
Analysis of a Privacy Vulnerability in the OpenID
Authentication Protocol

Manuel Urueña
Universidad Carlos III de Madrid

Email: muruenya@it.uc3m.es

Christian Busquiel
Universidad Carlos III de Madrid

Email: 100032895@alumnos.uc3m.es

Abstract— This paper studies the privacy risks for the users
of the OpenID Single Sign-On (SSO) mechanism. A privacy
vulnerability in the OpenID Authentication Protocol that leads
to the exposure of the OpenID user identifier to third parties
is described in detail. It has been verified that many existing
OpenID agents are currently leaking the (potentially unique)
OpenID identifiers of their users to third parties, like advertise-
ment and traffic analysis companies. Therefore we consider this
vulnerability as a real and widespread privacy risk for OpenID
users. Thus, this paper also studies the solution space of this
problem and defines a number of possible countermeasures. After
analyzing their advantages and drawbacks, we finally propose
two solutions to this problem, one for the long term to avoid the
root cause of the vulnerability, and another short-term mitigation.

I. INTRODUCTION

OpenID is a Single Sign-On (SSO) mechanism for the Web
that is becoming increasingly popular. Big Internet players like
Google, Yahoo, Flicker, WordPress or AOL support and even
provide OpenID identifiers, and tens of thousands of web sites
support OpenID. OpenID has been developed by the OpenID
Foundation [1], which is being sponsored by big corporations
such as Microsoft, Google, IBM, PayPal, Verisign or Yahoo.

The main feature of OpenID, and in general of any SSO
mechanism, is to provide a single user identifier to log
in all the web sites that support it. Furthermore, the user
authentication process is centralized in the OpenID provider,
thus usually it is only necessary to authenticate once per
web browsing session, hence the Single Sign-On (SSO) name.
This is important, not only from its convenience, but also
from a security point of view, because with OpenID the user
credentials are only stored in a single, trusted place.

This clearly contrasts with the current situation where each
user has multiple usernames and passwords in order to log in
many different websites, with the obvious trouble for users.
Even worse, because of this mess, most users use the same
login and password for all the websites, and never change it.
This means that if any of the websites where the user was
registered is malicious or its security is breached, the attacker
could employ the obtained user credentials to gain access to
other similar websites. Therefore, with shared usernames and
passwords, the security of the whole user’s website chain is the
one of the weakest link, the website with the lowest security.

With OpenID, on the one hand, user credentials and personal
information are stored just in the OpenID provider chosen

(trusted) by the user, thus it is a lot easier to protect it. Also,
unlike previous SSO proposals [2] OpenID is not tied to a
specific identity provider but anyone can setup an interoperable
OpenID provider, even the end user herself. Finally, and
also because of centralization, it is possible for the OpenID
provider to implement advanced authentication mechanisms
such as One-Time Password Tokens or Smart Cards.

On the other hand, if OpenID or any other SSO identity
mechanism becomes commonplace and each user has a single
and unique identifier for all her public information published
in the web, like posts, photos, videos, etc. the associated
privacy risks are evident. This is the center of a very interesting
debate in the SSO and the social networks communities, and
many alternatives, such as temporal, anonymous ids, or using
multiple identities per user, are being proposed as potential
solutions to this problem.

This paper does not study the problem of unique identifiers
for public postings, but the potential ability of third parties
(e.g. advertisement and audience metering agencies) to track
all the web visited by a given OpenID user, because of how
the OpenID Authentication Protocol works and exchanges
information on top of the HTTP protocol.

The structure of this paper is as follows: Section II provides
a summary of how the OpenID Authentication Protocol works,
in order to fully understand the privacy vulnerability that has
been found, which is analyzed in detail in section III. Then,
different countermeasures to this problem are presented in
section IV. Finally, the conclusions of this work are presented
in section V.

II. OPENID

First of all, it is necessary to define the terminology em-
ployed by OpenID. The OpenID architecture is composed by
three types of agents:

• User Agent: The browser of the User that wants to log in
in a website (Relying Party) with an OpenID Identifier,
obtained from the OpenID Provider of her choice.

• OpenID Provider (OP): An authentication server that
provides one or more unique identifiers for the end User,
and validates the User’s credentials on behalf of the
Relying Parties.

• Relying Party (RP): The website where the end user tries
to log in employing her OpenID Identifier. This identifier
will be validated by the OpenID Provider of the User.



Fig. 1. The different phases of the OpenID Authentication Protocol [4].

In OpenID, Users are uniquely identified by means of a
particular http: URL, which is called OpenID Identifier1

(e.g. http://alice.myid.org). Initially, this is the only
information provided by the User to the Relying Party when
trying to log in. There are two benefits of using an URL as
an identifier: First of all, URLs are hierarchical in nature by
means of its domain part, thus each OpenID Provider is able
to define its own set of globally unique identifiers without
colliding with other OpenID Providers. Also, by providing a
URL from the OpenID Provider DNS domain, Relying Parties
could easily found the IP address of the OpenID authentication
server and begin with the discovery and authentication phases
of the OpenID Authentication Protocol.

The OpenID Authentication Protocol is the cornerstone of
the OpenID Single Sign-On (SSO) mechanism. Nowadays
there are two versions of this protocol in use, version 1.1
[3] and version 2.0 [4], which is the latest one. The OpenID
Authentication Protocol allows Relying Parties and OpenID
Providers to exchange information on top of the Hypertext
Transfer Protocol (HTTP) [5] both, directly or transparently
through the User Agent. An very important feature of the
OpenID Authentication Protocol is that it does not require
any kind of special support from User Agents. Any HTTP 1.1
standard browser can be employed as a OpenID User Agent,
even if it does not support javascript or cookies have been
disabled by the user.

Following, and with the aid of figure 1, we will explain
in detail the different phases of the OpenID Authentication

1Instead of a http: URL, OpenID users can employ a XRI URL pointing
to an XML document as an alternative to identify themselves. For simplicity
in this paper we will only consider plain OpenID http: URL identifiers.
Nevertheless all the results of this work are still valid, irrespectively of which
kind of OpenID identifier is employed.

Protocol and the format of its messages, as well as its
interaction with the underlying HTTP protocol:

1) The OpenID authentication process starts when a
User, employing an User Agent visits a web-
site (Relying Party) and tries to log in. To that
end she provides her OpenID URL identifier (e.g.
http://alice.myid.org) to the Relying Party,
usually in a HTML form with a HTTP POST operation
(the recommended name for the HTML form field is
“openid identifier”).

2) The Relying Party employs the URL supplied by the
User in order to discover the endpoint of the OpenID
Provider to be employed for the authentication of the
User. Although there are different OpenID discovery
mechanisms, this is usually performed just by requesting
the web page pointed by the User’s OpenID Identifier
URL and looking for a particular <link> tag within
the <head> part of this HTML page. This <link>
tag must include the rel="openid2.provider"
or rel="openid.server" attribute values (depend-
ing on the OpenID protocol version), plus a href
attribute that defines the OpenID Provider endpoint
URL where the user authentication takes place (e.g.
href="http://myid.org/openid-auth/").

3) After discovering the OpenID Provider endpoint, the
Relying Party may (optionally) create a security asso-
ciation with the OpenID Provider, in order to negotiate
a shared secret using a Diffie-Hellman [6] secure key
exchange. This key is later employed to sign and verify
the messages exchanged between them. This security
association is recommended because otherwise it is nec-
essary to address direct requests between them in order
to verify each authentication request/response message.

4) Then, the Relying Party redirects the User Agent to
the discovered OpenID Provider endpoint by means
of a 302 HTTP Temporary Redirect message, where
the HTTP Location header specifies the target
OpenID Provider endpoint. This URL must also con-
tain all the parameters of the OpenID Authentica-
tion Request (openid.mode=checkid setup). The
most important ones are the User’s OpenID Identifier
(openid.identity), the identifier of the optional
security association established between the RP and the
OP (openid.assoc handle), and the URL of the
Relying Party where the result of the Authentication
operation should be sent back (openid.return to).
Additionally, the Relying Party can request, by means of
protocol extensions, some additional information about
the User such as her full name, gender, or e-mail.
Figure 2 shows an (quite simplified2) example of an
OpenID Authentication Request message, sent by the
User Agent to the OP because of the RP redirect reply.

2OpenID Authentication parameters must be percent-encoded before being
added as URL parameters. This encoding has been ignored in all the examples
of the paper in order to ease it understanding by the reader.



GET /openid-auth?openid.mode=checkid_setup
&openid.identity=http://alice.myid.org
&openid.return_to=http://www.example.org
/openid-login
&openid.assoc_handle=xxxxxxxxxxxxxxxx
HTTP/1.1

Host: myid.org

Fig. 2. An example of an OpenID Authentication Request HTTP message
sent by the User Agent to its OpenID Provider (Step 5 of the OpenID
Authentication process).

5) When the User Agent receives the HTTP Redirect
message from the Relying Party, it starts a new con-
nection with her OpenID Provider in order to be au-
thenticated. How the end user is authenticated by the
OpenID provider is out of the scope of the OpenID
specification [4], and thus varies among the different
OpenID Providers that have been tested. This enables
innovation since each OpenID Provider may deploy its
own (hopefully secure) authentication mechanisms, like
SSL certificates. In most cases the User needs to log in,
employing a username and a password, and then she is
requested to confirm the authentication request from the
Relying Party, including which of the requested personal
information should be returned. For User convenience,
all these choices for each particular Relying Party can
be remembered by the OpenID Provider, thus they will
not be asked again the next time. In fact, if this is the
case and the OpenID Provider also employs a HTTP
Cookie in order to authenticate the user subsequently, it
is quite possible that the User would not even see the
OpenID Provider web page because the whole process
occurs automatically and transparently, which of course
it is the main selling point of Single Sign-On (SSO).

6) When the OpenID Provider authenticates the User
and validates the Authentication Request from
the RP, it redirects the User Agent again to the
endpoint specified by the the Relying Party (i.e.
openid.return to). The target URL must contain
all the parameters of the Authentication Response
(openid.mode=id res), including the OpenID
User Identity (openid.identity), a copy of the
base RP endpoint (openid.return to), a nonce
(openid.response nonce), the optional security
association handle (openid.assoc handle), and
a cryptographic signature (openid.sig), along
with the list of parameters that have been signed
by it (openid.signed). Figure 3 shows a (quite
simplified) example of an OpenID Authentication
Request HTTP message, sent by the User Agent to the
RP because of the OP redirect message.

7) Finally, after the reply from User’s OpenID Provider
is validated by the Relying Party, the User will log in
successfully and the web session will continue as usual.

GET /openid-login?openid.mode=id_res
&openid.identity=http://alice.myid.org
&openid.return_to=http://www.example.org
/openid-login
&openid.response_nonce=2010-03-22T12:00
&openid.assoc_handle=xxxxxxxxxxxxxxxx
&openid.signed=mode,identity,return_to
&openid.sig=yyyyyyyyyyyyyyyy
HTTP/1.1

Host: www.example.com

Fig. 3. An example of an OpenID Authentication Reply HTTP message sent
by the User Agent to the Relying Party (Step 7 of the OpenID Authentication
process).

III. A PRIVACY VULNERABILITY OF OPENID

From the previous explanation it can be seen that the
OpenID Authentication Protocol heavily relies on URL-
parameter encoding in order to exchange information between
the Relying Party and the OpenID Provider. The parameters
of the Authentication Reply are signed in order to secure the
authentication process and avoid tampering. However these
parameters are not encrypted, which means that all these pa-
rameters, and in particular the (probably unique) User OpenID
Identifier (openid.identity), can be seen by anyone that
has access to the full URLs of the Authentication Request or
the Authentication Reply messages. Here resides the Privacy
Vulnerability of the OpenID Authentication Protocol that has
been found by this work.

The question then is how these URLs, that in principle
should be only processed by the Relying Party or the OpenID
Provider, can be leaked to a third party. The answer does not
lie in OpenID itself but in the underlying Hypertext Transfer
Protocol (HTTP) that is employed to access web pages, and
thus also to transport the URL parameter-encoded OpenID
authentication messages. In particular when accessing to a
resource (e.g. image, link) the HTTP message header should
include a Referer 3field that specifies the full URL of
the web page where this resource was accessed from. The
objective of this Referer field is to help webmasters to
locate invalid links, and can be very useful for web traffic
analysis in order to know how users actually browse the
website or what web pages are linking to a particular page
or resource.

However this means that the OpenID Authentication URLs,
including the User OpenID Identity parameter, can appear
inside the HTTP Referer field when accessing any resource
linked by the web page that is generated when processing
such URLs. If the OpenID Authentication URLs were always
processed by a CGI or Servlet that does not return any web
content but just redirects the user to other web page, or if
the target web page does only include local resources, this
should not be a problem. Sadly, and because nowadays most

3This field is misspelled in English. It should be ”Referrer” but as it appears
as Referer in the HTTP specification, implementations use it as it is.



Fig. 4. User OpenID Identity leaking to third parties.

websites are funded by advertisements, it is quite common
that all web pages of a site contain some kind of banner, text
advertisement, or traffic analysis script from some third party.

Therefore, because of this combination of OpenID URL-
parameter encoding and HTTP Referer field, there is a
potential privacy vulnerability in all OpenID Providers and
Relying Parties where the web page generated from the
Authentication Request/Reply URL contains any reference to
a third party resource, as depicted4 in figure 4.

In order to study the real impact of this potential vulnerabil-
ity we have analysed multiple web sites that support OpenID
Identifiers (Relying Parties), as well as different OpenID
Providers. We have found that this vulnerability affects all the
studied Relying Parties and even one of OpenID Providers,
which employed a traffic analysis script. Even worse, in many
cases, the third parties where the User OpenID Identity was
leaked were the same ones: a well-known Internet advertise-
ment company and a free traffic analysis website (that even
belong to the same big Internet corporation). In fact, since the
traffic analysis service was based in javascript, the OpenID
Authentication URL appeared twice in the HTTP requests to
this third party: Once as expected in the Referer field, but
also encoded as a parameter of the requested traffic analysis
URL itself.

Therefore we consider that this privacy vulnerability is
very real and even widespread, thus it could be exploited
by unscrupulous Advertisement, Audience Metering or Traffic
Analysis companies to track all the websites accessed by a
particular OpenID User, for instance in order to create user
behaviour profiles for targeted advertising.

4Disclaimer: All user names, DNS domains and URLs that appear in this
paper are fictitious, and they do not belong to any of the RPs and OPs studied
by this work.

IV. POSSIBLE COUNTERMEASURES

Unfortunately, this vulnerability is not a bug or some kind
of implementation issue. All the studied User Agents, Relying
Parties and OpenID Providers do implement the OpenID
Authentication and HTTP Protocols correctly. In fact we have
tested major browsers (Internet Explorer, Firefox, Opera and
Konqueror) with the default settings, over different Operating
Systems (Windows XP and Linux) and we always have been
able to reproduce this vulnerability. Therefore, we consider
that this vulnerability is a design problem of the OpenID
Authentication Protocol because of using URL parameters to
exchange private information.

Moreover, as stated in the Security Considerations section of
the HTTP 1.1 specification [5] (Subsection 15.1.3 “Encoding
Sensitive Information in URI’s”): “Authors of services which
use the HTTP protocol SHOULD NOT use GET based forms
for the submission of sensitive data, because this will cause
this data to be encoded in the Request-URI. Many existing
servers, proxies, and user agents will log the request URI in
some place where it might be visible to third parties. Servers
can use POST-based form submission instead.”

Therefore a solution to this vulnerability must be found by:
1) Redesigning the OpenID Authentication Protocol.
2) Disabling the HTTP Referer field in User Agents.
3) Recommending Relying Parties and OpenID Providers

to do not include links to third parties in the web pages
processing OpenID Authentication URLs.

Clearly, the first alternative is the optimal solution of the
three, since the encoding of information as URL parameters
done by the OpenID Authentication Protocol is the root cause
of this privacy vulnerability. There are two alternative solutions
for a new OpenID Authentication Protocol:

• To avoid exchanging information between the RP and OP
by means of URL parameters, but using instead POST
forms where data is carried in the body of the HTTP
message5.

• To encrypt the whole OpenID Authentication URLs by
leveraging the existing signing key or by generating a
new encryption key during the security association phase.
This way the User OpenID Identifier parameter will be
meaningless, even if leaked to a third party.

Although clearly desirable, these solutions can only be applied
in the long term. First, it is necessary to define a new OpenID
version that deprecates URL parameters, and then wait for all
OpenID Providers, and specially all existing Relying Parties,
to migrate to the new protocol version. Therefore a short term
solution is needed meanwhile.

The third alternative is probably the worst one because
requires many of the existing websites that employ OpenID
to limit where third party resources can appear, to change its
implementation and even its internal structure. Although this

5This HTTP POST mechanism has been already defined in the version
2.0 [4] of the OpenID Authentication Protocol, but none of the analyzed
RPs or OPs employ it. Probably this is because, in order to send a HTML
automatically, the User Agent must support and enable javascript.



may be a plausible solution for the OpenID Providers currently
affected by this vulnerability, it is clearly an unreasonable
solution for all existing and future websites that just want a
simple Single Sign-On (SSO) solution for their users.

Therefore the only short-term alternative seems to be the
second one. Many privacy advocates have suggested in the
past to get rid of the HTTP Referer field since it could
expose the behaviour of the user to the web server. How-
ever the Referer field was finally included in the HTTP
specification because it is an legitimate and useful tool for
webmasters. Nevertheless some browsers are able to disable
this field, by changing its default configuration (e.g. by setting
network.http.sendRefererHeader=0 in Firefox) or
by enabling some kind of ”Private Browsing” mode where
visited web pages are not cached nor stored in the history list.
However, as in the previous case, this is not a global solution
as it requires all OpenID Users to change the default behaviour
of their browsers.

Fortunately, there is an alternative, standard mechanism to
clear the HTTP Referer field. The HTTP 1.1 specification
[5] states that: “Clients SHOULD NOT include a Referer
header field in a (non-secure) HTTP request if the referring
page was transferred with a secure protocol”. This statement
was added to avoid any information -including URLs- that is
exchanged with a secure web site, to be leaked to a different
web site. The good news is that, although it is not explicitly
stated, this also includes the target URL carried in a redirect
message from a secure website. Therefore, if the User Agent
employs HTTPS to connect to the OpenID Provider, when it
is then redirected to the Relying Party, a standard-compliant
User Agent should not include the OpenID Authentication
Reply URL in the Referer field of any resource requested
from that page. We have tested this behaviour in Firefox, and
we have confirmed that when the OpenID Provider employs
HTTPS, the User OpenID Identifier is never leaked to third
parties in the Referer field in none of the tested Relying
Parties.

It should be noted that enabling HTTPS and TLS/SSL
security protocols could add some overhead to the OpenID
Providers servers, and also increase the total delay of the
OpenID authentication process. However we consider that
adding this additional security layer is a good idea by itself, in
order to protect the Users credentials and personal information
stored by the OpenID Providers, even without considering the
found privacy vulnerability.

Therefore we recommend all OpenID Providers to switch
from HTTP to HTTPS to authenticate their users, in order
to mitigate this privacy vulnerability in the short term. Nev-
ertheless we still consider that the usage of URL-encoded
parameters by the current OpenID Authentication Protocol is
flawed and should be redesigned in the long term. Notice that
the HTTPS solution may solve the Referer leakage but does
not guarantee that the OpenID Authentication URLs could not
appear in other places like proxies, caches, history lists, or
server logs, and thus being exposed to attackers or other third
parties.

V. CONCLUSIONS

OpenID is an increasingly popular Single Sing-On (SSO)
mechanism that enables users to have a single identity across
the whole web, thus they only need to log in once during a
web browsing session, hence its name. From a security point
of view, OpenID could also become a powerful tool to enhance
the security of public websites, since user credentials and
personal information are only stored by the OpenID Provider,
which is chosen and trusted by the end user. Therefore user
data is much easier to protect because OpenID Providers
are able to implement advanced authentication mechanisms,
such as One-Time Password Tokens, SSL certificates or Smart
Cards.

However, among other privacy problems derived of using
a unique user identifier, the OpenID Authentication Protocol
is prone to a privacy vulnerability, where a third party like
a web advertisement or audience metering agency is able to
obtain the OpenID identity of a registered user, for instance
in order to known all the OpenID web sites visited by each
individual user. This vulnerability is caused by the usage of
URL parameters in order to exchange information between
the OpenID Providers and the Relying Parties. Then the
(potentially unique) OpenID identifier of an user can be leaked
to a third party by means of the HTTP Referer header.
This is not a bug or an implementation problem, but a design
one. Actually, after studying real Relying Parties and OpenID
Providers, we have found that most of them (unless protected
by HTTPS) are affected by this widespread vulnerability.

In order to mitigate this real privacy risk, this paper also
studies the possible solution space and presents a number
of countermeasures that could be applied. From all the pro-
posed solutions, we consider that the OpenID Authentication
Protocol should be redesigned in the long term in order
to avoid exchanging URL-encoded parameters. Meanwhile,
we suggest the OpenID Foundation to declare the use of
HTTPS as mandatory for all OpenID Providers, as it is the
simplest, easiest and proved way to avoid leaking the OpenID
Authentication URLs to third parties.

As future work, we will study if additional personal infor-
mation of the end user, other than the OpenID identifier, could
be leaked or otherwise obtained by a third party, by means of
some attack that further exploits the vulnerability presented in
this paper.

ACKNOWLEDGMENT

The work presented in this paper has been funded by the
INDECT project (Ref 218086) of the 7th EU Framework
Programme.

REFERENCES

[1] OpenID Foundation website. http://openid.net/
[2] Microsoft Passport Network. http://www.passport.net
[3] D. Recordon, B. Fitzpatrick. OpenID Authentication 1.1. May 2006.
[4] OpenID Foundation. OpenID Authetication 2.0 - Final. December 2007.
[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,

T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. June 1999.
[6] R. Escola. Diffie-Hellman Key Agreement Method. IETF RFC 2631. June

1999.


