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Abstract 
This article analyzes the necessity and feasibility of designing a protocol for active 
networks that supports multicasting a plications with different characteristics in  

elements required by multicast applications, and from this study a network service 
description is given. The advantages of providing this service over active networks 
are studied. The service description is then used a s  the set of requirements for the 
design of the RMANP protocol, which is capable of providin the service over 
active network technology. T h e n  a prototype implementation OF RMANP over the 
Active Node Transport System (ANTS) is presented, and some data for the evalua- 
tion of its performance is provided. Finally, the m a i n  conclusions are that active 
networks provide flexible support for the development of new network services, but 
fur ther  improvements in runtime efficiency are required. 

terms of data loss tolerance. The artic P e begins with a presentation of the service 

raditional teleservices have been divided into telecom- 
munications services (e.g., telephone, TV, or radio) and 
data services (e.g., remote terminal, file transfer, or e- 
mail), each with different requirements in terms of 

transfer rate, data loss probability, transit delay, delay-jitter 
specifications, and relationships between session participants. 
These different requirements led to the design of network 
technologies tailored (down to the physical layer) for the spe- 
cific service to be supported. Throughout the recent past, dif- 
ferent technological advances in signal digitization, data 
compression, data processing, and data transmission have 
resulted in the design of new classes of teleservices. Mobility, 
portability, multipoint-to-multipoint, multipoint-to-point, 
guaranteed variable transfer rates, flow synchronization, and 
a continuous range of throughput, transit delay, and delay-jit- 
ter values are some examples of the requirements placed on 
the network by teleservices existing today. This situation is 
leading to the design of an integrated network based on tech- 
nologies providing an “open” network service as a means to 
support a broad range of teleservices while being prepared to 
integrate new technologies in order to adapt to  changing 
requirements. Much effort has been made in developing a 
packet- (and cell-) switched networking technology that pro- 
vides multiple classes of guaranteed transfer rates, while a t  
the same time providing low transit delay and delay-jitter. 
However, considerably less effort has been made in develop- 
ing a networking technology that supports a broad range of 
functional requirements. 

In  this sense, active networks [l, 21 represent a major 
breakthrough since they introduce a technology that will pro- 
vide an integrated open network, in terms of not only quality 
of service (QoS), but also functional behavior. Per-packet and 

per-session specific processing at each network node enables 
new network services to be deployed across the network as 
soon as the teleservices that require them are ready. However, 
this flexibility provided by active network technology should 
not lead to a situation in which each implementation, or each 
teleservice, uses its own specifically designed packets and 
associated procedures on the active network platform. 

In this context, the purpose of this article is to define a net- 
work service appropriate for the requirements of multicast 
applications, design a protocol based on active networks that 
provides this service, and present an implementation proto- 
type over the Active Network Transport System (ANTS) [3] 
used to validate the concept. The next section describes the 
attributes of the applications considered to share network 
requirements, and the service elements supporting these 
requirements. We then discuss the advantages of using active 
network technology, justifying the convenience and feasibility 
of designing an integrated network protocol RMANP is pre- 
sented, a protocol designed on active networks capable of 
providing the services defined in the section below. We cover 
the most relevant aspects of the implementation prototype 
carried out on ANTS and provide performance evaluation 
data. In the last section we describe the conclusions derived 
from this work. 

A Description of  Service Elements for 
Multicast Applications 
We have analyzed a series of characteristics or attributes in 
order to identify the elements composing an adequate com- 
munications service for multicast applications. The character- 
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istics chosen to determine the network requirements, and 
therefore the network service, are: 

Number of senders and receivers in the multicast application 
session. 

Mix of reliable and unreliable - This attribute indicates 
whether the multicast application needs to send both reliable 
and unreliable data in the same multicast application session. 
Reliability t ime - This is the tolerable delay from the 
expected arrival time of a packet. It is closely related to  
delay-jitter. Some applications process data with a certain 
lifetime, after which the information becomes irrelevant to 
them. Although this type of application would rather 
receive everything, they tolerate some probability of losing 
data. Examples are most real-time applications and those 
that send state updates and periodically resynchronize send- 
ing the full state. 

Delay bound - This is an upper limit on end-to-end data 
transfer delay imposed by applications. 
Openlclosed session - If the session is closed the applica- 
tion indicates the identity of the participants. On the other 
hand, if the session is open the application does not indi- 
cate who the participants are going to be, and in principle 
allows any system to join the session. 
Known receivers - This attribute indicates whether the 
application needs to know the identity of its receivers. 
Some applications need to know their receivers, for exam- 
ple, the case where a single receiver failure is sufficiently 
important for the whole session to be interrupted. 
Synchronized start - Some applications require that all par- 
ticipants (sender(s) and receivers) be present at start time. 
Ordering - The most usual ordering types required by 
applications are sender-based and total. 
In order to  produce a network service description, we 

attempt to relate the different application attributes and gen- 
eralize their implications. First, the number of receivers is 
dependent on the type of session. In open sessions the proto- 
col should support a very large number (up to hundreds of 
thousands) of receivers, but in closed sessions the number 
might be much lower. Second, we consider that providing 
three types of per-packet reliability might cover most cases. 
These types are unreliable, time-constrained reliable, and reli- 
able. Third, all applications have a certain delay bound, which 
should be preserved even for large andlor sparse groups. 
Finally, we have abstracted the requirements relating to  
openlclosed session, known receivers, and synchronized start 
into three session types, described below. 

In addition to the previous aspects there are some general 
service requirements needed by multicast applications. The 
absence of duplicated packets is generally desirable. A flow con- 
trol mechanism that adapts to the effective network bandwidth 
is necessary in order to minimize packet losses. A related prob- 
lem is that receivers can be heterogeneous regarding their 
processing capabilities and the characteristics (bandwidth and 
delay) of the path that connects them to the sender. The exis- 
tence of just one slow receiver can slow down the communica- 
tion to an extent that is unacceptable for the application. 

Based on these considerations, we propose a generic multi- 
cast service, supplied by a service provider by means of a spe- 
cific protocol, to  support multicast applications with the 
following service elements. 

Data Service - This element allows an application to choose 
between three types of reliability for each data packet sent: 
unreliable, time-constrained reliable, and reliable. In unreliable 
packet service, the service provider does not guarantee in any 
way the delivery of that packet. In time-constrained reliable 
service, the service provider guarantees that it will do its best 

(store the packet, request retransmissions, retransmit packets, 
etc.) in order to  ensure that all receivers get that  packet 
before the associated time expires. Finally, in reliable service 
the provider ensures that the packet will be delivered to all 
receivers. In this case, if the service provider is unable to 
deliver data to a specific receiver, it will notify the application 
of this fact. 

Session Service - This service element provides primitives to 
establish, manage, and terminate sessions. These can be one 
of three modes: open group, controlled open group, and closed 
group. In an open group any receiver is allowed to join the 
session, and the application is not informed of the identity of 
receivers. In a controlled open group any receiver is allowed 
to join, and the service provider will notify the application on 
every receiver that joins or leaves the multicast session. In 
both of the previously mentioned session modes, if a receiver 
joins a session after it has been initiated, the service provider 
will not resend data previously sent. In a closed group the 
application indicates to the service provider the identity of the 
receivers that must join the session. If one or more of the 
authorized receivers does not join the session, the service 
provider will notify its identity(ies) to the application. The 
provider will also inform the application of any receiver that 
leaves the session. Packets sent in the open group should have 
a time-constrained reliability or no reliability at all. Packets 
sent in the controlled open or closed group can be of any of 
the three reliability types. 

Flow Control Service - This service element will allow the 
source to adapt to the available end-to-end bandwidth of all 
receivers. Additionally this service element is in charge of 
identifying the receiver(s) that are slowing down the through- 
put of the session in case where this situation arises. This is 
done only in controlled open group or closed group service 
modes. In case this event occurs, the application will be noti- 
fied of the identity of the slower receivers, and it may choose 
to request their expulsion or to slow down the flow of data to 
accommodate it to the speed these receivers support. 

Advantages of Active Networks to 
Support the Service Elements 
The traditional approach has consisted of implementing tai- 
lored solutions for each specific application at the application 
layer. Another approach has been provision of reliable multi- 
cast service by means of an end-to-end protocol [4, 51. In this 
article we propose to provide the required service using active 
network support. The idea of a network that provides addi- 
tional services which simplify the tasks needed to achieve reli- 
able multicast has already been proposed in the past [6-81. 
Benefits of using intermediate processing have already been 
quantitatively evaluated. Published simulation studies have 
shown that: 

If some intermediate points perform acknowledgment 
(ACK) aggregation and buffering, implosion problems are 
avoided and protocol throughput is increased [9]. 
It is better to do local recovery from intermediate systems 
than from other end systems that participate in a multicast 
session [lo]. 
With the introduction of active networks the development 

of complex enhanced networking services (e.g., to  provide 
reliable multicast service) becomes feasible. In the following 
paragraphs we will prove that active networks can greatly sim- 
plify the provision of some of the service elements required by 
multicast applications. 

IEEE Network May/June 1998 47 



The fact that the number of receivers zs high causes two asso- 
ciated problems: ACK implosion and/or negative ACK 
(NACK) implosion. Focusing on the ACK implosion problem, 
active networks can perform A C K  fusing at  active nodes 
between the receivers and the source. ACK fusing consists of 
sending just one ACK from a given active node toward the 
source of each n ACKs received. The new ACK carries the 
fused information of all n ACKs. In respect to the NACK 
implosion problem, active networks can perform NACKfilter- 
ing at  active nodes between the receivers and the source. 
NACK filtering consists of the recording in active nodes of 
the NACK capsules (see [2] for the definition of capsule) 
already sent toward the sender. That is, they remember the 
data already requested, and when a NACK is received it is 
forwarded only if it asks for different data. 

In relation to reliability time and delay bound, active net- 
works offer two possibilities: 

They perform soft state caching of multicast data at some 
intermediate active nodes. 
They perform intermediate sequence control. 

Data caching allows the implementation of a local recovery 
scheme that avoids all retransmissions having to be made 
from the sender. When an active node receives a NACK trav- 
eling toward the source, and has the requested multicast data 
in its cache, the node filters the NACK and retransmits the 
requested data. Intermediate sequence control consists of each 
active node controlling the multicast data it processes. When 
a sequence number gap is detected, a NACK capsule is gener- 
ated toward the source. 

Finally, the support of active networks in relation to  the 
knowledge of the identity of receivers at the sender is based on 
an aggregation function. Receivers can indicate their identity 
by sending an ACK (or some other type of status) toward the 
sender. Given the possibility in active networks of carrying out 
the aggregation of these capsules, the sender can be aware of 
its receiver’s identity without the problem of capsule implo- 
sion. Instead of processing one capsule from each receiver, 
the sender will process a reduced number of capsules, each 
with information related to many receivers. 

Besides the specific requisites of multicast applications, in 
multicast communication protocols the objective of optimizing 
network resources is important, and active networks offer, in 
this aspect, the possibility of performing recovery with restrict- 
ed scope and retransmission filtering. Recovery with restricted 
scope avoids the retransmission of a requested data capsule 
through all outgoing interfaces of a given active node. In this 
case, active network support consists of recording through 
which interfaces a NACK capsule for a given packet has 
arrived, and retransmission of that  data  capsule can be 
restricted to only these interfaces. Active nodes use retrans- 
mission filtering to prevent multiple retransmissions of the 
same capsule if it has been requested in parallel by a given set 
of receivers or  active nodes which can be reached via the 
same network interface. 

Reliable Multicast Active Network Protocol 

The network service outlined above will be partially provided 
by the Reliable Multicast Active Network Protocol (RMANP), 
described below. It provides the data service and session service 
elements. The flow control service element is not supported. 
This protocol is designed for active network technology. 

We assume that RMANP works on top of an unreliable 
network in which packets can be lost, duplicated, or reordered. 
RMANP relies on the existence of an active multicast routing 
service that handles receiver subscriptions from the group, 

and creates and maintains the multicast distribution tree. The 
current design of RMANP has the restriction that multicast 
routes from the source to the receivers, and unicast routes 
from the receivers to the source must be coincident (at least) 
at the active nodes. No assumption on the size of memory 
available at active nodes is made. RMANP is designed so that 
state information stored at active nodes can be flushed at any 
time; this is the “soft state” concept implied by [ll, 121. 

Capsule Types 
Each capsule has an associated code to be executed in the 
active nodes when the capsules arrives a t  them. We have 
defined one type of capsule for each independent processing 
unit in the protocol. We have created different types of cap- 
sules for original and retransmitted data, even though they 
have the same format, in order to load the code needed to 
process retransmissions when the arrival of a NACK capsule 
occurs. We have defined an independent capsule for the unre- 
liable data (UR capsule) because the only processing to be 
done with these data are replication and forwarding. We have 
the same capsule type (data capsule) for reliable data (RE 
flow) and time-constrained reliable data (T-RE flow) since 
their processing is very similar. The flow type is identified by 
the Flow field of the data capsule. The Flow field is also pre- 
sent in retransmission, ACK, multiple ACK (MACK), and 
NACK capsules. The term direct descendants of a given active 
node will be used to denote all receivers or active nodes that 
can be reached downstream from the given node without 
passing through other active nodes. 

A brief explanation of most relevant capsule types follows. 

UR Capsule - This capsule carries data that the application 
wants to send unreliably. 

Data and Retransmission Capsules - These capsules contain 
data that the application wants to send reliably (RE flow) or 
reliably but restricted to a certain reliability time (T-RE flow). 
The Mack-Required field is used by the source to ask those 
active nodes that have receivers as their direct descendants to 
send a MACK capsule. The Data-RT field contains the relia- 
bility time to be used by active nodes and receivers in a T-RE 
flow. 

ACK Capsule - This capsule carries cumulative acknowledg- 
ments for R E  or T-RE data. 

MACK Capsule - This capsule carries multiple accumulative 
acknowledgments. They are generated at the source’s request 
by setting the Mack-Required flag in a data or retransmission 
capsule. This capsule carries the number of receivers that are 
direct descendants of the active node that generated this cap- 
sule, and for each receiver its address and highest sequence 
number (RE or T-RE flow) acknowledged. 

NACK Capsule - This capsule requests retransmission of RE 
or T-RE data. The Sequence-number field contains the base 
value used to calculate which capsules are requested. The 
Fields-number field indicates the number of 
Seq-Individ-NACK fields inside this capsule. Each Seq-Indi- 
vid-NACK field is used to calculate the range of individual 
sequence numbers that are requested by the sender of this 
capsule. I t  has three subfields: Offset, Seq-n-NACK, and 
nack-c. The Offset subfield indicates the offset from the last 
sequence number of the preceding field. The Seq-n-NACK 
subfield contains the number of consecutive capsules request- 
ed (negatively acknowledged) starting with the next one indi- 
cated by the offset field. The nack-c subfield contains how 
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1419 
L - - -  

many NACK4 havc alrcady bccn \ent for 
this rangc of secluonce numbsrc. ..- I I . ._ - - ~  

The zesien oi this caosule is based on the ‘able I . A  NAc‘K capsu1e. 
one describYed in [13]. 1; order to clarify this 
capsule format, Table 1 shows the NACK 
fields used to request the retransmission of capsules with 
sequence numbers from 1420 to 1432 for the third time, and 
capsule 1440 for the second time. 

RRf Capsule - The rejected receivers list (RRL) capsule is 
multicast from the source and contains the addresses of the 
receivers to be rejected from the RMANP session. 

Elements that Participate in an RMANP Session 
R E  and T-RE data capsules generated in the same session 
will be treated by RMANP as two data flows with indepen- 
dent sequence numbers and state information. The only dif- 
ference between the processing of RE and T-RE data capsules 
is that the removal of a T-RE data capsule can be triggered by 
the expiration of its associated reliability time (Data-RT). 
From now on, all the processing will be explained for RE data 
capsules, and T-RE processing will only be highlighted when 
differences appear. 

Source - The source stores RE and T-RE data capsules gen- 
erated until the corresponding MACK capsules have been 
received with information from all receivers. In the case of T- 
RE data capsules, they are also removed when their Data-RT 
(the reliability time of the session) expires. The application is 
responsible for choosing the type of session service it requires 
for each RMANP session opened. The characteristics of the 
three session services are: 

Open group - Only UR and T-RE data capsules are used. 
In this kind of session the source does not have any infor- 
mation related to the receivers connected to the session. 
Controlled open group - All types of capsules (UR, RE, 
and T-RE data) are allowed in this session type. The source 
controls the receivers that are connected during the session 
by periodically requesting receiver status information. This 
request is done by setting the Mack-Required flag in RE or 
T-RE data or retransmission capsules. The source entity 
will inform the application about which receivers join or 
leave the session. If the application requests it, the source 
can promote the expulsion of any receiver by multicasting 
an RRL capsule. 
Closed group - The application indicates the list of receivers 
that should participate in the session. When the RMANP 
session is initiated, the source entity unicasts an invitation to 
each of those receivers. If one (or more) receiver(s) has not 
answered positively, the source entity will notify the applica- 
tion of this fact, which decides between aborting or continu- 
ing the session. Then, if new receivers connect they are 
automatically expulsed (using RRL capsule). In other aspects, 
this session type is similar to the controlled open group. 

Receiver - Receivers send ACK capsules toward the source with 
the sequence numbers they have correctly received. ACK capsules 
are generated every certain number of data capsules received, or 
after a given ACK timer expires. Each time a capsule loss is 
detected the receiver unicasts a NACK capsule containing the 
range of lost sequence numbers to the source. When a loss 
occurs, a NACK timer is started (unless it is already running) 
in order to periodically generate a NACK capsule containing 
the sequence numbers (each range with its associated NACK 
count) of all those capsules whose retransmission is being 
expected. The NACK count (nack-c field) associated with 
each sequence number range is used to indicate how many 

times the NACK time has elapsed while waiting for this range. 
In the case of T-RE data capsules, the same process takes 
place, except that after their associated Data-RT has elapsed 
their retransmission is not requested anymore. 

Active Node -Active nodes maintain state information for 
each multicast session (source and group) and for each of 
their direct descendants. Active nodes perform the following 
tasks. 

Data Caching and Buffer Release - In addition to the state 
information corresponding to its direct descendants, the active 
node keeps information for itself. It records the highest R E  
and T-RE accumulated sequence numbers it has buffered or 
that have been acknowledged by all its direct descendants, 
and the RE and T-RE sequence numbers buffered above the 
accumulated number. When a multicast R E  or T-RE data 
capsule is received, the active node stores it if there is space 
available (datu caching). 

When a certain number of data  capsules have been 
received, the active node unicasts an ACK capsule toward the 
source (ACK fusing) with the cumulative sequence number 
that has already been acknowledged by all its direct descen- 
dants or been stored by the active node itself. The generation 
of acknowledgments for capsules not yet acknowledged by all 
direct descendants, but stored in the active node, tries to 
avoid storing a given capsule in all active nodes that exist 
between a receiver and the source. 

When an ACK capsule is received from one of its direct 
descendants, it is processed (in order to actualize the corre- 
sponding R E  and T-RE sequence numbers of the direct 
descendants and of the active node itself) and is not fonvard- 
ed. An ACK capsule has different meanings depending on 
whether it was generated by a receiver or an active node. If a 
receiver generates it, the ACK means that the receiver itself 
has received the capsule. If an active node generates the 
ACK, it means that either the active node has stored the cor- 
responding data capsule, or all its direct descendants have 
acknowledged that capsule. Each data capsule is stored at an 
active node until all its direct descendants have acknowledged 
it, or the soft state storage time for that capsule has expired. 

An active node will generate one MACK capsule toward 
the source upon the arrival of a data or retransmission cap- 
sule with the Mack-Required field set. Each MACK capsule 
carries the current acknowledgment information regarding all 
direct descendants of the active node that are receivers of the 
session (aggregation function). Only active nodes that have 
receivers as direct descendants will generate MACK capsules. 
MACK capsules are not processed at any intermediate active 
node as they travel to the source. 

Retransmissions - Retransmissions in RMANP are based on 
the mechanisms proposed in (141. Here we will use “interface” 
to denote an interface of the active nodes that leads to direct 
descendants. Active nodes use two type of records with state 
information that supports the retranSmiSSion process. One 
retransmission-info record is created for each retransmitted 
data capsule. This record holds a NACK count value (nack-c) 
for each network interface through which the capsule was 
retransmitted. It is used to filter unnecessary retransmissions 
that may occur when many receivers that can be accessed 
through a given interface do request retransmissions for a 
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H Figure 1 . RMANP session topology. 

given capsule. One nack-supression-info record is created for 
each sequence number requested by the active node. It holds 
the nack-c value of the last NACK sent for this sequence 
number and a bitmap with as many entries as the number of 
interfaces of the active node. The bitmap indicates through 
which interfaces NACK capsules for this sequence number 
were received. 

Active nodes or receivers start the retransmission process 
when they detect the loss of data capsules (intermediate 
sequence control), and they generate a NACK capsule with the 
requested sequence numbers and their associated nack-c. 
NACK capsules are processed at the first active node they 
visit on their way toward the source, and are not necessarily 
forwarded. When an active node receives a NACK capsule, it 
analyzes all the sequence numbers and nack-c fields con- 
tained in it. For each pair (sequence number, nack-c) the 
node carries out the following functions: 
0 It checks if the retransmission request for the sequence 

number has already been attended to (retransmission filter- 
ing) or not. If it has been attended, no more processing is 
done. Otherwise, the processing proceeds to the following 
point. To check if the retransmission has been attended to, 
it verifies that the retransmision-info record (associated with 
this sequence number and incoming interface) exists, and 
that the nack-c in the record is higher than or equal to the 
nack-c being processed. 

* It checks if it has the requested data locally stored. In this 
case, it performs the retransmission (local recovery), and no 
more processing is done. Otherwise, the processing pro- 
ceeds to the next point. The retransmission is performed by 
sending (in multicast) the data capsule only through the 
specific interface where the NACK capsule arrived (recovery 
with restricted scope) and actualizes its retransmission-info 
record to filter further retransmissions. 

0 I t  checks if a negative acknowledgment has not already 
been sent. In this case, a NACK has to be sent for sequence 
number and nack-c being processed, and it writes the 
nack-c being processed into the nack-c of the nack-supres- 
sion-info record. Otherwise, no NACK has to  be sent 

(NACK filtering). In either case, it has to set 
the bit of the nack-supression-info record cor- 
responding to the interface through which this 
NACK was received. To check if the negative 
acknowledgment has already been sent, it veri- 
fies that  the nack-supression-info record 
(associated to  this sequence number) exists 
and that the nack-c in the record is higher 
than or equal to the nack-c being processed. 
When the processing of all the sequence num- 

bers is finished, it will generate a single (or no) 
NACK capsule to request all the sequence num- 
bers needed. 

When a retransmission capsule arrives at an 
active node, if the nack-supression-info record 
corresponding to the capsule exists it forwards 
the capsule only through the interfaces which are 
set  in the associated bitmap (recovery with 
restricted scope).  After that ,  it updates the 
retransmission-info record for that  sequence 
number. If no nack-supression-info record is 
found (cache space is low, active node drops, 
etc.)  the active node caches the data  in the  
retransmission capsule. If no cache space is avail- 
able, the capsule is forwarded in normal multi- 
cast mode and its associated retransmission-info 
record updated. 

Management of Receivers/Active Nodes - RMANP does not 
need specific procedures to treat either distribution tree joins, 
leaves and modifications of receiverslnodes, or active node 
information losses. If a descendant of an active node leaves a 
given RMANP session, its associated state information at its 
active node ancestor will disappear when its time to live 
expires. When a new direct descendant joins the current ses- 
sion, ACKs and NACKs are received from it, and the active 
node creates the new necessary information accordingly. If, as 
a result of reorganizations of the distribution tree, an active 
node or receiver changes its relative position within the tree, 
the protocol will treat it as a session leave and subsequent ses- 
sion join. 

Implementation of RMANP Over ANTS 
The ANTS Platform 
The Active Node Transport System (ANTS [3, 151) is a Java- 
based toolkit for experimenting with active networks. It pro- 
vides a node runtime and protocol programming model that 
allow users to customize the processing of their capsules. The 
main features of ANTS v. 1.2 are: 
0 Each capsule carries a protocol and capsule identifiers that 

point to the Java code required to process the capsule at 
each active node. The code is demand-loaded at  active 
nodes when the first capsule of a given type arrives. There- 
fore, an active node will never load protocol code it does 
not need. 
In order to load the code, it is requested of the previous 
active node that processed the capsule. The objective is to 
receive the code from the closest possible place. The code 
is retained for some time at the node in order to reduce the 
number of requests for code-loading. All capsules of the 
same protocol and type share the same code at the node. 

., Each active node has an LRU cache memory to implement 
a soft-state information repository. A time-to-live value is 
associated with each stored item. Items are removed when 
their associated time to  live expires. In case there is not 
enough memory to store a new item, the oldest item is 
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automatically removed to  free 
enough space to store the new one. 
ANTS uses UDP for active nodes to 
communicate with each other, and 
both the platform and capsule code 
are executed as a user-level process. 
One advantage of being coded in 

Java is portability, but it has the draw- 
back of reduced execution perfor- 
mance. Based on our work over the 
ANTS platform, we judge that it is a 
user-friendly and powerful support 
environment. However, we have intro- 
duced two modifications of ANTS that 
we have found useful for the develop- 
ment of RMANP. First, we have incor- 
porated a method that allows checking 
at any given moment whether there is 
cache space available. This is useful in 
memory shortage situations in which it 
is better to discard a new item than to erase an old one. For 
example, in RMANP it is better to avoid caching a new data 
capsule instead of erasing protocol state information. Also, we 
have added a method that explicitly removes an item from the 
cache. In RMANP this allows memory used by cached data 
capsules that have been acknowledged to be freed without 
having to wait for their time to live. 

RMANP Proto?/pe and Evaluation Testbed 
An RMANP prototype has been implemented in Java using 
the primitives supplied by ANTS v. 1.2 (the code is available 
at http://escorpio.ls.fi.upm.es/RMANP.html). The current ver- 
sion implements the reliable delivery data service (RE flow) 
and the unreliable delivery data service (UR flow). The cap- 
sules that have been implemented are therefore those that are 
required for these two services (see the fourth section). Relat- 
ed capsules are bound in groups in order to reduce the delay 
caused by demand loading of code. The following three 
groups have been defined: (data, ACK, and MACK capsules), 
(retransmission and NACK capsules), and (UR capsule). The 
Java code has been byte-code compiled using Java Developers 
Kit (JDK) v. 1.1.3. 

To test the performance of the system and to understand 
its limitations and strengths we have conducted an experiment 
running ANTS over the Java interpreter (Java Virtual 
Machine, JVM) of JDK v. 1.1.3. The active network topology 
of the RMANP session used is shown in Fig. 1. 

In the experiment, the source sent one 3000-kbyte file using 
R E  data capsules, each with 1024 bytes of data. The source 
injected RE data capsules into the active network at a rate of 20 
causuleds. UR causules were sent. interleaved with RE 

by the capsules. As a reference value, 
the TCP object code in a Linux kernel 
v. 2.0.3 is 42,392 bytes. 

Notice that each capsule group will 
only be loaded at an active node when 
required. For example, the retransmis- 
sion capsule group will not be loaded at 
active nodes where no NACKs are being 
processed. These performance implica- 
tions were taken into account during 
the design of RMANP (e.g., for the 
definition of two different capsules for 
data and retransmission, in spite of 
them both having the same fields). 

The memory required at  active 
nodes to keep the associated RMANP 
state information is dependent on the 
session topology. Each active node 
requires 49 bytes/RMANP session in 
which it is involved. In addition to  

that, 21 bytes are required for each of its direct descendants. 
Ten additional bytes are needed for each capsule lost, and 
each group of eight network interfaces used at the active 
node. Finally, storage for cached data and data in transit is 
required. This is not differential to any network-based retrans- 
mission technique, since the nodes will only be able to locally 
retransmit the data they are storing. Notice that the byte-code 
stored at the active nodes is shared by all RMANP sessions, 
and the state information values grow linearly (with low fac- 
tors) with session size. Based on these results we consider that 
the memory requirements of the RMANP implementation 
over active networks are acceptable. 

Capsule Processing Times 
Our second performance study has consisted of analyzing the 
processing times needed to process the RMANP capsules in 
active nodes. We estimated the average processing time asso- 
ciated with capsules by recording the real-time values using a 
Java native method invoking the gettimeofday() system call. 
Table 3 shows the average real time used at an active node for 
processing the different capsule types. Notice that the CPU 
time must be below these figures. Notice also that these fig- 
ures do not include all the processing carried out on the cap- 
sule, because the OS and the ANTS platform perform 
standard processing over each incoming capsule before invok- 
ing the specific code required to process it. 

These processing times are considered unacceptably high in 
relation to the processing power of the supporting machine. 
Still, we judge the results very promising because the execution 
performance can be improved in different ways. In addition to 

' Tab'e 2. Byte-c0de sizes ofRMANpcap- 
sules and Tcp Object 'Ode* 

data capsules at a i  average rate of 4 capsules/s. The pro- 
cessing measurements were made at the active node 
labeled AN2. The AN2 node ran alone on a Pentium 
MMX 166 MHz with 128 Mbytes of RAM under Linux. 
The other nodes of the experiment ran on different 
machines connected by 10 Mb/s Ethernet. 

Memory Requirements 
Our first performance study consisted of analyzing the 
memory requirements at the active nodes. We mea- 
sured the memory required to store the code associated 
with RMANP capsules and the memory required to 
store the state information associated with the RMANP 
session. Table 2 shows the byte-code sizes for RMANP 
capsules. The table presents the three capsule groups, 
and also the byte-code size of auxiliary objects shared W Table 3. Processing times of RMANP capsules. 
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fine-tuning the implementation, an improvement can be obtained 
by machine-code compilation of active networking platforms. 
Since capsule code cannot be compiled (one might not expect all 
active nodes to be homogeneous in terms of OS and hardware), 
improvements in Java interpretation and/or Java fast compila- 
tion are required for acceptable performance. Performance 
improvements can also obtained by introducing in the archi- 
tecture of active networks standard fields in the capsule head- 
er to request processing shortcuts. This suggestion is similar to 
the idea of hop-by-hop vs. end-to-end options in IPv6. As an 
application example, the MACK capsules of RMANP only 
require processing at the destination. If they could be tagged 
for just forwarding at intermediate nodes it would result in 
overall pefformance improvements. 

Finally, we consider the combination of two approaches to 
capsule code distribution, demand-loading and capsule-carry- 
ing, to be convenient. Demand-loading is appropriate for the 
protocol code modules which must be available at the node 
throughout the session, and these modules are reused by ses- 
sions of different users of this specific protocol. Capsule-carry- 
ing is convenient for seldom used procedures or capsule types, 
in which the delay caused by demand-loading is not worth the 
saving in bandwidth and reusability. Although not explicitly 
addressed in the experiment, an example in RMANP is the 
code associated with session establishment and release. This 
code could be carried only in the capsules used for session 
establishment and release, not demand-loaded, because it is 
not required throughout the session. 

Conclusion 
We believe that our definition of a multicast network service 
that supports different classes of packet loss tolerances will 
simplify and accelerate the development of new multicast 
applications and teleservices. I t  has been shown that the 
design of a protocol which provides this service is feasible: 
RMANP provides a range of multicast session and data trans- 
fer services to its user applications, while keeping protocol 
complexity reasonably low. 

Based on our work on the ANTS platform, we judge that it 
is a user-friendly and powerful support environment. We have 
also pointed out areas in which ANTS could be improved, 
such as its cache management features, capsule processing 
shortcuts, and support for protocol software structuring. The 
RMANP prototype has acceptable capsule code sizes and 
data-segment memory requirements. However, the figures for 
execution time are not acceptable. As described in the previ- 
ous section, we do not believe that this is caused by an intrin- 
sic drawback of either RMANP or active networking. Future 
versions of active networking platforms should take into 
account that runtime performance is an important require- 
ment in order to support high data rates and/or a large num- 

In relation to active network technology itself we believe 
that, based on the work described in this article, it provides 
the capability needed for fast development and deployment of 
sophisticated network protocols and services. The case study 
presented is considered a difficult problem to deal with; in 
spite of this, currently available active network support has 

ber of protocol instances in an active node. 

proved quite valuable for the design and implementation of a 
prototype solution. 
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