophisticated network protocols and services. The case study
presented is considered a difficult problem to deal with; in
spite of this, currently available active network support has

ber of protocol instances in an active node.

proved quite valuable for the design and implementation of a
prototype solution.

Acknowledgments
This work has been partly supported by CICYT (the Govern-
ment Commission of Science and Technology) under project
TIC97-0929 and by UPM (Universidad PolitCcnica de Madrid)
under project A-9704.

References
[l] D. L Tennenhouse and D Wetherall, "Towards an Active Network Architec-

ture,'' Proc Multmedia Comp. and Networking 96, MMCN '96, San Jose,
CA, Jan. 1996

[2] D L Tennenhouse et a/, "A Survey of Active Network Research," I€€€ Com-
mun. Mag., Jan. 1997, pp. 80-86.

[3] D. Wetherall, J. Guttag, and D. L. Tennenhouse, "ANTS: A Toolkit for Build-
ing and Dynamically Dedoyinq Network Protocols," Proc. IEEE OPENARCH
'98, San Francisco, 'CA, Apr. l-998.

141 C. Diot. W. Dobbous. and J. Crowcroft. "Multiooint Communication: A Sur- . .
vey of Protocols, Functions, and Mechanisms,'" fEEE JSAC, vol. 15, no. 3,
Apr. 1997, pp. 277-90.

151 B. Levine and J. J. Garcia-Luna Aceves, "A ComDarison of Reliable Multicast . .
Protocols," Multimedia S s , ACM/Springer, 19G8.

[6] A. Azcorra and M. CaldYt&, "A Network-Based Approach to Reliable Mul-
ticast," Proc. 2nd Wksp. Protocols for Multimedia Sys. PROMS '95,
Salzburg, Austria, Oct. 1995, pp. 393-404.

[7] B. Levine and J. J. Garcia-Luna Aceves, "Improving Internet Multicast with
Routing Labels,'' Proc. I€€€ ICNP '97, Atlanta, GA, Oct. 1997, pp. 28-31,

[B] C. Papadopoulos, G. Parulkar, and G. Varghese, "An Error Control Scheme
for Large-scale Multicast Applications," Proc. INFOCOM '98, San Francisco,
CA, Mar. 1998.

[9] M. Calderbn, "Unificaci6n de 10s protocolos de multipunto fiable optimizan-
do la escalabilidad y el retardo," Ph.D. thesis, Facultad de InFormbtica, UPM,
Oct. 1996.

[101 A. Azcorra, M. Calderbn, and M. Sedano, "A Strategy for Comparing Reli-
able Multicast Protocols Applied to RMNP and CTES," Proc. IEEE Conf. Pro-
tocols for Multimedia Sys.-Multimedia Networorking '97, Santiago, Chile, Nov.
24-27, 1997.

[l l] R. W. Watson, "Timer-Based Mechanisms in Reliable Transport Protocol
Connection Manu ement," Comp. Networks, no. 5, 1981, pp. 47-56.

[12] D. Clark, "The &sign Philosophy of the DARPA Internet Protocols," Proc.
ACM SIGCOMM '88, Aug. 1988.

[13] M. Hofmann, "Enabling Group Communication in Global Networks," Proc.
Global Networking '97, Calgary, Alberta, Canada, June 1997.

[14] L. Lehman, S. J. Garland, and D. L. Tennenhouse, "Active Reliable Multi-
cast," Proc. I€€€ lNFOCOM '98, San Francisco, CA, Mar. 1998.

[151 D. Wetherall, "Developing Network Protocols with the ANTS Toolkit," Aug.
1997.

Biographies
MARIA CALDERON (mcalderon@fi.upm.es) received B.S. and M.S. degrees in infor-
matics from U. Politknica de Madrid (UPM), Spain, in 1991 and a Ph.D.
de ree from the same university in 1996. She i s currently an associate professor
in {e Department of Languages, S stems and Soffware Engineering, U. Polit6cni-
ca de Madrid, S ain Her researcl interests include network protocols, multicast
applications, on/actke networks.

MARIFELI SEDANO received B.S. and M.S. degrees in informatics from U. de
Deusto in 1987. She is currently a doctoral research student in the Department
of Languages, Systems and Software Engineering, UPM. She is investigating mul-
ticast protocols and congestion control.

ARTURO AZCORRA [MI (azcorra@dit.upm,es) received B.S. and M.S. degrees in
telecommunications from UPM in 1986 and a Ph.D. degree from the same uni-
versity in 1989. He i s currently an associate professor in the Department of
Telematics Engineering, UPM. Current research projects include broadband net-
works, multicast teleservices, intelligent agents, and IP/ATM convergence.

CRISTIAN ALONSO received a B.S. de ree in informatics from UPM in 1995. He i s
current1 a software engineer at Telfat Co. His research interest include network
protococ, network management, and obiect-oriented programming.

52 IEEE Network MayiJune 1998

