Off-line incentive mechanism for long-term P2P backup
storage

Marco Gramagli&®*, Manuel Uruefi3 Isaias Martinez-Yelmo

Institute IMDEA Networks. Av. Mar Mediterraneo 22. E-289Eganés (Madrid). Spain
bUniversidad Carlos Ill de Madrid. Av. Universidad 30. E-289Leganés (Madrid). Spain
CUniversidad de Alcala, Escuela Politécnica Superiorn@ais Universitario, N-Il Km 33,6. E-28871
Alcala de Henares (Madrid). Spain

Abstract

This paper presents a micro-payment-based incentive michdor long-term peer-

to-peer storage systems. The main novelty of the proposethiive mechanism is to
allow users to be off-line for extended periods of time withapdating or renewing
their information by themselves. This feature is enabledugh a digital cheque,
issued by the user, which is later employed by the peers ta gettification for storing

the user’s information when the user is off-line. The pramb®2P backup system
also includes a secure and lightweight data verificationhaeism. Moreover, the
proposed incentive also contributes to improve the aviityabf the stored information

and the scalability of the whole system. The paper detadls#hification and cheque-
based incentive mechanisms in the context of a P2P backugeseand analyzes its
scalability and security properties. The system is furtime validated by means of
simulation, proving the effectiveness of the proposedritice.

Keywords: Peer-to-Peer (P2P), Long-term Storage, Incentive Meshani
Micro-Payment, Digital Cheque, P2P Backup

1. Introduction

The increasing number of consumer devices that can gerdr&ieds of digital
media (e.g. audio, video, photos) has worsened the old @mobf safely storing all
these space-consuming data. To relieve users from thadaisand eventually expen-
sive task of maintaining their own dedicated storage harewia the past few years
many on-line storage services made their appearance ondhetnranging from the
most basic ones likBropbox to more complex and professional-oriented ones like
Amazon S3 The growing success of new networking paradigms such astpgeer

*Corresponding author. Address: Avda. Mar Mediterraneo, Z8918 Leganés, Madrid (Spain). Tel:
+34 91 4816210 . Fax: +34 91 4816965.
Email addressesrar co. gr anagl i a@ ndea. or g (Marco Gramaglia),
mur uenya@t . uc3m es (Manuel Uruefia)i sai as. marti nezy@ah. es (Isaias Martinez-Yelmo)
Ihttp://ww. dr opbox. com
’http://aws. amazon. com s3/

Preprint submitted to Computer Communications March 2, 2012

or, more recently, cloud computing, is offering more toalsackle this storage prob-
lem.

To use a peer-to-peer (P2P) paradigm radically changesatiieenof the solutions
to this problem, offering some advantages (i.e. utilizatbunexploited space in users’
hard disks, tunable level of reliability, low cost, etc.ytlposing other challenges re-
garding security, privacy and a fair use of the network. S&2B-based solutions are
already present in the market: LaCie’s Wifada Fiabeé exploit this paradigm to offer
on-line storage services at a reduced price.

One of the storage services that may benefit most from alulistd P2P architec-
ture is backup, because data is replicated and stored iratdedisks of many different
users, distributed worldwide. Thus, it can be hardly a#fddiy a single failure or even
a set of failures that may otherwise wipe out a local backigven a whole data center.
Of course, any existing P2P distributed file system couldpleyed as the basis of a
P2P backup service. However, there are two specific chaistate that play a major
role in P2P backup: the presence of a local copy, and loosesadime constraints. In
a distributed file system, usually, the information is justed in remote hard disks in
order to offload the local one and to better balance theirzatibn. In a network-based
backup solution this assumption is no longer true: the ulsexys has a local copy of
the data in order to continue working and updating it. Thewoel backup will only be
used in case that some failure happens to the local one. Thad&ey difference of
a P2P backup system are the access-time requirements.aB2B4ile systems impose
hard time constraints (in order to guarantee the performarfénput/output opera-
tions), while in a P2P backup system these timing constairg much less strict. A
user could tolerate some extra time as long as the backupripletely restored in a
reasonable period of time.

In this paper we present an incentive mechanism based om-pé&ments and
digital cheques for long-term P2P storage systems, sucHP@®aackup service. In
our proposal, a user pays other peers to store its backupwlatseas charges other
(possibly different) peers for using their local hard di$kis kind of monetary incen-
tive approach has already been proposed for different PRRcapons [1, 2, 3, 4, 5, 6]
and, even if it is a hidden market, for a P2P backup serviceWWg extend this micro-
payment incentive framework by means of digital cheques ativate peers to keep
storing backup data even when the owner (user) is off-limefoextended period of
time. Albeit the presented schemes also mentioned the garobf long-term avail-
ability, they were just focused on employing redundanchiégues to minimize the
impact of a lost chunk due to a failure of an, otherwise weldved, peer. To the best
of our knowledge, this is the first proposal that tackles tlubem of long-term avail-
ability in a P2P backup system with selfish peers. These lsgléiers can deliberately
erase a chunk when the owner (user) goes off-line to free kheal resources. Our
proposal introduces the possibility to keep on charginguseen if they are off-line
(e.g. due to a hardware problem), providing an incentiveoterase their backup when
it is even more necessary. This last point is crucial for a2l Packup service.

Shttp://ww. wual a. com
“http:// ww. fi abee. com

The paper is structured as follows: after studying the eelatorks in section 2,
section 3 introduces an overview of the proposed P2P baglaipra and defines the
incentive mechanism that governs it. Later, section 4 pitssa detailed discussion
about the design of our proposal, emphasizing on the behakibe system when a
user is on-line or off-line. The different incentive mectsm is evaluated by means of
simulation in section 5. In section 6, we analyze the possdieats that could affect
our proposal and some security mechanisms to prevent therallyi-we summarize
the main conclusions of this paper in section 7.

2. Related Work

The idea of taking advantage of unused space in remote hskd tiat are part of
a P2P network was first studied at the beginning of the pastd#edne of the earliest
proposals was OceanStore [8] by Kubiatowicz et al., whidvisled solutions to many
of the issues caused by relying on an untrusted infrastredar data storage. Also
Farsite [9] by Adya et al. was focused on the problems coriegithe fault-tolerance
and reliability of the stored data. However, these initisdgmsals considered a dis-
tributed file system in a heterogeneous, yet cooperativerasted scenario. The first
proposal of a backup-oriented solution was done by Battexh. éh [10]. It features
file encryption, version control, and provides reliabilitycase of multiple nodes fail-
ures. In this first stage, the research was more focused oridhaghieve scalability,
reliability and fault-tolerance in such a system [11, 12].

More recently, researchers have started consideringiadaitaspects of P2P stor-
age and backup systems. In such a distributed environneedss are service users
and providers at the same time: they want to store their datiaei system, but to do
so, they should also share part of their unused capacity atftér peers. This pecu-
liarity raises obvious fairness issues, especially whargpean behave selfishly. The
so-calledree-ridingproblem of P2P systems is well-known since Adar and Huberman
showed in [13] that the 70% of peers were not sharing any filésd Gnutella network.
Since then, a plethora of works [14, 15, 16, 17] have beengz@gto try and miti-
gate this problem in P2P networks. They usually exploit spimgsical constraint of
the system or they are based on fundamental principles fateneconomics or game
theory, modeling the problem as the “Tragedy of the commdiisinma. In fact, most
of the P2P systems currently deployed implement some kinoghtive mechanism
like BitTorrent’s “Tit-For-Tat” [18].

However, thdree-riding problem in a P2P backup (or file storage) system is quite
different from the one that can be found in a file-sharingeayst A first difference
is the potential “audience” of the resources being storethbypeers. For example,
let us consider one file being uploaded with some file-shasofgvare. This file is
“public” and could be potentially downloaded by any userh@ hetwork. In fact, in
most P2P file-sharing systems, peers store a file becausartdectually interested
in it. On the other hand, in long-term storage services apedaally in P2P backup
services, each piece of information is usually encrypteat] #rus, belongs to a single
user (or to a restricted group of users). This consideratiakes the problem even
more complicated since there is not any implicit incentoegeers to store (useless)
file chunks from other peers. Thus, how to reward a peer trsitasing an amount of

disk space much greater than the one it is asking for its d@afthe opposite case,
how to incentive a peer to be more generous with the systeirisitising more space
than the one is sharing? Furthermore, how can such storagagjbe enforced in a
fully distributed system? A possible solution was proposgdox et.al. in [19, 20],
using a framework for limiting the amount of data that a usealiowed to store into
the network. This leads to a symmetrical behavior thatoaigfh keeps the system in
a stable state, limits its flexibility. More recently, oth&tudies have tried to tackle
this problem without forcing the users to share a fixed amoiidisk space. In [7],
Seuken et al. have proposed to solve the problem by intradueivirtual market
where a central system computes the exact amount of resahataisers have to share
(including uplink and downlink bandwidth) by following afile mechanism that, under
certain conditions, leads the system towards an equitifritlowever, this proposal
still implies that peers follow a fair share, and it does nefitk any verification or
penalty mechanism for selfish peers. Using monetary inoesitn P2P systems was
also studied in [1, 2, 3, 4, 5, 6], but these works are mosttyi$ed on the security
aspects about coining digital currency.

Furthermore, the incentive mechanisms for P2P file systemsat be directly ap-
plied to P2P backup systems due to their specific charatitsri$Vhereas in a standard
file system the saved data is frequently read and writtes,ishusually not true in a
backup system. Instead, the data are commonly stored onby. étead operations are
not frequent at all and, hopefully, null unless the userta@slost from the local stor-
age. Moreover, whereas in a distributed file-system the mmg®irtant feature is access
performance, the long-term durability of stored data isparunt in a backup service.
The terms data durability and availability are often useth@literature regarding P2P
storage systems [21]. The durability is the property thargatees the fact that data
stored in a peer will last for a time ideally infinite. This perty is valid even when the
peer is off-line. The availability property is more restive: it is valid when the data
stored in a peer is correctly saved and available for dovehitmp Therefore, if we con-
sider that the users of a P2P network behave selfishly, weotarst rely on replication
mechanisms and consider that the data stored in a workingg'&safe” without a se-
cure control mechanism that continuously verifies this. dthbpeers are on-line, the
problem could easily be solved by performing periodicaloiseof the data availability
as proposed by Toka et al. in [22, 23]. Michiardi et al. in [pdésented an analytical
model based on game theory for the detection of selfish pelest amilar solution was
provided previously by Pamies-Juarez et al. in [25]. Theyppse a proactive moni-
toring system that checks the availability of the peers asigas different quotas of
the system to the users according to their obtained scoris. afbhitecture is further
researched by the same authors in [26] where they foundtiorelzetween the system
health (in terms of data availability) and the peer selecatgorithm. Selecting the
best peers increases the efficiency of the P2P system andi@sdetter results when
trying to retrieve the stored chunks. The solution propdse@ualha et al. in [27] also
identifies the data reliability as one of the biggest issnethé field of P2P storage.
They propose a distributed system to find out malicious pedteer passive (which do
not allow other peers to use their resources) or active anieisli deliberately free their
resources after having stored a chunk). However, theirgsalgs focused on how to
recognize whether a peer misbehaves and not on how to reward for guaranteeing

the maximum durability of the information.

However, even by periodically checking the presence oéstdata, the system will
not be in a truly safe state without a proper incentive meidmanPeers are still storing
data that is not of their interest. Hence, even non-malgjrers can potentially decide
to remove it at any moment in order to free their local ston@geurces. This problem
is even worse when users go off-line (e.g. vacation timeoplsror due to hardware
failures) and cannot perform the verification or paymentptures associated to their
remote stored data since there is no guarantee that thegamile back on-line again
to pay for their consumed resources. Therefore, peers nagel® remove the data
of users that have been off-line for a while, which is exaathen backup data may be
more important, since the user may desperately need it wdraimg back on-line (e.g.
the laptop was stolen during the vacations or the hard desshed the night before).

Therefore the main objectives of our P2P backup proposaiartold: 1) to de-
sign a secure verification mechanism that ensures that tk@panformation is safely
stored, and 2) to devise an incentive mechanism based ow4péyments that mo-
tivates peers to store backup information even when therneseains off-line for an
extended period of time (e.g. 2 months or more).

3. Overview of the proposed P2P backup system

This section briefly summarizes the proposed P2P backupraysgicluding the se-
cure data verification mechanism and the incentive systes@doi@an micro-payments. It
also explains the desired behaviors that are encouragedchyirscentive mechanism.
All the technical details of the proposed mechanisms araeefin the following sec-
tion. But first, let us provide a general overview of the pregd P2P backup system
(see Figure 1).

Let us consider aiserthat wants to back up the information that she is working
with. However, instead of employing the local hard disk, efhiias some free space but
may suffer some hardware problem that wipes out both, thggnadi information and
its backup, this user prefers to store the backup in a P2Braywhere the information
is replicated into multiplgpeersdistributed all over the world. In exchange, other
users are allowed to store their information in the userrsl liisk, although the quota
dedicated to the P2P backup application can be reduceditf@thl space for personal
files is needed.

Thus, the user’'s P2P application makes a complete backine déétal information
and keeps updating it with incremental changes wheneverdgbiemodifies local files.
Since handling such large backup file is quite inconvenignd, it may not fit in the
space shared by a remote peer, backup files are split in smétiees (e.g. 1 MB
long), calledchunks which also simplifies updating the backup when only part of
the data changes. These chunks are encrypted to guaraateertfidentiality and
privacy of the backup data, and then uploaded to multiplegpeethe P2P backup
system. For resiliency reasons, each chunk is replicatédimmed in different peers,
and the (small) index file that specifies in which peers thenkhunave been stored is
placed at a known and safe place. How these peers are fourmhomiany replicas
are necessary to guarantee a given resilience level is aiiec$cope of this paper,
since these topics have been already investigated in pugWAP storage works [28].

User

S

| BACKUP

Earns

l N Virtual Money
* (Credits)

(€e)
N

Transfers

Chunks

Bank

Figure 1: Overview of the proposed P2P backup system

Another implementation issue is whether the P2P applinatiores a complete copy
of the backup locally or it may just depend on the remote ptered in the P2P
network. The only requirement is that any given chunk candagemerated locally,
either from a local backup copy or from the user’s working $ide.

In order to minimize the bandwidth employed by the P2P apfibo, once the
backup chunks are stored, they are never changed unlesséahg information is up-
dated. Thus, only the affected chunks have to be uploaded.dgathermore, if some
of the peers are not reliable enough (i.e. spend too muchdffdae, have corrupted
or lost chunks), the chunks that they store are moved to atiee reliable, peers. Ad-
ditionally, in order to guarantee that the backup inforimais safely stored, the user’s
application periodically checks the chunks by means of arsecerification mecha-
nism that does not require downloading the chunk itselftelad, the user just sends a
hash-based challenge to the peer, so it can only reply ifstrbally stored the chunk
and has not modified it, either intentionally or due to sonrelvare or software glitch.
Therefore, this mechanism is able to identify unreliablerpeand usual offenders may
be placed in a local black list in order to avoid trusting thierthe future. More com-
plex data verification architectures can also be appliedomrehensive work about
“data possession” was presented by Ateniese et al. in [29].

However, we consider that this verification mechanism alenmet enough to en-
sure the correct behavior of the system in a real world ségnaith selfish peers that
may delete chunks at any time, or somehow waste the resafritessystem (e.g. stor-
ing too many copies of the backup or trying to verify their oks too often). For this
purpose some incentive mechanism should be employed todevedi-behaved peers.
In this case, we propose an incentive mechanism based on-péyments, where
peers must pay for the resources of the system (i.e. banuaidt storage space) that

they are consuming. That means that users must not only paettrs for storing their
chunks, but also for any operation that might be requestedh$tance the verification
of data. Therefore, peers will get more or less revenue dipgron the space they
are willing to share. Moreover, since this revenue can bel@yed to pay for storing
your own chunks, this mechanism naturally couples the ressiconsumed by a user
with the resources shared with other peers (which may be letetp different to the
ones where the user’s chunks are stored), without tryinghfmose artificial altruism
or symmetric behaviors. Furthermore, paying for every ested operation will lead
to more efficient applications that avoid superfluous ojpenat In addition, peers are
encouraged to stay on-line in order to be seen as reliabkemnether users, and thus
to get the fees related with the different operations thatrecessary to store chunks
(i.e. upload chunks, verify and update them, etc.).

There are many micro-payment proposals in the literatuaedbuld be employed
to perform the payments required by this incentive meclani§hese systems are
characterized by the trade-off between its security an@teehead required to gener-
ate and verify the virtual currency that is used in the tratisas. For simplicity and
performance reasons we have chosen a centralized micrograynechanism based
on a trusted third party, simply callédnkin this paper, since it resembles a real-world
bank. Actually, there could be multiple banks that perfoirtual money transactions
among each other, but for the sake of simplicity, we will diésethe system consid-
ering a single bank. All users/peers will have an accounénltank that records the
virtual money owned by each peer. Peers may start with a finedeamount of virtual
money, and the bank may also accept real money in exchangeduwdhone. This al-
lows users to participate in the P2P system, saving thekupawithout sharing their
own resources. The payment of some amount of virtual moreey fine peer to an-
other is then performed by asking the bank to transfer moeéyden the two peers’
accounts. Since too many payments could stress the baifidstiucture, payments
are delayed and performed as a batch. Our proposed incenégbanism also en-
forces this behavior, since users must pay the bank for eackfer operation that they
request. Moreover, the bank could employ the collectedtie&snd its infrastructure,
either directly, if the virtual money can be exchanged f@l ane, or indirectly, if the
bank employs its virtual money to gain storage space thabedater rented to other
parties.

However, both the verification and incentive mechanisms laasommon problem:
the user must be on-line to perform the verification and payrpeocedures. This
requirement could be seen just as slightly inconvenientnbihe case of a P2P backup
system it could be fatal. If users suffer a hardware failerg.(hard disk crash) and the
recovery takes some time, when they come back on-line theiv,vital, backup may
have been gone, deleted by unpaid peers. Therefore, theibaasntive and verification
mechanisms have been extended to support users stayiligeofitr extended periods
of time. Off-line payments are enabled by means dfigital cheque issued by the
user, which allows the entitled peer to request to the baalpttyment for the user’s
chunks being stored. But how is the bank able to verify thatger is really storing
those chunks if it does not have a copy of the user’s data? mipoped solution is that
the user provides to the bank a list of challenges and th&it responses, callegionce
list, which could be later employed to verify the chunks pertadrid the digital cheque

being cashed by a peer. To avoid overloading the bank withahee lists of all users,
the nonce list is stored alongside the chunk in the peef,itaa encrypted so only the
bank can read it. Therefore, the bank only has to retrievecante the nonce lists of
the users being off-line too much time due to the peers aeelabthemselves to cash
their cheques. The fact that the off-line verification metia is much more expensive
for the user than the on-line one, it incentives users to nema&line if possible.

The following sections fully specify the P2P backup systeyarations, including
the proposed verification and incentive mechanisms, in bafies, when the user is
on-line or off-line.

4. P2P backup system design

Before going into the technical details of our proposak ihécessary to define the
different roles that are necessary in this architecture:

User: We employ the term “user” to refer to a peer that is storindpéskup informa-
tion in other peers. Because of performance and resiliessres, user’s infor-
mation is split into severalhunkshat are later encrypted, replicated and stored
in different peers. There should be redundant copies ofdheesdata to cope
with peers leaving the system or remaining too much timdio#:- In that case,
the owner of the information has to create another chunkozphd store it in a
different peer to replace the lost one.

Peer: It is a node that cooperates sharing some of its resourcasmpase the pro-
posed P2P backup system. An incentive mechanism based oo-paigments
is employed to ensure that bandwidth and storage resouree®awasted, and
to make sure that well-behaved peers are properly rewatdgxarticular, users
must pay peers for storing their chunks and performing thaested operations.
The earned money may be then employed by peers to store theictounks, or
even to exchange virtual credits for real money.

Bank: The proposed micro-payment mechanism requires a trustéy, evhich per-
forms the role of a real-world bank, but handling virtual reuncy, calledcred-
its in this paper, instead of real-world money. The baakcounts the virtual
money owned by all users/peers of the system, thus paymetweén peers are
performed just by asking the bank to transfer virtual momeynfthe payer’s
account to the payee’s.

4.1. P2P Backup System operations

All transactions related to the P2P backup service are eldasgth a fixed amount
of virtual money. Therefore, it is necessary to pay at leasedlit for each transaction,
charged to the initiator of the operation. Our long-ternrage service employs five
basic operations:

5This architecture supports any number of banks that trugt ether, as in the real world. However for
simplicity reasons we constrain our description to a sitgiek.

PUT: Ituploads and stores a chunk of data in a remote peer. Thetihss operation
must be much higher (e.g. 10 times) than the cost of renewigiak, which
does not require uploading it, as in this case.

VERIFY: It checks that a remote peer is truly storing the desired klofiinforma-
tion, for instance before being renewed. The cost of thisatjm is 1 credit, so
users are encouraged to not check continuously their chunks

UPDATE: It renews a previously uploaded chunk for a certain periotinoé (i.e. 1
day) without uploading it again. The cost of this operatisrlicredit plusD
credits per day (or any other arbitrary time unit) elapsedesihe last UPDATE
operation.

GET: It downloads a chunk of data from a peer. The cost of this djperahould be
similar to the PUT one since it also requires moving data betwpeers.

DELETE: It removes a chunk from a peer. Its cost is 1 credit and it iegsary to
avoid being blacklisted by a peer storing an old chunk. Thathen a user
moves one or more chunks from one peer to another (e.g. bet@isew one
is more reliable), it should delete the chunks from the old.on

The nominal value of the fee associated to each operatidd betcalculated using
the relative costs of performing these operations, howéwesimplicity in this paper
we will assume that there is a common, fixed price to store (€@ credits) and update
(e.g.D=10 credits/day) one chunk.

It is important to define how the transactions of virtual mpaee performed after
each operation. There are several ways to perform microapats. In our system, we
use delayed bank transfers, where a user delays all paytogresform them together
in a specific moment of time (e.g. once per day after updatintpe chunks). We
think that this solution is a good trade-off between compaital load and complex-
ity with respect to other solutions (e.g. instant bank tfarssor direct micro-payment
exchanges between peers [1, 2, 3, 4]). The proposed sohitidelayed bank trans-
fers reduces the consumption of bandwidth and computdtiesaurces to process the
transactions of all peers, although the bank could stilbbae a bottleneck. However,
this architecture can support multiple bank entities, dnete are secure mechanisms
[2] that even allow each bank to define bank assistants tothelp in their duties if
necessary. Furthermore, the bank also charges each mansjeirbatch with a small
fee (e.g. 5 credits) in order to fund its operations, as wetbaeduce its load, because
the peers will try to contact the bank as less as possible.

However, delayed bank transfers introduce a time gap bettiespeer performing
an operation and when it receives the payment from the uberefore, a peer should
allow some debt from its users until the payment comes. Hsmilrpose, each peer
also maintains localebt accountper user, where the debt accumulated by each user
is annotated. That is, when a peer performs some operati@ifser, like updating a
chunk, the peer adds its cost to the user’s debt account. eCsely, the user employs
its own peer’s debt account to known how much money it owesath @eer. Then,
when the peer receives some payment from the user, the geteaicts it from its own

local debt account, which ideally should go back to zero.e®ilise, if the debt of a
user grows above certain threshold, the user is blacklatedll its chunks are erased.
This debt threshold should be relatively low in order to reviree riders, and thus
this mechanism alone should only tolerate peers beingrgfeuring short periods, let
say a weekend.

4.2. On-line system behavior

In this subsection, we define how our proposal of long-tererje-peer backup
works when both the user and its peers are on-line. This stibegresents the basic
design of our proposal to later understand how it suppoftire users, which is the
main objective of this work. The system is governed by theitive of obtaining
a certain amount of virtual money per transaction. The exghaf chunks and the
transfer of virtual money among users, peers and banks edbas a simple client-
server protocol. Each user operation is acknowledged poreted by the remote peer.
Figure 2 presents an example of the signaling among peees) alhof them are on-
line, to explain precisely the proposed design. This exarmagludes the initial storage,
verification and update of user’s information at two remagens, and exemplifies the
mechanism of virtual money transfers associated with epehadion.

Let us assume that the user wants to store one chunk of eadryformation
but, for resiliency purposes, places it in two peers: peend peer B. To do so, the
user performs on®UT operation per peer (messages 1 and 3), which includes the
full chunk data ChunkDatg, as well as a timestampéthequeissued by the user to
each particular peer, and a list of noncsficelList employed for off-line verification
purposes (this mechanism will be fully detailed in subsec4i.3). EaciPUT operation
is confirmed with @PUT ACK acknowledgment (messages 2 and 4). Each chunk in
the system is uniquely identified by the globally-uniquerudentifier UserID) plus
an individual chunk identifierGhunkID), which can be independently assigned by
each user. APUT transaction is only employed once per chunk and peer, utiess
information inside the chunk is modified; thus, it has to bilaged again.

When the user is on-line, chunks should be updated peribdiead thus pay
peers for storing them. However, before performing any paynto a peer, the user
should check whether the peer is actually storing thoselchiop means of ¥ ERIFY
REQUESToperation (messages 5 and 9). To avoid downloading the chfonkocal
verification, the user sendsn@nce(i.e. a random number) as a challenge to the peer.
The remote peer should then apply a predefined hash opemt#ithe chunk data
concatenated with the nonce provided by the user. The refktlits operation is sent
back to the user in ¥ ERIFY RESPONSE&peration (messages 6 and 10). The user
could then check the challenge response using its own capea@hunk and the nonce.
Therefore, the peer can obtain the proper solution to thésuskallenge only if it
is actually storing the chunk. Users should include peeth several unsuccessful
VERIFY RESPONSBperations in their local black lists, since they are noalsé
peers to store information.

If the verification of a chunk of data succeeds |\ #PDATEoperation is performed
afterwards. Thé&JPDATE operation renews the cheque of the peer and optionally the
chunk’s nonce list (messages 7 and 11), although in moss ¢hedatter is not nec-
essary because the nonce list can be reused until it is egabscause of off-line

10

Bank PeerB

1: PUT(UserID, ChunkiD, ChunkData, Cheque;, NonceList)

2: PUT ACK

(UserID, ChunkiD)

3: PUT (UserlID, ChunkID, ChunkData, Chequej, NonceList)

T
4: PUT ACK

(UserIDI, ChunkID)

»

5: VERIFY REQUEST (userip, Chunid, Challenge)
'=’|

6: VERIFY RESPO‘NSE (UserID, ChunklID, hash(Challenge | chunkData))

7: UPDATE

(UserID, ChunkID, Chequej+1.

|

8: UPDATE ACK
(UserID, ChunkID)

9: VERIFY REQUEST (UserID, ChunkiD, Challenge)

)

I T

10: VER”:‘Y RESPONSE (UserID, ChunkiD, hash(Challenge | chunkDa
D T

11: UPDATE

(UserlD, ChunkID, Chequej+1)

|
12: UPDATE ACK

(UserIDI, ChunkID)

»
»

A

13: BANK TRANSFER
e ————

(UserID, < PeerlDp, Debta >,

< PeerlDg, Debtg >, RevocationTime=i)
1

14: TRANSFER

(UserlD, PeerlDp, Debtp)

I
15: TRANSFER

(UserlD, PeerlDg, Debtg)

16: BANK TRANSFER ACK

(UserID, AccountStatus)

17: GET Ti?ANSFERS
(PeerID)
18: LAST TéANSFERS
(<UserID, Debtp, lastTime>)
1|9: GET TRANSFERS
(PeerID)
20: LAST TRANSFERS

(<UserID, Debtg, lastTime>)

r 3

r 3

Figure 2: Example scenario of long-term P2P Backup with anére user and two
péérs.

verifications. The peer confirms théPDATE operation with anUPDATE ACKre-
sponse (messages 8 and®12)

Therefore, the total cost of updating the chunks stored atex for an on-line
user is: 1 credit for the (optionalyERIFY operation, plus 1 credit for the PDATE
operation plud, the cost of storing a chunk per day, multiplied Gythe number of
chunks and, the number of elapsed days since the last update time. Shat i

Uon(C,t):2+D'C't (1)

However, until this moment, no payment has been performetgeause, thanks
to the long-term relationship between a user and the pdersytstem could employ
delayed bank transfers to reduce the load. Meanwhile, alispecally maintain the
accumulated debt with other peers. That s, in the above petime user will subtract
Uon credits from the local peer’s debt account, whereas the pi#leadd Uy, credits
to the user’s debt account. Finally, after the user has pedd all the daily update
operations, a single payment transaction is performedIifttr@accumulated debt with
its peers. This is only necessary for positive debt balgnites if two peers store
the same number of chunks into each other and update they tthailmutual debts
cancel each other out and no payment is necessary. Othethese peer payments
are requested to the Bank througBANK TRANSFERperation (message 13), which
specifies the accumulated amount of virtual money that shioeltransferred from the
user’s bank account to each peer. The user also employsiataon to revoke all the
cheques created before the specified date. The bank onlg teeemember the last
revocation date of each user. This way peers with old, n@wed, cheques cannot get
cash from them. The bank also charges a small fee (e.g. 3gr&althe user to cover
the cost of this transaction. After processing the monaysfiexrs (operations 14 and
15), the bank sends baclBANK TRANSFER ACkKesponse (message 16) confirming
the payments and detailing the balance of the bank accotim taser.

Peers are not instantly notified of these bank transfersgadspeers should peri-
odically request, visGET TRANSFER&quests (messages 17 and 19), the balance
of their own accounts and the last received transfers. Th& beplies with aLAST
TRANSFERS&sponse (messages 18 and 20) containing the accumuletead ioney
obtained from each user, identified by thserlD, since the specified time. This money
is then subtracted from the local user’s debt account, theely it should be zero after
all operations and payments have been performed. Therafeeeer could check
whether the users are actually paying for the stored chuitker with on-line or off-
line paying mechanisms. If this is not the case, and the aatated debt of a user
exceeds a predefined threshold, all the user’'s chunks amvezmand théJserlD is
added to a local black list to avoid trusting that user in thterfe.

This mechanism enables the management of remote informiétioth peers and
users are on-line. However, the big challenge is how to itieempeers to store the
information from users when they are off-line, and thus tleynot update/pay their

8For simplicity purposes, the VERIFY and UPDATE operatiohsven in Figure 2 are independent and
refer to a single chunk. However, a real implementation ¢aytimize this and perform both operations
with a single message exchange for all the chunks of the teedsin the peer.

12

chunks. This fundamental issue is addressed in the nexbsect

4.3. Off-line system behavior

Off-line system behavior is crucial for long-term storagevices like P2P backup,
since it must guarantee the storage of information even wisens go off-line for
extended periods of time. Thus, the aim of this design is wigde a mechanism that
assures peers storing information from off-line users &pkearning virtual money for
their service. Our proposal defines a sedtiggtal chequethat enables these off-line
transactions with the help of a trusted third party, in tlasecthe user’s bank.

By using the cheque issued by the user, a peer can keep eairiiraj money for
storing chunks of off-line users. In this section, we detad off-line behavior of our
proposal. Later, in section 6, we detail how this chequedsisal to avoid selfish and
misbehaving nodes.

A cheque is composed by the following fields

Bank-ID: This field identifies the bank of the user that issues this ebedA peer
should reject the cheques from a bank that it does not trust.

User-ID: Itis the identifier of the user that generated this cheque.

Peer-ID: It is the identifier of the peer receiving the cheque for sigprdne or more
chunks from the user.

Chunk-IDs List: This array field contains the identifiers of all the chunksyfrthe
user stored by the peer.

Nonce Lists Hashes:Each chunk has an associateonce listfor verification pur-
poses. This array contains the hashes of the nonce list bfabamk that appears
in the aboveChunk-1Ds Lisffield.

Nonce Lists Key: This field contains the symmetric key used to encrypt the kbiun
nonce lists. The key itself is encrypted in such a way thay din¢ bank has
access to it. Further details can be found in section 6.

Creation date: It specifies the date when the cheque was created. The bargdacesn
the last revocation date provided by the user with this @eadate to check
whether the cheque is still valid, or it has already beenkesio

Validity date: This field defines the first day (i.e. 7 days after the createte)dwvhen
the cheque can be employed to withdraw money from the usarik bhccount,
although it is off-line.

“Some of the cheque’s fields have fixed, well-known values, tand it is actually not necessary to
include them in the cheque exchanged by the P2P backup ptotéawever for completeness, and in order
to better resemble a real-world cheque, we explicitly hinh all.

13

Face value: It defines the quantity of virtual money from the user that pleer can
obtain per chunk and day. This amount should include the afostoring one
chunk during one day, plus the extra cost of cashing the ehatjthe bank.
This is an incentive to not overload the bank with chequesesfireers can obtain
higher net incomes (they can keep the fees for themselvekeyf choose to
reduce the frequency with which they cash the cheques.

User’s signature: The cheque must be digitally signed by the user in order tarens
its legitimacy, as well as to protect its contents. Noticat tisers independently
issue cheques, without involving the bank.

With the previous definitions, we can now explain an examplenooff-line sce-
nario that allows peers that are storing chunks from of-lisers to keep earning virtual
money. This example scenario is shown in Figure 3.

When a user goes off-line, it is necessary to keep updatiegitunks of infor-
mation that are already stored in remote peers. We make ue afigital cheques
to perform this process. When tMalidity datespecified in a cheque arrives and the
chunks have not been updated yet, peers can requeatdl CHEQUEoperation to
the user’s bank for the amount specified by the cheque’s faktee\(messages 1 and
10). As in the on-line case, no payment is performed untiag been verified that the
peer is actually storing the claimed chunks. However, thelilbbes not have access
to the user’s chunks to generate and validate a challengejsagone in the on-line
case. Instead of this, the bank employs the nonce list puslictored at the peers by
the user. The nonce list associated with a chunk is genebgtdte user and contains
a number of challenges (e.g. 60 nonces) and their associdpdnses. This list is
encrypted so only the bank can access to the different ctugdleesponses.

The bank asks for this list to the peer trying to cash a cheqtreaWNONCE LIST
REQUESTand its correspondinglONCE LIST RESPONSfnessages 2 and 3 re-
spectively) and then uses one of the norntés challenge the peer on behalf of the
user with aVERIFY REQUESTmessages 4 and 11), which should trigg&ERIFY
RESPONSKEmessages 5 and 12). If the operation is successflJRADATEoperation
is issued to the peer, and the bank transfers the requirevmoney from the user’s
account to the peer’'s one. This quantitydgthe number of chunks that have been
verified),t (the time elapsed since last update operation) times trguef'sface value.
The fee charged by the bank is also added to this quantity.

Since a chunk could be replicated in several peers, the baulll store the nonce
lists in a cache so it does not need to download it again fraraplica peers. This
fact explains why after th€ASH CHEQUEoperation in message 10 the nonce list is
not requested again to peer B, since it was previously obddirom peer A (message
2).

When the user comes back on-line, it will ask the bank for @nnpent operations
performed during its off-line period (messages 17 and 18ih iis information the

8The bank could just choose the nonce whose index equals touiimder of days elapsed since the
cheque’s validity date. This ensures that the nonce hasaaot employed yet with that peer, without requir-
ing the bank to remember which nonces have been consumedyalre

14

1‘ CASH CHEQUE (UserlD, ChunkID, Chequej;+1)

2: NONCE LIST REQ (UserlD, ChunkiD)

‘3: NONCE LIST (UserID, ChunkID, NonceList)
- 1

4: VERIFY REQUEST (UserlID, ChunkID, Challenge :‘NonceListj)

g

I
3: VER”:Y‘ RESPONSE (UserlID, ChunkID, hash (Challenge | chunkData))

6: UPDATE (UseriD, ChunkiD)

7: UPDATE ACK (UserlID, ChunkID)

»

«

8: TRANSFER

serlD, PeerlDp, Cheque.Amount)

9: CASH CHEQUE ACK

d

A 4

10: CASH CHEQUE (User, ChulnkID, Chequejyq)

PeerB

11: VERIFY REQUEST (userlD, chunkiD, Challenge = NonceList) -

12: VERIFY RESPONSE (UserID, ChunkID, hash (Challenge | chunkData))

»

I
13: UPDATE userID, chunkiD, -)

a

1
14: UPDATE ACK (userlD, ChunkiD)

»
»

15: TRANSFER

serlD, PeerlDg, Cheque.Amount)

16: CASH CHEQUE ACK
I

17: GET TRANSFERS

|

(UserlID)
18: LAST TRANSFERS

(<PeerIDp, - Cheque.Amount, lastTime>,
<PeerlDg, - Cheque.Amount, lastTime>)
| |

. 4

Figure 3: Example scenario of long-term P2P Backup with #tired user

15

user knows the last update time of its peers, and keep upddgnchunks in on-line
mode (after paying for the days since the last update oparpérformed by the bank).
The user should also renew the cheques, revoke the old odeseate new nonce lists
to avoid repeating the same challenges to the peers.

Since the peer€ASH CHEQUEoperation requires the bank to perform additional
operations, this transaction must have an extra ¥o&i cover the expenses of the
(optional) NONCE LIST REQUESVERIFY andUPDATE operations issued by the
bank in name of the user. This extra cost is later compendstede cheque’s face
value (Y). Therefore the final benefit for the peer is:

Uori() =3+Y - C-t—(1+X)=Y -C-t—X+2)

It is important to carefully set the cheque’s face value for bff-line incentive
mechanism to work. In particular two conditions should hold

1. Peers should get more virtual money per day and chunk thie ion-line case.

2. Peers should cash their cheques as less as possible irt@rds overload the
bank. Therefore they should obtain more money performingngles CASH
CHEQUEoperation aften days than doing it every day.

Translating these restrictions into equations:

Uoit(C, 1) > Upn(C,1) = Y-X+2>2+D = Y>D+X 3)

Uotf(C,n) > n-Uos(C,1) ¥YVn>0 = Y- C-n—-X+2>n-(Y-C—-X+2)

= X-(nh-1)>2-(h-1) = X>2)

And thus, the cost o€ASH CHEQUEoperation should b > 2 (i.e. 3) and
the Cheque face value must ¥e> D + X (i.e. 15). Thus, this mechanism gives the
appropriate incentives to peers to keep storing informeatiom off-line users. The
maximum duration of the off-line period for a user is onlyiied by two elements: the
virtual money left at the user’s bank account and the lenfjtheononce list. Moreover,
due to the bank fees, it is more costly for the users to updh&ie ¢thunks in off-line
mode than in on-line mode, thus users are also encourageddaio-line. Furthermore,
peers have also to pay an upfront fee to the bank for cashiaquas. Therefore,
by increasing the interval between consecutive casheseo$dime cheque, they can
obtain higher revenues, meaning that peers will only caritecbank sporadically to
cash their cheques. This also helps to improve the scdlabflthe off-line incentive
mechanism.

5. Evaluation of the Incentive Mechanism

In order to evaluate the different aspects of the incentigelmnism and how they
complement each other, we have implemented the proposethd&3®p system in a
custom-made simulator developed in Java. The simulatoasedbin cycles, on each

16

Table 1: Simulation parameters
The values?, ® and© are D, Y and X respectively, as defined in equations 2, 3, 4

Simulation time| 365cycles
Total number of peers 10,000peers
Backup size| 10GB
Chunk size| 1 MB
Number of replicag 3replicas
Chunks stored per peer1,000chunks
Initial free storage space 75GB
Initial bank balanceg 200,000credits
Cheque validity date 7 days
Cost of PUT operation 100creditschunk
Cost of VERIFY operation 1 credit/chunk
Cost of UPDATE operation 1 + 10? creditgchunk- day
Cost of DELETE operation 1 credit/chunk
Chequéace value| 15® creditgchunk- day
Bank fee of CASH CHEQUE operation5© credits

cycle (i.e. one day) all the on-line users/peers put/upitheie chunks in other on-line
peers and, in order to improve the availability and durgbiif their backups, move
all the chunks from the peer with the lowest measured avifiabto a new, randomly
selected peer. For simplicity, all peers/users share tine séorage space (75 GB) and
have exactly the same backup size: a 10 GB backup split if00%Q MB chunks,
which are then replicated 3 times, leading to 30,000 churksiper. Moreover, the
number of chunks stored in a peer is set to 1,000, in orderawent the failure of
a single peer wiping out a significant portion of the backugpwell as to reduce the
number of peers that have to be contacted each day (i.e. 38)pékehe full list of
simulation parameters is shown in Table 1.

In order to study the effects of the different aspects of tieemntive mechanisms,
we have implemented different peer behavior classes (i-4ine/off-line periods, rate
of update operations, etc.), instantiate an equal shareafsfrom a total of 10,000
peers) featuring the desired behavior class, and simiiat®2P backup system with
those mixed peer behaviors for 365 cycles (i.e. one year).

Let us start with the main objective of the P2P backup systeeers should stay
on-line and offer their free storage space to other userstder to verify this, the first
simulation has four peer classes (with 2,500 peers eadlof, thiem offering the same
space, but on each cycle they randomly choose to stay omwiiof-line with a differ-
ent probability Poniineg). In the first class, the peers are always on-liRg(e=1.00),

9Peer availability is measured locally by each user by tryingpntact each day with the peers storing the
chunks, and checking whether are on-line or off-line. Thailakility ratio of new peers is only computed
after 5 measurements (i.e. five cycles).

17

the peers of the second class are on-line the 75% percem®{®onine=0.75), a 50%
in the third class Ronine=0.50), and finally the peers of the last class are only on-line
during the 25% of the simulation cycleBdine=0.25).

Figure 4(a) shows the average bank balance of each claseicf [(&ince all peers
have exactly the same backup size (10 GB), and thus roughbeatime cost per day, the
differences among classes come from the different revethagpeers obtain by being
on-line and offering their free storage space. Clearlypbers staying more time on-
line outperform the ones that are off-line more often, smt@nger time on-line means
greater revenue. In fact the last two classes have deficitreydbe expelled from the
system (i.e. their backups will be deleted) shortly aftee grar, unless they change
their behavior or pay the bank real money to get additioredits. On the other hand,
the first two classes have surplus, meaning that they mugayainy additional money
to support the operation costs of the bank, and actuallydbeld store a larger backup,
replicate it more times, share less space or even earn sateodd money.

This aggregated behavior naturally evolves from the faat tisers prefer on-line
peers to off-line ones, thus each day on-line users try toentlbe chunks from their
peer with the worst availability ratio to a new, randomly sbp peer that is both on-
line and has free space left (on steady state this requineayerage, 5,500 DELETE
+ PUT operations per day). Thus, once a chunk is stored inveayalon-line peer, it
is never removed from it, whereas the chunks stored in a pileraw on-line ratio of
25% will be moved before the ones stored in the other cladspsears. This leads to
the distribution of stored data shown in Figure 4(b). Clageérs (100%) have their
disk completely full, whereas the remaining classes séllehfree space, due to the
time they stay off-line. The small surplus of the 75% classes from the fact that, on
average, those peers store more than 30 GB, which is thefdize eplicated backup
for all peers, while the last two classes are below this beadn point and thus run on
deficit.

Figure 5 shows the effect of the two additional incentivasoiduced into the sys-
tem to lower the load. In particular Figure 5(a) shows theaye bank balance of a
simulation with two peer classes (5,000 peers each), whathreave the same backup
size and storage space, but they now both stay on-line 50#nef tHowever in this
case on-line/off-line periods are not random, but deteistioa The peers of the first
class are one day on-line and off-line the next one, whilehalatter class, peers
are 8 days on-line, followed by other 8 off-line days. Therefin this case the dif-
ferences between them do not come from preferring peersaniffeater availability
as explained before, but from the fact that the users of thergkclass remain off-
line longer than the cheque validity date (7 days) and thas fieers will cash their
cheques. Therefore, the extra cost of cheques make clags2tpespend more money
than class 1 ones, and thus providing them with an inceriwtay off-line less than
7 days to prevent other peers cashing their costly chequaticeNthat the balances of
both classes do not compensate (i.e. do not sum up to 400l¥iHuse the bank gets
a small fee (5 credits) for each cheque transaction in otdpay its operational costs.

Similarly, in order to lower the total load of the system, nss&re also incentivized
to minimize the number of operations they request to thesrgpeThe strength of this
incentive can be tuned by changing the fixed cost per messaigere 5(b) shows
the average bank balance of two peer classes that are bot &fdine, but take

18

400 T

Peers with PO,;line:i.oo —

online

Peers with P jie=0.50 -

Peers with Py ine=0.75 ---------
350 r Peers With Py jine=0.50 «--eovoe
Peers with Pjing=0.25
300
30
c =
<3
x5
c
cv 200
@D
23
S 3 150
50)
O 1 1 1 1 1 1 1 1 1 1 1 1
30 60 90 120 150 180 210 240 270 300 330 360
Time [Days]
(a) Average bank balance of peers
80 T T T T T T T T T T T T
Peers with P jine=1.00 —— |
Peers with Ponl'ne:0_75

Used disk space [GB]

Peers with P jing=0.25

30 , e mmmmm T e i
20 1
10 | e ;
0 - . . . !

30 60 90 120 150 180 210 240 270 300 330 360

Time [Days]
(b) Peers used disk space (75 GB Max.)

Figure 4: Evaluation of the incentive to stay on-line andrslstorage resources

19

Average Bank balance
[Thousands of credits]

Average Bank balance
[Thousands of credits]

400 T T T T

" Peers 1-<':iay (')nll-d'ay off ——
350 Peers 8-days on/8-days off

300 §
250 §

200 e |

150 §

100 §
50 r 8
O 1 1 1 1 1 1 1 1 1 1 1 1
30 60 90 120 150 180 210 240 270 300 330 360
Time [Days]
(a) Minimizing cheques: Average bank balance of peers
400 T T T T T T T T T T T T
Batch operations (msg. cost 1) ——
Daily operations (msg. cost 1)
350 | Batch operations (msg. cost 10) T
Daily operations (msg. cost 1Q) e
300 §
250 8
200
150
100 8
50 r 8
O 1 1 1 1 1 1 1 1 1 1 1 1

30 60 90 120 150 180 210 240 270 300 330 360
Time [Days]

(b) Minimizing operations: Average bank balance of peers

Figure 5: Evaluation of the incentive to minimize operas@md cheques

20

long vacations (30 days) with a small probability (3%). Tdyadifference between
these two classes is that, in the first one all operationsrf@aquesting verify and update
operations, making money transfers and cashing chequeeggegiormed daily, while in
the second one operations are delayed and executed as aftatéhdays, effectively
reducing almost five times the total number of operationg. (&1,753 vs. 11,972
UPDATE messages on average per day). This simulation isarige tfirst with a fixed
cost of 1 credit per message, and then with a message costatdids. It can be
clearly seen that the best peer strategy is to reduce theeumhloperations as much
as possible. The differences between both peer classeddm®hby increasing the cost
per message, thus allowing the system designer to explggtlithe reward to users for
reducing their load in the system.

Therefore, with the proposed incentive mechanism, the R2Rup system benefits
well-behaved users and penalizes free-riders or maliaisess, effectively enabling
peers to store the backup of off-line users. However, theritice mechanisms alone do
not prevent the possibility of lost backup chunks due to skime of physical failure in
the peers storing them, and in this case an off-line usertialle to regenerate the lost
chunks. Therefore users must rely on the chunk replicatiechanisms to keep their
backups alive while they are off-line during extended pasiof time. If we assume
that p is the probability of a peer failure, then the probabiky(t, R, M) that at least
one of theR chunk replicas survives durirtgdays, for allM = B/C peers storing the
backup file (beind the total number of backup chunks aBdhe number of chunks
stored per peer), is:

Pok(t, R M) = (1 (1 - (1 - p))H)™ (5)

This means that with 3 replicas, a peer reliability of a 99(@% that means a proba-
bility of failure p equal to 0.001), and with

10GB/1MB chunks
~ 1000chunkgpeer 10peers ©)

the probability that the full backup survives during 60 dewth no user intervention is
Pok=0.99802, orP=0.99974 for 30 off-line days, and, even in the improbable cdise o
some backup replication loss, only a subset of the userslchwill be affected.

6. Security of the Incentive and Verification Mechanisms

Any incentive mechanism, and specially the ones based tmaVimoney, should
be secure, otherwise they become useless, or even worgtfitbmischievous users
instead of well-behaving ones.

Probably the most obvious attack to the proposed mechasismgersonation,
where an attacker tries to convince the bank or other peatsttis a different user
to request payments from the targeted bank account or tolbéabtore chunks with
a differentUserlID. Therefore, first of all, it is necessary to avoid all kindsraper-
sonation or man-in-the-middle attacks in the system. Eatitygparticipating in the
system (i.e. banks and users/peers) should have a X.508ldigitificate [30] that
links its BanklDYUserIDwith a RSA public key [31], as it is shown in Figure 6. There-
fore a user could easily assess its identity by means of satigignature or by using a

21

Legend Chunk Nonce List

Nonce; hash(Nonce||ChunkData)
¥ Encrypted using K UserlD | ChunkD UserlD | ChunkID Nonce, hash(Nonce,||ChunkData)
Chunk Data <Nonce, Hash

< Nonce, hash(Noncey||ChunkData)

& o

\(\O“\\O \(\@g“v‘

) & o2
Signed by S S N
5 C(Kshunk,Chunk)

Cheque User Certificate Bank Certificate

Bank | User | Peer
D D D BankID | UserlD BankID
ChunkIDs
NonceList HasLLs [Public Key (PK) ublic Key (PU)
Validity date | | Validity date Validity date
Creation date Expiration date Expiration date
Face value

BankPR ¥ | ~——>BankPR

User Ksess; e.a“v‘?\)

UserPR

Figure 6: Security relationships between the differentnelets of the P2P backup
system

secure protocol that exchanges certificates like TLS [3B Bank of the user or other
trusted third party could issue these user certificates.bBinés acting as Certification
Authorities (CA) has the additional benefit that there isrargg relation between users
and their banks, and the peers could just reject transactith users from unknown
banks that are not in the peer’s trusted CA repository.

Even if certificates do not allow an attacker to impersonatglzer user, an attacker
can still generate multiple personalities (also known asil&ytack) to thwart the black
list mechanism. That is, whenldserID is blacklisted because of misbehavior or too
much debt with other peers, the attacker could just ask fotremUserlD to the bank.
This problem can be mitigated by hardening the process taei@ new user, either
requesting a real world identity, charging some real-wonlghey (e.g. 10$ that are
exchanged for virtual money), or a combination of both.

To guarantee the integrity and the privacy of the users’rinftion, backup data
should be encrypted before being stored at the peers, arfmbiilds also include a
HMAC [33] digest code to avoid tampering. For performana@sons, chunks should
be encrypted employing a symmetric cipher, albeit each eeeichoose its preferred
encryption mechanism for its own chunks. Therefore, siheeuser is the only one
who knows the encryption key, neither the peers storing ioeks nor the user’s bank
are able to access the backup information. The only ad@itiprecaution is that at
least one copy of this secret key as well as the user’s priR&te key must be securely
stored (i.e. protected by a passphrase) in some well-knowrsafe location in order
to recover the backup in case of any fatal local hardwareftwace failure.

Of course, the digital cheque for off-line transactionsuiegs additional security
measures. The cheque must be digitally signed with the teri@y of the user that

22

issues it, in order to allow that the peer and the bank cowddsasits authenticity using
the user’s public key. An agile revocation mechanism foigetes is proposed to mini-
mize the state required at the bank: new cheques are isspe@t® whenever chunks
are updated, and then the user just notifies to the bank whitieicreation date of the
last set of cheques in each delayed transfer. Therefordyathle only needs to check
the creation date of a cheque to decide whether it has alteaetyrevoked or it is still
valid.

The security of the remote chunk verification mechanism khalso be analyzed.
The usage of a cryptographic hash function prevents a roalcpeer to solve the
challenge without having the chunk. The malicious user @dwdwever still try to
generate all the possible challenge nonces and then swredgbponses instead of the
chunkitself. Therefore, in order to thwart this attack, dieionary with all challenges’
responses must be larger than the chunk itself. An arbiteage number could be
chosen, but this would lead to larger nonce lists, which khbe retrieved and cached
by the bank. Therefore, it seems better to choose an apptepronce lengthN bits),
based on the chunk siz8 pits) and digest’s length of the hash functidhlfits). Then:

S<2N.H = N >log,(S/H) (7)

Which means that witts = 1MB = 222 bit-long chunks and MD5 hashesl (=
128= 27 bits), a nonce of judii=23-7= 16 bits is necessary. If chunks®t 1MB are
considered, we nedd=26 bits to prevent a complete dictionary attack. Thus, &i82-
nonce seems to be a good value to avoid partial dictionaaglegtwith high probability.
This value leads to a nonce list with 20 bytes per entry, and ttvo months worth of
challenges (i.e. 60 nonces) could be stored in as little 86 bgtes.

Finally, since nonce lists are initially stored by the pebesnselves, it is necessary
to protect the nonces and challenges’ responses from thewo $o, the whole nonce
list should be encrypted so only the bank can decrypt it. Wedcose the public key
of the bank for this purpose, however public key cryptogyaighmuch more CPU
intensive than symmetric ciphers. Therefore it is muchdpétt first encrypt the nonce
lists with a secret key (e.g. AES key of 128 bits), randomipayated by the user.
The problem now is how to convey this secret key to the bankhikcase, it is now
feasible to employ the public RSA key of the bank to encryjs 8hort key. The
encrypted key can be then added to the cheque, becauseradirtbe lists of a peer can
be encrypted with the same key. Furthermore, the chequeaidains the hash of the
different nonce lists to prevent a malicious peer to sendldmance list, with known
challenges, to the bank for validation.

Therefore, when the bank receives a cheque, first, it hasrify tieat it features a
valid signature from its user (thus it is both legit and has@@n tampered). Secondly,
it needs to verify the validity and creation dates of the cleelly comparing them,
respectively, with the current date and the last revocadate specified by user, and
finally decrypt the nonce list key in order to obtain the obiadjes stored in the nonce
list, whose validity is checked using the hash carried byctiegjue itself.

23

7. Conclusions

The incentive and verification mechanisms proposed in thpeppresent certain
characteristics that make them interesting for long-teemrfio-peer storage services
such as P2P backup. On one hand, the secure and lightwergfftat®on mechanism
ensures that the user’s chunks are safely stored in the peetaimed. On the other
hand, the usage of monetary incentives encourages pedrar®their own resources
proportionally to the ones they consume from the P2P systebatkup their infor-
mation. Furthermore, paying each successful operatidiomeed by a peer, prevents
users from wasting bandwidth and storage resources.

Although there are many micro-payment mechanisms thaddoalemployed to
implement the proposed incentive mechanism, for simplivié have chosen delayed
payments through a central bank (or multiple banks that #ash other). The bank
also charges an additional fee for each monetary transaittiperforms, which first
provides funding for maintaining its infrastructure, blgahelps to reduce its load
since this is also is an incentive for peers to minimize thmiper of bank transactions.

Finally, the main contribution of this paper is the adoptidsecureigital cheques
to enable the long-term storage of information when an uses gff-line for extended
periods of time. During the user’s absence, the bank keeffying and updating the
chunks on behalf of the user. These actions are performeddansnof a compact
set of verification challenges created by the user, and ohbrvthe peers try to cash
their cheques. The proposed cost model for updating chumiteei off-line case also
ensures that peers will try to cash their cheques as lessatbf@and, due to the higher
cost of this operation compared to the on-line case, usdrsamiain on-line as much
as possible. Therefore, a higher number of peers will bdablai, which leads to a
positive increment on the system resources and availabilit

We validated our cheque-based mechanism and its assoitiagdive aspects us-
ing an ad-hoc, cycle based simulator. The obtained reshitt& $iow the incentive
mechanism allows the expected long-term storage capeb#itwell as how well-
behaved peers obtain a better performance with respectrseviiehaved peers.

Acknowledgments
This work has been funded by the by the Regional Governmektaofrid under
the MEDIANET project (S2009/TIC-1468).

References

[1] B.Yangand H. Garcia-Molina, “Ppay: micropayments feep-to-peer systems,”
in 10th ACM conference on Computer and Communications Sgd@®S’03)
2003, pp. 300-310.

[2] z. Jia, S. Tiange, H. Liansheng, and D. Yiqi, “A new migoayment protocol
based on p2p networks|EEE International Conference on E-Business Engi-
neering pp. 449-455, 2005.

24

[3] K. Wei, A. J. Smith, Y.-F. R. Chen, and B. Vo, “Whopay: A $able and anony-
mous payment system for peer-to-peer environmehtgginational Conference
on Distributed Computing Systen2006.

[4] K. Chaudhary and X. Dai, “P2p-netpay: An off-line micpayment system for
content sharing in p2p-networkslburnal of Emerging Technologies in Web In-
telligence vol. 1, no. 1, 2009.

[5] N. Liebau, O. Heckmann, A. Kovacevic, A. Mauthe, and Reitnetz, “Charging
in peer-to-peer systems based on a token accounting systelbecture Notes in
Computer Scieng006, vol. 4033, pp. 49-60.

[6] X. Dai, K. Chaudhary, and J. Grundy, “Comparing and casting micro-
payment models for content sharing in p2p networksgrnational IEEE Con-
ference on Signal-Image Technologies and Internet-Bagstt® pp. 347-354,
2007.

[7]1 S. Seuken, D. Charles, M. Chickering, and S. Puri, “Madesign & analysis for
a p2p backup system,” ihlth ACM conference on Electronic commeser. EC
'10, 2010, pp. 97-108.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. &at D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Welld,BanZhao,
“Oceanstore: an architecture for global-scale persistemage,"'SIGPLAN Not.
vol. 35, pp. 190-201, November 2000.

[9] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. ChaikenR] Douceur,
J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer,r&fa: Federated,
available, and reliable storage for an incompletely tdigBvironment,” in5th
Symposium on Operating Systems Design and Implementai®nl(2002, pp.
1-14.

[10] C. Batten, K. Barr, A. Saraf, and S. Trepetin, “pStore:sécure peer-to-peer
backup system,” Massachusetts Institute of Technologptatbry for Computer
Science, Technical Memo MIT-LCS-TM-632, October 2002.

[11] P.Druscheland A. Rowstron, “Past: A large-scale, ig&zat peer-to-peer storage
utility,” pp. 75-80, 2001.

[12] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, ad M. Isard, “A cooperative
internet backup scheme,” IWSENIX Annual Technical Conferen@903.

[13] E. Adar and B. A. Huberman, “Free riding on gnutell&itst Monday vol. 5,
2000.

[14] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robusteintive techniques for
peer-to-peer networks,” iBth ACM conference on Electronic commer2604,
pp. 102-111.

25

[15] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibrige, “Incentives for shar-
ing in peer-to-peer networks,” iBecond International Workshop on Electronic
Commerce2001, pp. 75-87.

[16] K. Ranganathan, M. Ripeanu, A. Sarin, and |. Foster, Shiare or not to share:
An analysis of incentives to contribute in collaborative 8haring environments,”
in Workshop on Economics of Peer-to-Peer Syst@®@3.

[17] C. Buragohain, D. Agrawal, and S. Suri, “A game thear&tmework for incen-
tives in p2p systems,” iBrd International Conference on Peer-to-Peer Comput-
ing, 2003.

[18] B. Cohen, “Incentives build robustness in bittorreimt,Workshop on Economics
of Peer-to-Peer Systems, P2PECQ803.

[19] L. P. Cox, C. D. Murray, and B. D. Noble, “Pastiche: makimackup cheap and
easy,” inSymposium on Operating Systems Design and Implement&®DI{
2002, pp. 285-298.

[20] L. P. Cox and B. D. Noble, “Samsara: Honor among thiemgssier-to-peer stor-
age,” inNineteenth ACM Symposium on Operating Systems PrincR0€8, pp.
120-132.

[21] G. Utard and A. Vernois, “Data durability in peer to pestorage systems,” in
IEEE International Symposium on Cluster Computing and thied,004. CC-
Grid 2004 april 2004, pp. 90 — 97.

[22] L. Toka, M. Dell’Amico, and P. Michiardi, “Online dataackup: A peer-assisted
approach,” inPeer-to-Peer Computin@010, pp. 1-10.

[23] P. Maille and L. Toka, “Managing a Peer-to-Peer Data&ie System in a Selfish
Society,”Selected Areas in Communications, IEEE Journahah 26, no. 7, pp.
1295-1301, 2008.

[24] P. Michiardi and L. Toka, “Selfish neighbor selectiorpeer-to-peer backup and
storage applications,” iRroceedings of the 15th International Euro-Par Confer-
ence on Parallel Processing Springer-Verlag, 2009, pp. 548-560.

[25] L.Pamies-Juarez, P. Garcia-Lopez, and M. Sanétrégas, “Rewarding stability
in peer-to-peer backup systems,”liith International Conference on Networks,
ICON 2008 IEEE, 2008, pp. 1-6.

[26] ——, “Enforcing fairness in p2p storage systems usingmrasetric reciprocal
exchanges,” iIlEEE International Conference on Peer-to-Peer Computi@f),
Sept 2011, pp. 122 -131.

[27] N. Oualha and Y. Roudier, “Securing p2p storage withla@ganizing payment
scheme,” in5th international Workshop on data privacy management, 2und
international conference on Autonomous spontaneous gecuspringer-Verlag,
2011, pp. 155-169.

26

(28]

(29]

(30]

(31]

(32]

(33]

W. K. Lin, D. M. Chiu, and Y. B. Lee, “Erasure code replica revisited,” in
Fourth International Conference on Peer-to-Peer Compytser. P2P '04, 2004,
pp. 90-97.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. KhianKissner, Z. Peter-
son, and D. Song, “Remote data checking using provable dastsepsion, ACM
Transactions on Information and System Secuvity. 14, pp. 12—-34, Jun 2011.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. ldgushd W. Polk, “Internet
X.509 Public Key Infrastructure Certificate and CertificR&®vocation List (CRL)
Profile,” RFC 5280 (Proposed Standard), Internet Engingefask Force, May
2008.

J. Jonsson and B. Kaliski, “Public-Key Cryptographsu®tards (PKCS) #1: RSA
Cryptography Specifications Version 2.1,” RFC 3447 (Infational), Internet
Engineering Task Force, Feb. 2003.

T. Dierks and E. Rescorla, “The Transport Layer Segufii_LS) Protocol Ver-
sion 1.2,” RFC 5246 (Proposed Standard), Internet Engimg&ask Force, Aug.
2008.

H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyedalshing for Message
Authentication,” RFC 2104 (Informational), Internet Engering Task Force,
Feb. 1997.

27

