
Off-line incentive mechanism for long-term P2P backup
storage

Marco Gramagliaa,b,∗, Manuel Urueñab, Isaias Martinez-Yelmoc

aInstitute IMDEA Networks. Av. Mar Mediterraneo 22. E-28912Leganés (Madrid). Spain
bUniversidad Carlos III de Madrid. Av. Universidad 30. E-28911 Leganés (Madrid). Spain

cUniversidad de Alcalá, Escuela Politécnica Superior. Campus Universitario, N-II Km 33,6. E-28871
Alcalá de Henares (Madrid). Spain

Abstract

This paper presents a micro-payment-based incentive mechanism for long-term peer-
to-peer storage systems. The main novelty of the proposed incentive mechanism is to
allow users to be off-line for extended periods of time without updating or renewing
their information by themselves. This feature is enabled through a digital cheque,
issued by the user, which is later employed by the peers to geta gratification for storing
the user’s information when the user is off-line. The proposed P2P backup system
also includes a secure and lightweight data verification mechanism. Moreover, the
proposed incentive also contributes to improve the availability of the stored information
and the scalability of the whole system. The paper details the verification and cheque-
based incentive mechanisms in the context of a P2P backup service and analyzes its
scalability and security properties. The system is furthermore validated by means of
simulation, proving the effectiveness of the proposed incentive.

Keywords: Peer-to-Peer (P2P), Long-term Storage, Incentive Mechanism,
Micro-Payment, Digital Cheque, P2P Backup

1. Introduction

The increasing number of consumer devices that can generateall kinds of digital
media (e.g. audio, video, photos) has worsened the old problem of safely storing all
these space-consuming data. To relieve users from the laborious and eventually expen-
sive task of maintaining their own dedicated storage hardware, in the past few years
many on-line storage services made their appearance on the market, ranging from the
most basic ones likeDropbox1 to more complex and professional-oriented ones like
Amazon S32. The growing success of new networking paradigms such as peer-to-peer

∗Corresponding author. Address: Avda. Mar Mediterraneo, 22. 28918 Leganés, Madrid (Spain). Tel:
+34 91 4816210 . Fax: +34 91 4816965.

Email addresses:marco.gramaglia@imdea.org (Marco Gramaglia),
muruenya@it.uc3m.es (Manuel Urueña),isaias.martinezy@uah.es (Isaias Martinez-Yelmo)

1http://www.dropbox.com
2http://aws.amazon.com/s3/

Preprint submitted to Computer Communications March 2, 2012

or, more recently, cloud computing, is offering more tools to tackle this storage prob-
lem.

To use a peer-to-peer (P2P) paradigm radically changes the nature of the solutions
to this problem, offering some advantages (i.e. utilization of unexploited space in users’
hard disks, tunable level of reliability, low cost, etc.), but posing other challenges re-
garding security, privacy and a fair use of the network. SomeP2P-based solutions are
already present in the market: LaCie’s Wuala3 or Fiabee4 exploit this paradigm to offer
on-line storage services at a reduced price.

One of the storage services that may benefit most from a distributed P2P architec-
ture is backup, because data is replicated and stored in the hard disks of many different
users, distributed worldwide. Thus, it can be hardly affected by a single failure or even
a set of failures that may otherwise wipe out a local backup oreven a whole data center.
Of course, any existing P2P distributed file system could be employed as the basis of a
P2P backup service. However, there are two specific characteristics that play a major
role in P2P backup: the presence of a local copy, and looser access-time constraints. In
a distributed file system, usually, the information is just saved in remote hard disks in
order to offload the local one and to better balance their utilization. In a network-based
backup solution this assumption is no longer true: the user always has a local copy of
the data in order to continue working and updating it. The network backup will only be
used in case that some failure happens to the local one. The second key difference of
a P2P backup system are the access-time requirements. P2P-based file systems impose
hard time constraints (in order to guarantee the performance of input/output opera-
tions), while in a P2P backup system these timing constraints are much less strict. A
user could tolerate some extra time as long as the backup is completely restored in a
reasonable period of time.

In this paper we present an incentive mechanism based on micro-payments and
digital cheques for long-term P2P storage systems, such as aP2P backup service. In
our proposal, a user pays other peers to store its backup data, whereas charges other
(possibly different) peers for using their local hard disk.This kind of monetary incen-
tive approach has already been proposed for different P2P applications [1, 2, 3, 4, 5, 6]
and, even if it is a hidden market, for a P2P backup service [7]. We extend this micro-
payment incentive framework by means of digital cheques to motivate peers to keep
storing backup data even when the owner (user) is off-line for an extended period of
time. Albeit the presented schemes also mentioned the problem of long-term avail-
ability, they were just focused on employing redundancy techniques to minimize the
impact of a lost chunk due to a failure of an, otherwise well-behaved, peer. To the best
of our knowledge, this is the first proposal that tackles the problem of long-term avail-
ability in a P2P backup system with selfish peers. These selfish peers can deliberately
erase a chunk when the owner (user) goes off-line to free their local resources. Our
proposal introduces the possibility to keep on charging users even if they are off-line
(e.g. due to a hardware problem), providing an incentive to not erase their backup when
it is even more necessary. This last point is crucial for any P2P backup service.

3http://www.wuala.com
4http://www.fiabee.com

2

The paper is structured as follows: after studying the related works in section 2,
section 3 introduces an overview of the proposed P2P backup system and defines the
incentive mechanism that governs it. Later, section 4 presents a detailed discussion
about the design of our proposal, emphasizing on the behavior of the system when a
user is on-line or off-line. The different incentive mechanism is evaluated by means of
simulation in section 5. In section 6, we analyze the possible threats that could affect
our proposal and some security mechanisms to prevent them. Finally, we summarize
the main conclusions of this paper in section 7.

2. Related Work

The idea of taking advantage of unused space in remote hard disks that are part of
a P2P network was first studied at the beginning of the past decade. One of the earliest
proposals was OceanStore [8] by Kubiatowicz et al., which provided solutions to many
of the issues caused by relying on an untrusted infrastructure for data storage. Also
Farsite [9] by Adya et al. was focused on the problems concerning the fault-tolerance
and reliability of the stored data. However, these initial proposals considered a dis-
tributed file system in a heterogeneous, yet cooperative andtrusted scenario. The first
proposal of a backup-oriented solution was done by Batten et.al. in [10]. It features
file encryption, version control, and provides reliabilityin case of multiple nodes fail-
ures. In this first stage, the research was more focused on howto achieve scalability,
reliability and fault-tolerance in such a system [11, 12].

More recently, researchers have started considering additional aspects of P2P stor-
age and backup systems. In such a distributed environments,peers are service users
and providers at the same time: they want to store their data in the system, but to do
so, they should also share part of their unused capacity withother peers. This pecu-
liarity raises obvious fairness issues, especially when peers can behave selfishly. The
so-calledfree-ridingproblem of P2P systems is well-known since Adar and Huberman
showed in [13] that the 70% of peers were not sharing any files in the Gnutella network.
Since then, a plethora of works [14, 15, 16, 17] have been proposed to try and miti-
gate this problem in P2P networks. They usually exploit somephysical constraint of
the system or they are based on fundamental principles takenfrom economics or game
theory, modeling the problem as the “Tragedy of the commons”dilemma. In fact, most
of the P2P systems currently deployed implement some kind ofincentive mechanism
like BitTorrent’s “Tit-For-Tat” [18].

However, thefree-ridingproblem in a P2P backup (or file storage) system is quite
different from the one that can be found in a file-sharing system. A first difference
is the potential “audience” of the resources being stored bythe peers. For example,
let us consider one file being uploaded with some file-sharingsoftware. This file is
“public” and could be potentially downloaded by any user of the network. In fact, in
most P2P file-sharing systems, peers store a file because theyare actually interested
in it. On the other hand, in long-term storage services and especially in P2P backup
services, each piece of information is usually encrypted and, thus, belongs to a single
user (or to a restricted group of users). This considerationmakes the problem even
more complicated since there is not any implicit incentive for peers to store (useless)
file chunks from other peers. Thus, how to reward a peer that issharing an amount of

3

disk space much greater than the one it is asking for its data?Or the opposite case,
how to incentive a peer to be more generous with the system, ifit is using more space
than the one is sharing? Furthermore, how can such storage quotas be enforced in a
fully distributed system? A possible solution was proposedby Cox et.al. in [19, 20],
using a framework for limiting the amount of data that a user is allowed to store into
the network. This leads to a symmetrical behavior that, although keeps the system in
a stable state, limits its flexibility. More recently, otherstudies have tried to tackle
this problem without forcing the users to share a fixed amountof disk space. In [7],
Seuken et al. have proposed to solve the problem by introducing a virtual market
where a central system computes the exact amount of resources that users have to share
(including uplink and downlink bandwidth) by following a trade mechanism that, under
certain conditions, leads the system towards an equilibrium. However, this proposal
still implies that peers follow a fair share, and it does not define any verification or
penalty mechanism for selfish peers. Using monetary incentives in P2P systems was
also studied in [1, 2, 3, 4, 5, 6], but these works are mostly focused on the security
aspects about coining digital currency.

Furthermore, the incentive mechanisms for P2P file systems cannot be directly ap-
plied to P2P backup systems due to their specific characteristics. Whereas in a standard
file system the saved data is frequently read and written, this is usually not true in a
backup system. Instead, the data are commonly stored only once. Read operations are
not frequent at all and, hopefully, null unless the user’s data is lost from the local stor-
age. Moreover, whereas in a distributed file-system the mostimportant feature is access
performance, the long-term durability of stored data is paramount in a backup service.
The terms data durability and availability are often used inthe literature regarding P2P
storage systems [21]. The durability is the property that guarantees the fact that data
stored in a peer will last for a time ideally infinite. This property is valid even when the
peer is off-line. The availability property is more restrictive: it is valid when the data
stored in a peer is correctly saved and available for downloading. Therefore, if we con-
sider that the users of a P2P network behave selfishly, we cannot just rely on replication
mechanisms and consider that the data stored in a working peer is “safe” without a se-
cure control mechanism that continuously verifies this. If both peers are on-line, the
problem could easily be solved by performing periodical checks of the data availability
as proposed by Toka et al. in [22, 23]. Michiardi et al. in [24]presented an analytical
model based on game theory for the detection of selfish peer and a similar solution was
provided previously by Pamies-Juarez et al. in [25]. They propose a proactive moni-
toring system that checks the availability of the peers and assigns different quotas of
the system to the users according to their obtained score. This architecture is further
researched by the same authors in [26] where they found a relation between the system
health (in terms of data availability) and the peer selection algorithm. Selecting the
best peers increases the efficiency of the P2P system and provides better results when
trying to retrieve the stored chunks. The solution proposedby Oualha et al. in [27] also
identifies the data reliability as one of the biggest issues in the field of P2P storage.
They propose a distributed system to find out malicious peers, either passive (which do
not allow other peers to use their resources) or active ones (which deliberately free their
resources after having stored a chunk). However, their proposal is focused on how to
recognize whether a peer misbehaves and not on how to reward peers for guaranteeing

4

the maximum durability of the information.
However, even by periodically checking the presence of stored data, the system will

not be in a truly safe state without a proper incentive mechanism. Peers are still storing
data that is not of their interest. Hence, even non-malicious peers can potentially decide
to remove it at any moment in order to free their local storageresources. This problem
is even worse when users go off-line (e.g. vacation time periods or due to hardware
failures) and cannot perform the verification or payment procedures associated to their
remote stored data since there is no guarantee that they willcome back on-line again
to pay for their consumed resources. Therefore, peers may decide to remove the data
of users that have been off-line for a while, which is exactlywhen backup data may be
more important, since the user may desperately need it when coming back on-line (e.g.
the laptop was stolen during the vacations or the hard disk crashed the night before).

Therefore the main objectives of our P2P backup proposal aretwofold: 1) to de-
sign a secure verification mechanism that ensures that the backup information is safely
stored, and 2) to devise an incentive mechanism based on micro-payments that mo-
tivates peers to store backup information even when the userremains off-line for an
extended period of time (e.g. 2 months or more).

3. Overview of the proposed P2P backup system

This section briefly summarizes the proposed P2P backup system, including the se-
cure data verification mechanism and the incentive system based on micro-payments. It
also explains the desired behaviors that are encouraged by such incentive mechanism.
All the technical details of the proposed mechanisms are defined in the following sec-
tion. But first, let us provide a general overview of the proposed P2P backup system
(see Figure 1).

Let us consider auser that wants to back up the information that she is working
with. However, instead of employing the local hard disk, which has some free space but
may suffer some hardware problem that wipes out both, the original information and
its backup, this user prefers to store the backup in a P2P system where the information
is replicated into multiplepeersdistributed all over the world. In exchange, other
users are allowed to store their information in the user’s hard disk, although the quota
dedicated to the P2P backup application can be reduced if additional space for personal
files is needed.

Thus, the user’s P2P application makes a complete backup of the local information
and keeps updating it with incremental changes whenever theuser modifies local files.
Since handling such large backup file is quite inconvenient,and it may not fit in the
space shared by a remote peer, backup files are split in smaller pieces (e.g. 1 MB
long), calledchunks, which also simplifies updating the backup when only part of
the data changes. These chunks are encrypted to guarantee the confidentiality and
privacy of the backup data, and then uploaded to multiple peers of the P2P backup
system. For resiliency reasons, each chunk is replicated and stored in different peers,
and the (small) index file that specifies in which peers the chunks have been stored is
placed at a known and safe place. How these peers are found or how many replicas
are necessary to guarantee a given resilience level is out ofthe scope of this paper,
since these topics have been already investigated in previous P2P storage works [28].

5

Figure 1: Overview of the proposed P2P backup system

Another implementation issue is whether the P2P application stores a complete copy
of the backup locally or it may just depend on the remote copies stored in the P2P
network. The only requirement is that any given chunk can be regenerated locally,
either from a local backup copy or from the user’s working fileset.

In order to minimize the bandwidth employed by the P2P application, once the
backup chunks are stored, they are never changed unless the user’s information is up-
dated. Thus, only the affected chunks have to be uploaded again. Furthermore, if some
of the peers are not reliable enough (i.e. spend too much timeoff-line, have corrupted
or lost chunks), the chunks that they store are moved to other, more reliable, peers. Ad-
ditionally, in order to guarantee that the backup information is safely stored, the user’s
application periodically checks the chunks by means of a secure verification mecha-
nism that does not require downloading the chunk itself. Instead, the user just sends a
hash-based challenge to the peer, so it can only reply if it has really stored the chunk
and has not modified it, either intentionally or due to some hardware or software glitch.
Therefore, this mechanism is able to identify unreliable peers, and usual offenders may
be placed in a local black list in order to avoid trusting themin the future. More com-
plex data verification architectures can also be applied. A comprehensive work about
“data possession” was presented by Ateniese et al. in [29].

However, we consider that this verification mechanism aloneis not enough to en-
sure the correct behavior of the system in a real world scenario, with selfish peers that
may delete chunks at any time, or somehow waste the resourcesof the system (e.g. stor-
ing too many copies of the backup or trying to verify their chunks too often). For this
purpose some incentive mechanism should be employed to reward well-behaved peers.
In this case, we propose an incentive mechanism based on micro-payments, where
peers must pay for the resources of the system (i.e. bandwidth and storage space) that

6

they are consuming. That means that users must not only pay the peers for storing their
chunks, but also for any operation that might be requested, for instance the verification
of data. Therefore, peers will get more or less revenue depending on the space they
are willing to share. Moreover, since this revenue can be employed to pay for storing
your own chunks, this mechanism naturally couples the resources consumed by a user
with the resources shared with other peers (which may be completely different to the
ones where the user’s chunks are stored), without trying to impose artificial altruism
or symmetric behaviors. Furthermore, paying for every requested operation will lead
to more efficient applications that avoid superfluous operations. In addition, peers are
encouraged to stay on-line in order to be seen as reliable ones by other users, and thus
to get the fees related with the different operations that are necessary to store chunks
(i.e. upload chunks, verify and update them, etc.).

There are many micro-payment proposals in the literature that could be employed
to perform the payments required by this incentive mechanism. These systems are
characterized by the trade-off between its security and theoverhead required to gener-
ate and verify the virtual currency that is used in the transactions. For simplicity and
performance reasons we have chosen a centralized micro-payment mechanism based
on a trusted third party, simply calledbankin this paper, since it resembles a real-world
bank. Actually, there could be multiple banks that perform virtual money transactions
among each other, but for the sake of simplicity, we will describe the system consid-
ering a single bank. All users/peers will have an account in the bank that records the
virtual money owned by each peer. Peers may start with a predefined amount of virtual
money, and the bank may also accept real money in exchange of virtual one. This al-
lows users to participate in the P2P system, saving their backup without sharing their
own resources. The payment of some amount of virtual money from one peer to an-
other is then performed by asking the bank to transfer money between the two peers’
accounts. Since too many payments could stress the bank’s infrastructure, payments
are delayed and performed as a batch. Our proposed incentivemechanism also en-
forces this behavior, since users must pay the bank for each transfer operation that they
request. Moreover, the bank could employ the collected feesto fund its infrastructure,
either directly, if the virtual money can be exchanged for real one, or indirectly, if the
bank employs its virtual money to gain storage space that canbe later rented to other
parties.

However, both the verification and incentive mechanisms have a common problem:
the user must be on-line to perform the verification and payment procedures. This
requirement could be seen just as slightly inconvenient, but in the case of a P2P backup
system it could be fatal. If users suffer a hardware failure (e.g. hard disk crash) and the
recovery takes some time, when they come back on-line their,now vital, backup may
have been gone, deleted by unpaid peers. Therefore, the basic incentive and verification
mechanisms have been extended to support users staying off-line for extended periods
of time. Off-line payments are enabled by means of adigital cheque, issued by the
user, which allows the entitled peer to request to the bank the payment for the user’s
chunks being stored. But how is the bank able to verify that the peer is really storing
those chunks if it does not have a copy of the user’s data? The proposed solution is that
the user provides to the bank a list of challenges and their valid responses, callednonce
list, which could be later employed to verify the chunks pertaining to the digital cheque

7

being cashed by a peer. To avoid overloading the bank with thenonce lists of all users,
the nonce list is stored alongside the chunk in the peer itself, but encrypted so only the
bank can read it. Therefore, the bank only has to retrieve andcache the nonce lists of
the users being off-line too much time due to the peers are able by themselves to cash
their cheques. The fact that the off-line verification mechanism is much more expensive
for the user than the on-line one, it incentives users to remain on-line if possible.

The following sections fully specify the P2P backup system operations, including
the proposed verification and incentive mechanisms, in bothcases, when the user is
on-line or off-line.

4. P2P backup system design

Before going into the technical details of our proposal, it is necessary to define the
different roles that are necessary in this architecture:

User: We employ the term “user” to refer to a peer that is storing itsbackup informa-
tion in other peers. Because of performance and resiliency issues, user’s infor-
mation is split into severalchunksthat are later encrypted, replicated and stored
in different peers. There should be redundant copies of the same data to cope
with peers leaving the system or remaining too much time off-line. In that case,
the owner of the information has to create another chunk replica and store it in a
different peer to replace the lost one.

Peer: It is a node that cooperates sharing some of its resources to compose the pro-
posed P2P backup system. An incentive mechanism based on micro-payments
is employed to ensure that bandwidth and storage resources are not wasted, and
to make sure that well-behaved peers are properly rewarded.In particular, users
must pay peers for storing their chunks and performing the requested operations.
The earned money may be then employed by peers to store their own chunks, or
even to exchange virtual credits for real money.

Bank: The proposed micro-payment mechanism requires a trusted entity, which per-
forms the role of a real-world bank, but handling virtual currency, calledcred-
its in this paper, instead of real-world money. The bank5 accounts the virtual
money owned by all users/peers of the system, thus payments between peers are
performed just by asking the bank to transfer virtual money from the payer’s
account to the payee’s.

4.1. P2P Backup System operations

All transactions related to the P2P backup service are charged with a fixed amount
of virtual money. Therefore, it is necessary to pay at least 1credit for each transaction,
charged to the initiator of the operation. Our long-term storage service employs five
basic operations:

5This architecture supports any number of banks that trust each other, as in the real world. However for
simplicity reasons we constrain our description to a singlebank.

8

PUT: It uploads and stores a chunk of data in a remote peer. The costof this operation
must be much higher (e.g. 10 times) than the cost of renewing achunk, which
does not require uploading it, as in this case.

VERIFY: It checks that a remote peer is truly storing the desired chunk of informa-
tion, for instance before being renewed. The cost of this operation is 1 credit, so
users are encouraged to not check continuously their chunks.

UPDATE: It renews a previously uploaded chunk for a certain period oftime (i.e. 1
day) without uploading it again. The cost of this operation is 1 credit plusD
credits per day (or any other arbitrary time unit) elapsed since the last UPDATE
operation.

GET: It downloads a chunk of data from a peer. The cost of this operation should be
similar to the PUT one since it also requires moving data between peers.

DELETE: It removes a chunk from a peer. Its cost is 1 credit and it is necessary to
avoid being blacklisted by a peer storing an old chunk. That is, when a user
moves one or more chunks from one peer to another (e.g. because the new one
is more reliable), it should delete the chunks from the old one.

The nominal value of the fee associated to each operation could be calculated using
the relative costs of performing these operations, however, for simplicity in this paper
we will assume that there is a common, fixed price to store (e.g. 100 credits) and update
(e.g.D=10 credits/day) one chunk.

It is important to define how the transactions of virtual money are performed after
each operation. There are several ways to perform micro-payments. In our system, we
use delayed bank transfers, where a user delays all paymentsto perform them together
in a specific moment of time (e.g. once per day after updating all the chunks). We
think that this solution is a good trade-off between computational load and complex-
ity with respect to other solutions (e.g. instant bank transfers or direct micro-payment
exchanges between peers [1, 2, 3, 4]). The proposed solutionof delayed bank trans-
fers reduces the consumption of bandwidth and computational resources to process the
transactions of all peers, although the bank could still become a bottleneck. However,
this architecture can support multiple bank entities, and there are secure mechanisms
[2] that even allow each bank to define bank assistants to helpthem in their duties if
necessary. Furthermore, the bank also charges each money transfer batch with a small
fee (e.g. 5 credits) in order to fund its operations, as well as to reduce its load, because
the peers will try to contact the bank as less as possible.

However, delayed bank transfers introduce a time gap between the peer performing
an operation and when it receives the payment from the user. Therefore, a peer should
allow some debt from its users until the payment comes. For this purpose, each peer
also maintains localdebt accountsper user, where the debt accumulated by each user
is annotated. That is, when a peer performs some operation for a user, like updating a
chunk, the peer adds its cost to the user’s debt account. Conversely, the user employs
its own peer’s debt account to known how much money it owes to each peer. Then,
when the peer receives some payment from the user, the peer subtracts it from its own

9

local debt account, which ideally should go back to zero. Otherwise, if the debt of a
user grows above certain threshold, the user is blacklistedand all its chunks are erased.
This debt threshold should be relatively low in order to prevent free riders, and thus
this mechanism alone should only tolerate peers being off-line during short periods, let
say a weekend.

4.2. On-line system behavior
In this subsection, we define how our proposal of long-term peer-to-peer backup

works when both the user and its peers are on-line. This subsection presents the basic
design of our proposal to later understand how it supports off-line users, which is the
main objective of this work. The system is governed by the incentive of obtaining
a certain amount of virtual money per transaction. The exchange of chunks and the
transfer of virtual money among users, peers and banks is based on a simple client-
server protocol. Each user operation is acknowledged or responded by the remote peer.
Figure 2 presents an example of the signaling among peers, when all of them are on-
line, to explain precisely the proposed design. This example includes the initial storage,
verification and update of user’s information at two remote peers, and exemplifies the
mechanism of virtual money transfers associated with each operation.

Let us assume that the user wants to store one chunk of encrypted information
but, for resiliency purposes, places it in two peers: peer A and peer B. To do so, the
user performs onePUT operation per peer (messages 1 and 3), which includes the
full chunk data (ChunkData), as well as a timestampedChequeissued by the user to
each particular peer, and a list of nonces (NonceList) employed for off-line verification
purposes (this mechanism will be fully detailed in subsection 4.3). EachPUT operation
is confirmed with aPUT ACK acknowledgment (messages 2 and 4). Each chunk in
the system is uniquely identified by the globally-unique user identifier (UserID) plus
an individual chunk identifier (ChunkID), which can be independently assigned by
each user. APUT transaction is only employed once per chunk and peer, unlessthe
information inside the chunk is modified; thus, it has to be uploaded again.

When the user is on-line, chunks should be updated periodically, and thus pay
peers for storing them. However, before performing any payment to a peer, the user
should check whether the peer is actually storing those chunks by means of aVERIFY
REQUESToperation (messages 5 and 9). To avoid downloading the chunks for local
verification, the user sends anonce(i.e. a random number) as a challenge to the peer.
The remote peer should then apply a predefined hash operationover the chunk data
concatenated with the nonce provided by the user. The resultof this operation is sent
back to the user in aVERIFY RESPONSEoperation (messages 6 and 10). The user
could then check the challenge response using its own copy ofthe chunk and the nonce.
Therefore, the peer can obtain the proper solution to the user’s challenge only if it
is actually storing the chunk. Users should include peers with several unsuccessful
VERIFY RESPONSEoperations in their local black lists, since they are not reliable
peers to store information.

If the verification of a chunk of data succeeds, anUPDATEoperation is performed
afterwards. TheUPDATEoperation renews the cheque of the peer and optionally the
chunk’s nonce list (messages 7 and 11), although in most cases the latter is not nec-
essary because the nonce list can be reused until it is exhausted because of off-line

10

Bank User PeerA PeerB

1: PUT(UserID, ChunkID, ChunkData, Chequei, NonceList)

2: PUT ACK
 (UserID, ChunkID)

3: PUT (UserID, ChunkID, ChunkData, Chequei, NonceList)

4: PUT ACK
 (UserID, ChunkID)

5: VERIFY REQUEST (UserID, ChunkID, Challenge)

6: VERIFY RESPONSE (UserID, ChunkID, hash(Challenge | chunkData))

7: UPDATE
 (UserID, ChunkID, Chequei+1)

8: UPDATE ACK
 (UserID, ChunkID)

9: VERIFY REQUEST (UserID, ChunkID, Challenge)

10: VERIFY RESPONSE (UserID, ChunkID, hash(Challenge | chunkData))

11: UPDATE
 (UserID, ChunkID, Chequei+1)

12: UPDATE ACK
 (UserID, ChunkID)

13: BANK TRANSFER

 (UserID, < PeerIDA, DebtA >,

 < PeerIDB, DebtB > , RevocationTime=i)

14: TRANSFER
 (UserID, PeerIDA, DebtA)

15: TRANSFER
 (UserID, PeerIDB, DebtB)

16: BANK TRANSFER ACK
 (UserID, AccountStatus)

17: GET TRANSFERS

 (PeerID)

18: LAST TRANSFERS

 (<UserID, DebtA, lastTime>)

19: GET TRANSFERS

 (PeerID)

20: LAST TRANSFERS

 (<UserID, DebtB, lastTime>)

Figure 2: Example scenario of long-term P2P Backup with one on-line user and two
peers.11

verifications. The peer confirms theUPDATE operation with anUPDATE ACKre-
sponse (messages 8 and 12)6.

Therefore, the total cost of updating the chunks stored at a peer for an on-line
user is: 1 credit for the (optional)VERIFYoperation, plus 1 credit for theUPDATE
operation plusD, the cost of storing a chunk per day, multiplied byC the number of
chunks andt, the number of elapsed days since the last update time. That is:

Uon(C, t) = 2+ D ·C · t (1)

However, until this moment, no payment has been performed yet because, thanks
to the long-term relationship between a user and the peers, the system could employ
delayed bank transfers to reduce the load. Meanwhile, all peers locally maintain the
accumulated debt with other peers. That is, in the above example the user will subtract
Uon credits from the local peer’s debt account, whereas the peerwill add Uon credits
to the user’s debt account. Finally, after the user has performed all the daily update
operations, a single payment transaction is performed for all the accumulated debt with
its peers. This is only necessary for positive debt balances, thus if two peers store
the same number of chunks into each other and update them daily, the mutual debts
cancel each other out and no payment is necessary. Otherwise, these peer payments
are requested to the Bank through aBANK TRANSFERoperation (message 13), which
specifies the accumulated amount of virtual money that should be transferred from the
user’s bank account to each peer. The user also employs this operation to revoke all the
cheques created before the specified date. The bank only needs to remember the last
revocation date of each user. This way peers with old, not renewed, cheques cannot get
cash from them. The bank also charges a small fee (e.g. 5 credits) to the user to cover
the cost of this transaction. After processing the money transfers (operations 14 and
15), the bank sends back aBANK TRANSFER ACKresponse (message 16) confirming
the payments and detailing the balance of the bank account tothe user.

Peers are not instantly notified of these bank transfers, instead peers should peri-
odically request, viaGET TRANSFERSrequests (messages 17 and 19), the balance
of their own accounts and the last received transfers. The bank replies with aLAST
TRANSFERSresponse (messages 18 and 20) containing the accumulated virtual money
obtained from each user, identified by theUserID, since the specified time. This money
is then subtracted from the local user’s debt account, thus ideally it should be zero after
all operations and payments have been performed. Therefore, the peer could check
whether the users are actually paying for the stored chunks,either with on-line or off-
line paying mechanisms. If this is not the case, and the accumulated debt of a user
exceeds a predefined threshold, all the user’s chunks are removed, and theUserID is
added to a local black list to avoid trusting that user in the future.

This mechanism enables the management of remote information if both peers and
users are on-line. However, the big challenge is how to incentive peers to store the
information from users when they are off-line, and thus theydo not update/pay their

6For simplicity purposes, the VERIFY and UPDATE operations shown in Figure 2 are independent and
refer to a single chunk. However, a real implementation could optimize this and perform both operations
with a single message exchange for all the chunks of the user stored in the peer.

12

chunks. This fundamental issue is addressed in the next section.

4.3. Off-line system behavior

Off-line system behavior is crucial for long-term storage services like P2P backup,
since it must guarantee the storage of information even whenusers go off-line for
extended periods of time. Thus, the aim of this design is to provide a mechanism that
assures peers storing information from off-line users to keep earning virtual money for
their service. Our proposal defines a securedigital chequethat enables these off-line
transactions with the help of a trusted third party, in this case the user’s bank.

By using the cheque issued by the user, a peer can keep earningvirtual money for
storing chunks of off-line users. In this section, we detailthe off-line behavior of our
proposal. Later, in section 6, we detail how this cheque is secured to avoid selfish and
misbehaving nodes.

A cheque is composed by the following fields7:

Bank-ID: This field identifies the bank of the user that issues this cheque. A peer
should reject the cheques from a bank that it does not trust.

User-ID: It is the identifier of the user that generated this cheque.

Peer-ID: It is the identifier of the peer receiving the cheque for storing one or more
chunks from the user.

Chunk-IDs List: This array field contains the identifiers of all the chunks from the
user stored by the peer.

Nonce Lists Hashes:Each chunk has an associatednonce list for verification pur-
poses. This array contains the hashes of the nonce list of each chunk that appears
in the aboveChunk-IDs Listfield.

Nonce Lists Key: This field contains the symmetric key used to encrypt the chunks’
nonce lists. The key itself is encrypted in such a way that only the bank has
access to it. Further details can be found in section 6.

Creation date: It specifies the date when the cheque was created. The bank compares
the last revocation date provided by the user with this creation date to check
whether the cheque is still valid, or it has already been revoked.

Validity date: This field defines the first day (i.e. 7 days after the creation date) when
the cheque can be employed to withdraw money from the user’s bank account,
although it is off-line.

7Some of the cheque’s fields have fixed, well-known values, andthus it is actually not necessary to
include them in the cheque exchanged by the P2P backup protocol. However for completeness, and in order
to better resemble a real-world cheque, we explicitly list them all.

13

Face value: It defines the quantity of virtual money from the user that thepeer can
obtain per chunk and day. This amount should include the costof storing one
chunk during one day, plus the extra cost of cashing the cheque at the bank.
This is an incentive to not overload the bank with cheques since peers can obtain
higher net incomes (they can keep the fees for themselves) ifthey choose to
reduce the frequency with which they cash the cheques.

User’s signature: The cheque must be digitally signed by the user in order to ensure
its legitimacy, as well as to protect its contents. Notice that users independently
issue cheques, without involving the bank.

With the previous definitions, we can now explain an example of an off-line sce-
nario that allows peers that are storing chunks from off-line users to keep earning virtual
money. This example scenario is shown in Figure 3.

When a user goes off-line, it is necessary to keep updating the chunks of infor-
mation that are already stored in remote peers. We make use ofthe digital cheques
to perform this process. When theValidity datespecified in a cheque arrives and the
chunks have not been updated yet, peers can request aCASH CHEQUEoperation to
the user’s bank for the amount specified by the cheque’s face value (messages 1 and
10). As in the on-line case, no payment is performed until it has been verified that the
peer is actually storing the claimed chunks. However, the bank does not have access
to the user’s chunks to generate and validate a challenge, asit is done in the on-line
case. Instead of this, the bank employs the nonce list previously stored at the peers by
the user. The nonce list associated with a chunk is generatedby the user and contains
a number of challenges (e.g. 60 nonces) and their associatedresponses. This list is
encrypted so only the bank can access to the different challenge responses.

The bank asks for this list to the peer trying to cash a cheque with a NONCE LIST
REQUESTand its correspondingNONCE LIST RESPONSE(messages 2 and 3 re-
spectively) and then uses one of the nonces8 to challenge the peer on behalf of the
user with aVERIFY REQUEST(messages 4 and 11), which should trigger aVERIFY
RESPONSE(messages 5 and 12). If the operation is successful, anUPDATEoperation
is issued to the peer, and the bank transfers the required virtual money from the user’s
account to the peer’s one. This quantity isC (the number of chunks that have been
verified),t (the time elapsed since last update operation) times the cheque’s face value.
The fee charged by the bank is also added to this quantity.

Since a chunk could be replicated in several peers, the bank could store the nonce
lists in a cache so it does not need to download it again from the replica peers. This
fact explains why after theCASH CHEQUEoperation in message 10 the nonce list is
not requested again to peer B, since it was previously obtained from peer A (message
2).

When the user comes back on-line, it will ask the bank for the payment operations
performed during its off-line period (messages 17 and 18). With this information the

8The bank could just choose the nonce whose index equals to thenumber of days elapsed since the
cheque’s validity date. This ensures that the nonce has not been employed yet with that peer, without requir-
ing the bank to remember which nonces have been consumed already.

14

Bank PeerA PeerB

1: CASH CHEQUE (UserID, ChunkID, Chequei+1)

2: NONCE LIST REQ (UserID, ChunkID)

3: NONCE LIST (UserID, ChunkID, NonceList)

4: VERIFY REQUEST (UserID, ChunkID, Challenge = NonceListj)

5: VERIFY RESPONSE (UserID, ChunkID, hash (Challenge | chunkData))

6: UPDATE (UserID, ChunkID)

7: UPDATE ACK (UserID, ChunkID)

8: TRANSFER
(UserID, PeerIDA, Cheque.Amount)

9: CASH CHEQUE ACK

10: CASH CHEQUE (User, ChunkID, Chequei+1)

11: VERIFY REQUEST (UserID, ChunkID, Challenge = NonceListj)

12: VERIFY RESPONSE (UserID, ChunkID, hash (Challenge | chunkData))

13: UPDATE(UserID, ChunkID, -)

14: UPDATE ACK (UserID, ChunkID)

15: TRANSFER
(UserID, PeerIDB, Cheque.Amount)

16: CASH CHEQUE ACK

User

17: GET TRANSFERS

 (UserID)

18: LAST TRANSFERS

 (<PeerIDA, - Cheque.Amount , lastTime>,

 <PeerIDB, - Cheque.Amount , lastTime>)

Figure 3: Example scenario of long-term P2P Backup with an off-line user
15

user knows the last update time of its peers, and keep updating the chunks in on-line
mode (after paying for the days since the last update operation performed by the bank).
The user should also renew the cheques, revoke the old ones and create new nonce lists
to avoid repeating the same challenges to the peers.

Since the peer’sCASH CHEQUEoperation requires the bank to perform additional
operations, this transaction must have an extra costX to cover the expenses of the
(optional)NONCE LIST REQUEST, VERIFYandUPDATEoperations issued by the
bank in name of the user. This extra cost is later compensatedby the cheque’s face
value (Y). Therefore the final benefit for the peer is:

Uo f f (t) = 3+ Y ·C · t − (1+ X) = Y ·C · t − X + 2 (2)

It is important to carefully set the cheque’s face value for the off-line incentive
mechanism to work. In particular two conditions should hold:

1. Peers should get more virtual money per day and chunk than in the on-line case.

2. Peers should cash their cheques as less as possible in order to not overload the
bank. Therefore they should obtain more money performing a single CASH
CHEQUEoperation aftern days than doing it every day.

Translating these restrictions into equations:

Uo f f (C, 1) > Uon(C, 1) =⇒ Y− X + 2 > 2+ D =⇒ Y > D + X (3)

Uo f f (C, n) > n · Uo f f (C, 1) ∀n > 0 =⇒ Y ·C · n− X + 2 > n · (Y ·C − X + 2)

=⇒ X · (n− 1) > 2 · (n− 1) =⇒ X > 2
(4)

And thus, the cost ofCASH CHEQUEoperation should beX > 2 (i.e. 3) and
the Cheque face value must beY > D + X (i.e. 15). Thus, this mechanism gives the
appropriate incentives to peers to keep storing information from off-line users. The
maximum duration of the off-line period for a user is only limited by two elements: the
virtual money left at the user’s bank account and the length of the nonce list. Moreover,
due to the bank fees, it is more costly for the users to update their chunks in off-line
mode than in on-line mode, thus users are also encouraged to be on-line. Furthermore,
peers have also to pay an upfront fee to the bank for cashing cheques. Therefore,
by increasing the interval between consecutive cashes of the same cheque, they can
obtain higher revenues, meaning that peers will only contact the bank sporadically to
cash their cheques. This also helps to improve the scalability of the off-line incentive
mechanism.

5. Evaluation of the Incentive Mechanism

In order to evaluate the different aspects of the incentive mechanism and how they
complement each other, we have implemented the proposed P2Pbackup system in a
custom-made simulator developed in Java. The simulator is based in cycles, on each

16

Table 1: Simulation parameters
The values(a), (b) and(c) are D, Y and X respectively, as defined in equations 2, 3, 4

Simulation time 365cycles
Total number of peers 10,000peers

Backup size 10GB
Chunk size 1 MB

Number of replicas 3 replicas
Chunks stored per peer1,000chunks

Initial free storage space 75GB
Initial bank balance 200,000credits

Cheque validity date 7 days
Cost of PUT operation 100credits/chunk

Cost of VERIFY operation 1 credit/chunk
Cost of UPDATE operation 1 + 10(a) credits/chunk· day
Cost of DELETE operation 1 credit/chunk

Chequeface value 15(b) credits/chunk· day
Bank fee of CASH CHEQUE operation5(c) credits

cycle (i.e. one day) all the on-line users/peers put/updatetheir chunks in other on-line
peers and, in order to improve the availability and durability of their backups, move
all the chunks from the peer with the lowest measured availability 9 to a new, randomly
selected peer. For simplicity, all peers/users share the same storage space (75 GB) and
have exactly the same backup size: a 10 GB backup split in 10,000 x 1 MB chunks,
which are then replicated 3 times, leading to 30,000 chunks per user. Moreover, the
number of chunks stored in a peer is set to 1,000, in order to prevent the failure of
a single peer wiping out a significant portion of the backup, as well as to reduce the
number of peers that have to be contacted each day (i.e. 30 peers). The full list of
simulation parameters is shown in Table 1.

In order to study the effects of the different aspects of the incentive mechanisms,
we have implemented different peer behavior classes (i.e. on-line/off-line periods, rate
of update operations, etc.), instantiate an equal share of peers (from a total of 10,000
peers) featuring the desired behavior class, and simulate the P2P backup system with
those mixed peer behaviors for 365 cycles (i.e. one year).

Let us start with the main objective of the P2P backup system:peers should stay
on-line and offer their free storage space to other users. Inorder to verify this, the first
simulation has four peer classes (with 2,500 peers each), all of them offering the same
space, but on each cycle they randomly choose to stay on-lineor off-line with a differ-
ent probability (Ponline). In the first class, the peers are always on-line (Ponline=1.00),

9Peer availability is measured locally by each user by tryingto contact each day with the peers storing the
chunks, and checking whether are on-line or off-line. The availability ratio of new peers is only computed
after 5 measurements (i.e. five cycles).

17

the peers of the second class are on-line the 75% percent of time (Ponline=0.75), a 50%
in the third class (Ponline=0.50), and finally the peers of the last class are only on-line
during the 25% of the simulation cycles (Ponline=0.25).

Figure 4(a) shows the average bank balance of each class of peers. Since all peers
have exactly the same backup size (10 GB), and thus roughly the same cost per day, the
differences among classes come from the different revenuesthat peers obtain by being
on-line and offering their free storage space. Clearly, thepeers staying more time on-
line outperform the ones that are off-line more often, sincea longer time on-line means
greater revenue. In fact the last two classes have deficit andmay be expelled from the
system (i.e. their backups will be deleted) shortly after one year, unless they change
their behavior or pay the bank real money to get additional credits. On the other hand,
the first two classes have surplus, meaning that they must notpay any additional money
to support the operation costs of the bank, and actually theycould store a larger backup,
replicate it more times, share less space or even earn some real-world money.

This aggregated behavior naturally evolves from the fact that users prefer on-line
peers to off-line ones, thus each day on-line users try to move the chunks from their
peer with the worst availability ratio to a new, randomly chosen peer that is both on-
line and has free space left (on steady state this requires, on average, 5,500 DELETE
+ PUT operations per day). Thus, once a chunk is stored in an always on-line peer, it
is never removed from it, whereas the chunks stored in a peer with an on-line ratio of
25% will be moved before the ones stored in the other classes of peers. This leads to
the distribution of stored data shown in Figure 4(b). Class 1peers (100%) have their
disk completely full, whereas the remaining classes still have free space, due to the
time they stay off-line. The small surplus of the 75% class comes from the fact that, on
average, those peers store more than 30 GB, which is the size of the replicated backup
for all peers, while the last two classes are below this break-even point and thus run on
deficit.

Figure 5 shows the effect of the two additional incentives introduced into the sys-
tem to lower the load. In particular Figure 5(a) shows the average bank balance of a
simulation with two peer classes (5,000 peers each), which also have the same backup
size and storage space, but they now both stay on-line 50% of time. However in this
case on-line/off-line periods are not random, but deterministic. The peers of the first
class are one day on-line and off-line the next one, while, inthe latter class, peers
are 8 days on-line, followed by other 8 off-line days. Therefore in this case the dif-
ferences between them do not come from preferring peers witha greater availability
as explained before, but from the fact that the users of the second class remain off-
line longer than the cheque validity date (7 days) and thus their peers will cash their
cheques. Therefore, the extra cost of cheques make class 2 peers to spend more money
than class 1 ones, and thus providing them with an incentive to stay off-line less than
7 days to prevent other peers cashing their costly cheques. Notice that the balances of
both classes do not compensate (i.e. do not sum up to 400,000), because the bank gets
a small fee (5 credits) for each cheque transaction in order to pay its operational costs.

Similarly, in order to lower the total load of the system, users are also incentivized
to minimize the number of operations they request to their peers. The strength of this
incentive can be tuned by changing the fixed cost per message.Figure 5(b) shows
the average bank balance of two peer classes that are both 100% on-line, but take

18

 0

 50

 100

 150

 200

 250

 300

 350

 400

 30 60 90 120 150 180 210 240 270 300 330 360

A
ve

ra
ge

 B
an

k
ba

la
nc

e
[T

ho
us

an
ds

 o
f c

re
di

ts
]

Time [Days]

Peers with Ponline=1.00
Peers with Ponline=0.75
Peers with Ponline=0.50
Peers with Ponline=0.25

(a) Average bank balance of peers

 0

 10

 20

 30

 40

 50

 60

 70

 80

 30 60 90 120 150 180 210 240 270 300 330 360

U
se

d
di

sk
 s

pa
ce

 [G
B

]

Time [Days]

Peers with Ponline=1.00
Peers with Ponline=0.75
Peers with Ponline=0.50
Peers with Ponline=0.25

(b) Peers used disk space (75 GB Max.)

Figure 4: Evaluation of the incentive to stay on-line and share storage resources

19

 0

 50

 100

 150

 200

 250

 300

 350

 400

 30 60 90 120 150 180 210 240 270 300 330 360

A
ve

ra
ge

 B
an

k
ba

la
nc

e
 [T

ho
us

an
ds

 o
f c

re
di

ts
]

Time [Days]

Peers 1-day on/1-day off
Peers 8-days on/8-days off

(a) Minimizing cheques: Average bank balance of peers

 0

 50

 100

 150

 200

 250

 300

 350

 400

 30 60 90 120 150 180 210 240 270 300 330 360

A
ve

ra
ge

 B
an

k
ba

la
nc

e
 [T

ho
us

an
ds

 o
f c

re
di

ts
]

Time [Days]

Batch operations (msg. cost 1)
Daily operations (msg. cost 1)

Batch operations (msg. cost 10)
Daily operations (msg. cost 10)

(b) Minimizing operations: Average bank balance of peers

Figure 5: Evaluation of the incentive to minimize operations and cheques

20

long vacations (30 days) with a small probability (3%). The only difference between
these two classes is that, in the first one all operations (i.e. requesting verify and update
operations, making money transfers and cashing cheques) are performed daily, while in
the second one operations are delayed and executed as a batchafter 5 days, effectively
reducing almost five times the total number of operations (e.g. 61,753 vs. 11,972
UPDATE messages on average per day). This simulation is run twice, first with a fixed
cost of 1 credit per message, and then with a message cost of 10credits. It can be
clearly seen that the best peer strategy is to reduce the number of operations as much
as possible. The differences between both peer classes broadens by increasing the cost
per message, thus allowing the system designer to explicitly set the reward to users for
reducing their load in the system.

Therefore, with the proposed incentive mechanism, the P2P backup system benefits
well-behaved users and penalizes free-riders or malicioususers, effectively enabling
peers to store the backup of off-line users. However, the incentive mechanisms alone do
not prevent the possibility of lost backup chunks due to somekind of physical failure in
the peers storing them, and in this case an off-line user is not able to regenerate the lost
chunks. Therefore users must rely on the chunk replication mechanisms to keep their
backups alive while they are off-line during extended periods of time. If we assume
that p is the probability of a peer failure, then the probabilityPok(t,R,M) that at least
one of theR chunk replicas survives duringt days, for allM = B/C peers storing the
backup file (beingB the total number of backup chunks andC the number of chunks
stored per peer), is:

Pok(t,R,M) = (1− (1− (1− p)t)R)M (5)

This means that with 3 replicas, a peer reliability of a 99.9%(i.e. that means a proba-
bility of failure p equal to 0.001), and with

M =
10GB/1MB chunks
1000chunks/peer

= 10peers, (6)

the probability that the full backup survives during 60 dayswith no user intervention is
Pok=0.99802, orPok=0.99974 for 30 off-line days, and, even in the improbable case of
some backup replication loss, only a subset of the user’s chunks will be affected.

6. Security of the Incentive and Verification Mechanisms

Any incentive mechanism, and specially the ones based on virtual money, should
be secure, otherwise they become useless, or even worst, benefit mischievous users
instead of well-behaving ones.

Probably the most obvious attack to the proposed mechanism is impersonation,
where an attacker tries to convince the bank or other peers that it is a different user
to request payments from the targeted bank account or to be able to store chunks with
a differentUserID. Therefore, first of all, it is necessary to avoid all kinds ofimper-
sonation or man-in-the-middle attacks in the system. Each entity participating in the
system (i.e. banks and users/peers) should have a X.509 digital certificate [30] that
links itsBankID/UserIDwith a RSA public key [31], as it is shown in Figure 6. There-
fore a user could easily assess its identity by means of a digital signature or by using a

21

Figure 6: Security relationships between the different elements of the P2P backup
system

secure protocol that exchanges certificates like TLS [32]. The bank of the user or other
trusted third party could issue these user certificates. Thebanks acting as Certification
Authorities (CA) has the additional benefit that there is a strong relation between users
and their banks, and the peers could just reject transactions with users from unknown
banks that are not in the peer’s trusted CA repository.

Even if certificates do not allow an attacker to impersonate another user, an attacker
can still generate multiple personalities (also known as Sybil attack) to thwart the black
list mechanism. That is, when aUserID is blacklisted because of misbehavior or too
much debt with other peers, the attacker could just ask for anotherUserID to the bank.
This problem can be mitigated by hardening the process to create a new user, either
requesting a real world identity, charging some real-worldmoney (e.g. 10$ that are
exchanged for virtual money), or a combination of both.

To guarantee the integrity and the privacy of the users’ information, backup data
should be encrypted before being stored at the peers, and it should also include a
HMAC [33] digest code to avoid tampering. For performance reasons, chunks should
be encrypted employing a symmetric cipher, albeit each usercan choose its preferred
encryption mechanism for its own chunks. Therefore, since the user is the only one
who knows the encryption key, neither the peers storing the chunks nor the user’s bank
are able to access the backup information. The only additional precaution is that at
least one copy of this secret key as well as the user’s privateRSA key must be securely
stored (i.e. protected by a passphrase) in some well-known and safe location in order
to recover the backup in case of any fatal local hardware or software failure.

Of course, the digital cheque for off-line transactions requires additional security
measures. The cheque must be digitally signed with the private key of the user that

22

issues it, in order to allow that the peer and the bank could assess its authenticity using
the user’s public key. An agile revocation mechanism for cheques is proposed to mini-
mize the state required at the bank: new cheques are issued topeers whenever chunks
are updated, and then the user just notifies to the bank which is the creation date of the
last set of cheques in each delayed transfer. Therefore, thebank only needs to check
the creation date of a cheque to decide whether it has alreadybeen revoked or it is still
valid.

The security of the remote chunk verification mechanism should also be analyzed.
The usage of a cryptographic hash function prevents a malicious peer to solve the
challenge without having the chunk. The malicious user could however still try to
generate all the possible challenge nonces and then store their responses instead of the
chunk itself. Therefore, in order to thwart this attack, thedictionary with all challenges’
responses must be larger than the chunk itself. An arbitrarylarge number could be
chosen, but this would lead to larger nonce lists, which should be retrieved and cached
by the bank. Therefore, it seems better to choose an appropriate nonce length (N bits),
based on the chunk size (S bits) and digest’s length of the hash function (H bits). Then:

S ≤ 2N
· H =⇒ N ≥ log2(S/H) (7)

Which means that withS = 1MB = 223 bit-long chunks and MD5 hashes (H =
128= 27 bits), a nonce of justN=23-7= 16 bits is necessary. If chunks ofS = 1MB are
considered, we needN=26 bits to prevent a complete dictionary attack. Thus, a 32-bit
nonce seems to be a good value to avoid partial dictionary attacks with high probability.
This value leads to a nonce list with 20 bytes per entry, and thus two months worth of
challenges (i.e. 60 nonces) could be stored in as little as 1200 bytes.

Finally, since nonce lists are initially stored by the peersthemselves, it is necessary
to protect the nonces and challenges’ responses from them. To do so, the whole nonce
list should be encrypted so only the bank can decrypt it. We could use the public key
of the bank for this purpose, however public key cryptography is much more CPU
intensive than symmetric ciphers. Therefore it is much better to first encrypt the nonce
lists with a secret key (e.g. AES key of 128 bits), randomly generated by the user.
The problem now is how to convey this secret key to the bank. Inthis case, it is now
feasible to employ the public RSA key of the bank to encrypt this short key. The
encrypted key can be then added to the cheque, because all thenonce lists of a peer can
be encrypted with the same key. Furthermore, the cheque alsocontains the hash of the
different nonce lists to prevent a malicious peer to send an old nonce list, with known
challenges, to the bank for validation.

Therefore, when the bank receives a cheque, first, it has to verify that it features a
valid signature from its user (thus it is both legit and has not been tampered). Secondly,
it needs to verify the validity and creation dates of the cheque by comparing them,
respectively, with the current date and the last revocationdate specified by user, and
finally decrypt the nonce list key in order to obtain the challenges stored in the nonce
list, whose validity is checked using the hash carried by thecheque itself.

23

7. Conclusions

The incentive and verification mechanisms proposed in this paper present certain
characteristics that make them interesting for long-term peer-to-peer storage services
such as P2P backup. On one hand, the secure and lightweight verification mechanism
ensures that the user’s chunks are safely stored in the peersas claimed. On the other
hand, the usage of monetary incentives encourages peers to share their own resources
proportionally to the ones they consume from the P2P system to backup their infor-
mation. Furthermore, paying each successful operation performed by a peer, prevents
users from wasting bandwidth and storage resources.

Although there are many micro-payment mechanisms that could be employed to
implement the proposed incentive mechanism, for simplicity we have chosen delayed
payments through a central bank (or multiple banks that trust each other). The bank
also charges an additional fee for each monetary transaction it performs, which first
provides funding for maintaining its infrastructure, but also helps to reduce its load
since this is also is an incentive for peers to minimize the number of bank transactions.

Finally, the main contribution of this paper is the adoptionof securedigital cheques
to enable the long-term storage of information when an user goes off-line for extended
periods of time. During the user’s absence, the bank keeps verifying and updating the
chunks on behalf of the user. These actions are performed by means of a compact
set of verification challenges created by the user, and only when the peers try to cash
their cheques. The proposed cost model for updating chunks in the off-line case also
ensures that peers will try to cash their cheques as less as possible and, due to the higher
cost of this operation compared to the on-line case, users will remain on-line as much
as possible. Therefore, a higher number of peers will be available, which leads to a
positive increment on the system resources and availability.

We validated our cheque-based mechanism and its associatedincentive aspects us-
ing an ad-hoc, cycle based simulator. The obtained results show how the incentive
mechanism allows the expected long-term storage capability as well as how well-
behaved peers obtain a better performance with respect to worse-behaved peers.

Acknowledgments

This work has been funded by the by the Regional Government ofMadrid under
the MEDIANET project (S2009/TIC-1468).

References

[1] B. Yang and H. Garcia-Molina, “Ppay: micropayments for peer-to-peer systems,”
in 10th ACM conference on Computer and Communications Security (CCS’03),
2003, pp. 300–310.

[2] Z. Jia, S. Tiange, H. Liansheng, and D. Yiqi, “A new micro-payment protocol
based on p2p networks,”IEEE International Conference on E-Business Engi-
neering, pp. 449–455, 2005.

24

[3] K. Wei, A. J. Smith, Y.-F. R. Chen, and B. Vo, “Whopay: A scalable and anony-
mous payment system for peer-to-peer environments,”International Conference
on Distributed Computing Systems, 2006.

[4] K. Chaudhary and X. Dai, “P2p-netpay: An off-line micro-payment system for
content sharing in p2p-networks,”Journal of Emerging Technologies in Web In-
telligence, vol. 1, no. 1, 2009.

[5] N. Liebau, O. Heckmann, A. Kovacevic, A. Mauthe, and R. Steinmetz, “Charging
in peer-to-peer systems based on a token accounting system,” in Lecture Notes in
Computer Science, 2006, vol. 4033, pp. 49–60.

[6] X. Dai, K. Chaudhary, and J. Grundy, “Comparing and contrasting micro-
payment models for content sharing in p2p networks,”International IEEE Con-
ference on Signal-Image Technologies and Internet-Based System, pp. 347–354,
2007.

[7] S. Seuken, D. Charles, M. Chickering, and S. Puri, “Market design & analysis for
a p2p backup system,” in11th ACM conference on Electronic commerce, ser. EC
’10, 2010, pp. 97–108.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao,
“Oceanstore: an architecture for global-scale persistentstorage,”SIGPLAN Not.,
vol. 35, pp. 190–201, November 2000.

[9] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur,
J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer, “Farsite: Federated,
available, and reliable storage for an incompletely trusted environment,” in5th
Symposium on Operating Systems Design and Implementation (OSDI, 2002, pp.
1–14.

[10] C. Batten, K. Barr, A. Saraf, and S. Trepetin, “pStore: Asecure peer-to-peer
backup system,” Massachusetts Institute of Technology Laboratory for Computer
Science, Technical Memo MIT-LCS-TM-632, October 2002.

[11] P. Druschel and A. Rowstron, “Past: A large-scale, persistent peer-to-peer storage
utility,” pp. 75–80, 2001.

[12] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard, “A cooperative
internet backup scheme,” inUSENIX Annual Technical Conference, 2003.

[13] E. Adar and B. A. Huberman, “Free riding on gnutella,”First Monday, vol. 5,
2000.

[14] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robust incentive techniques for
peer-to-peer networks,” in5th ACM conference on Electronic commerce, 2004,
pp. 102–111.

25

[15] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge, “Incentives for shar-
ing in peer-to-peer networks,” inSecond International Workshop on Electronic
Commerce, 2001, pp. 75–87.

[16] K. Ranganathan, M. Ripeanu, A. Sarin, and I. Foster, “Toshare or not to share:
An analysis of incentives to contribute in collaborative file sharing environments,”
in Workshop on Economics of Peer-to-Peer Systems, 2003.

[17] C. Buragohain, D. Agrawal, and S. Suri, “A game theoretic framework for incen-
tives in p2p systems,” in3rd International Conference on Peer-to-Peer Comput-
ing, 2003.

[18] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on Economics
of Peer-to-Peer Systems, P2PECON, 2003.

[19] L. P. Cox, C. D. Murray, and B. D. Noble, “Pastiche: making backup cheap and
easy,” inSymposium on Operating Systems Design and Implementation (OSDI),
2002, pp. 285–298.

[20] L. P. Cox and B. D. Noble, “Samsara: Honor among thieves in peer-to-peer stor-
age,” inNineteenth ACM Symposium on Operating Systems Principles, 2003, pp.
120–132.

[21] G. Utard and A. Vernois, “Data durability in peer to peerstorage systems,” in
IEEE International Symposium on Cluster Computing and the Grid, 2004. CC-
Grid 2004, april 2004, pp. 90 – 97.

[22] L. Toka, M. Dell’Amico, and P. Michiardi, “Online data backup: A peer-assisted
approach,” inPeer-to-Peer Computing, 2010, pp. 1–10.

[23] P. Maille and L. Toka, “Managing a Peer-to-Peer Data Storage System in a Selfish
Society,”Selected Areas in Communications, IEEE Journal on, vol. 26, no. 7, pp.
1295–1301, 2008.

[24] P. Michiardi and L. Toka, “Selfish neighbor selection inpeer-to-peer backup and
storage applications,” inProceedings of the 15th International Euro-Par Confer-
ence on Parallel Processing. Springer-Verlag, 2009, pp. 548–560.

[25] L. Pamies-Juarez, P. Garcı́a-López, and M. Sánchez-Artigas, “Rewarding stability
in peer-to-peer backup systems,” in16th International Conference on Networks,
ICON 2008. IEEE, 2008, pp. 1–6.

[26] ——, “Enforcing fairness in p2p storage systems using asymmetric reciprocal
exchanges,” inIEEE International Conference on Peer-to-Peer Computing (P2P),
Sept 2011, pp. 122 –131.

[27] N. Oualha and Y. Roudier, “Securing p2p storage with a self-organizing payment
scheme,” in5th international Workshop on data privacy management, and3rd
international conference on Autonomous spontaneous security. Springer-Verlag,
2011, pp. 155–169.

26

[28] W. K. Lin, D. M. Chiu, and Y. B. Lee, “Erasure code replication revisited,” in
Fourth International Conference on Peer-to-Peer Computing, ser. P2P ’04, 2004,
pp. 90–97.

[29] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan,L. Kissner, Z. Peter-
son, and D. Song, “Remote data checking using provable data possession,”ACM
Transactions on Information and System Security, vol. 14, pp. 12–34, Jun 2011.

[30] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet
X.509 Public Key Infrastructure Certificate and CertificateRevocation List (CRL)
Profile,” RFC 5280 (Proposed Standard), Internet Engineering Task Force, May
2008.

[31] J. Jonsson and B. Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1,” RFC 3447 (Informational), Internet
Engineering Task Force, Feb. 2003.

[32] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Ver-
sion 1.2,” RFC 5246 (Proposed Standard), Internet Engineering Task Force, Aug.
2008.

[33] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Message
Authentication,” RFC 2104 (Informational), Internet Engineering Task Force,
Feb. 1997.

27

