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Abstract— Uniform Resource Identifiers (URIs) are very pop-
ular among non-technical people, to identify services and users
in Internet, because they hide the underlying complexity of IP
addresses and port numbers with a simple syntax. However, as
currently defined, URIs are not extensible enough to support
other name resolution mechanisms than the Domain Name
System (DNS), nor newer transport protocols. This paper defines
a backward-compatible syntax for URIs, that allows the location
part of any URI to be defined with a URI itself. This nested
URI syntax is more flexible, as it makes it possible for current
applications to employ dynamic Service Discovery protocols, and
to support multiple transport protocols.

I. INTRODUCTION

From the average user point of view, Uniform Resource
Identifiers (URIs) [1] are the preferred “addresses” of the
Internet, as their simple syntax is able to hide the underlying
technical complexity such as IP addresses, transport protocol
ports or DNS queries. Moreover, web sites URLs and mail ad-
dresses have become well-known terms, even for non-technical
people. Therefore many network protocols are defining its own
URI schemes, because of their growing popularity.

Although nowadays “Uniform Resource Identifier” is the
recommended term for any of their uses [2], many people
still employ alternative terms like Uniform Resource Names
(URN) or Uniform Resource Locators (URL), to specify
whether the URI refers to an abstract identifier, like an ISBN
book code (URN), or to an addressable service, like a web
page (URL). Therefore, although this paper always employs
the general term URI, its main applications are related to
URIs referring to locations; thus the term URL could be used
instead.

A URI is composed by a hierarchical sequence of com-
ponents, whose generic syntax [1] is shown in figure 1.
In the URL/URI of a client-server application: the scheme
identifies the application protocol to be employed (e.g. http),
the authority part defines the location of the peer entity (e.g.
www.example.com:80), while the optional path, query and
fragment sections usually refer to the piece of information to
be handled by the protocol (e.g. index.html#top).

Therefore, in a TCP/IP network, the authority section must
identify the transport address of the target server, which is
composed by: an IP network address and a transport protocol
port number. However, most URIs do not include the IP

URI = scheme ":" authority "/" path ["?" query]["#" frag]

authority = [userinfo "@"] host [":" port]

host = IP-literal/IPv4Address/reg-name

IP-literal = "[" (IPv6Address/IPvFuture) "]"

IPvFuture = "v" 1*HEXDIGIT "." 1*(unreserv/sub-delims/":")

reg-name = *(unreserv/pct-encoded/sub-delims)

port = *DIGIT

Fig. 1. URI Generic Syntax (RFC 3986)

address explicitly, but the DNS hostname of the server. Also,
the service access port is not usually specified, as most of the
application protocols have a default port number.

URI syntax allows these and other simplifications to create
shorter strings, as URIs were designed to be easily read and
written by human beings, while remaining flexible enough to
be employed in multiple contexts and to identify many types
of resources.

When URIs were initially specified, they allowed two
kinds of location identifiers: IPv4 addresses, and DNS do-
main names. Later on, IPv6 addresses were included. This
made the authority section syntax a little more complex,
because a square bracket delimiter has to be added in
order to differentiate IPv6 hexadecimal strings from IPv4
addresses or DNS names. Figure 2 shows three sample
URIs that specify resource locations by: a DNS hostname
(www.example.com), an IPv4 address (10.117.139.166),
an IPv6 address (2001:DB8::2c0:9fff:fe18:31d4), and
a port number (80).

Therefore, although current generic URI syntax specifica-

http://www.example.org:80/index.html

http://10.117.139.166:80/index.html

http://[2001:DB8::2c0:9fff:fe18:31d4]:80/index.html

Fig. 2. URI Examples



tion allows future IP addresses to be defined, at the present
time a resource location can be only specified by one of these
three mechanisms. Thus, services have to be identified by the
server they reside in (that is, with its hostname or IP address),
and the only name-resolution mechanism available for URIs
is the Domain Name System (DNS)1.

However, nowadays there are many other mechanisms to
locate a resource. For example, load balancing frameworks
such as Reliable Server Pooling (Rserpool) [3], or service
discovery protocols like Service Location Protocol (SLP) [4],
Universal Plug’n’Play (UPnP) [5], eXtensible Service Discov-
ery Framework (XSDF) [6], or DNS-based by querying SRV
Resource Records [7].

All these techniques could be also seen as name-resolution
mechanisms as, at the end, they return a valid IP address
of the server where the service is running. Although, unlike
DNS, they do not use hostnames as the search key but an
abstract service identifier (e.g. “printer”). Most of them are
also more dynamic than DNS, thus they are able to locate
available services at any unknown network.

Therefore, as the current URI syntax depends on DNS as the
only resolution mechanism, current applications can neither
employ any of these service discovery protocols, nor any
other that could be defined at the future, unless applications
implement them by themselves, or an alternative mechanism
based on URIs is in place to choose the name-resolution
mechanism to be employed.

Another limitation of URIs is in the identification of the
transport layer to be used, as only the port number can
be specified. This might be considered a minor limitation
nowadays because the Transmission Control Protocol (TCP) is,
by far, the most popular transport protocol, and many network
applications, like web servers or mail agents, only support
TCP. However, applications may employ several transport
protocols, and many of the first IP services, including DNS,
were defined to support both TCP and UDP.

Moreover, there are several new transport protocols that
could replace their 20-years-old counterparts, such as the
Datagram Congestion Control Protocol (DCCP) [8] or the
Stream Control Transmission Protocol (SCTP) [9], which
provides many advanced features like multiple channels, multi-
homing support, dynamic address management, etc. Therefore,
the possibility of specifying a transport protocol inside a URI
seems to be an important tool for the future development of
Internet services and protocol architectures.

Of course, non-technical users are not interested in neither
which transport protocol nor name-resolution mechanism are
employed while surfing the web. However, overcoming these
limitations could be very useful for researchers, migration sce-
narios and network debugging, whereas average-users would
remain unaware of these fully detailed URIs if they are
embedded inside web pages or applications.

1Actually, hostnames may be resolved by other means like local files or
NIS, although they must be DNS names

II. POSSIBLE SOLUTIONS TO URI LIMITATIONS

Currently, transport and name resolution are implicit meth-
ods associated to a URI when the URI Scheme [10] is defined
for that application. Therefore, a possible future solution to
deal with these limitations could be to define a new URI
scheme whenever an application is updated to support a new
transport protocol or an alternative name-resolution mecha-
nism (i.e. a similar approach to the https: scheme for HTTP
over SSL).

However, this alternative has several drawbacks:

• Applications should be modified to recognize the new
scheme. Although this could be not regarded as an issue
because the application has to be modified anyway to
support the new transport protocol, this could be not true
for alternative name-resolution mechanisms, or transport
protocols that, for example, are capable of emulating the
API of TCP.

• Combinatorial explosion. When an application needs
to support several service discovery protocols for
name-resolution AND different transport protocols, it
should have to define and handle all the possible scheme
combinations, like: lpr-slp-tcp, lpr-upnp-tcp,
lpr-srv-tcp, lpr-slp-sctp...

As the name-resolution mechanism and transport protocol
to be used are orthogonal choices, it makes sense to allow
each one to be made separately to avoid the latter problem.
Therefore, as a second alternative solution, it could be possible
to define standard resolver and transport protocol options for
the URI’s query section, which would lead to URIs like:
lpr://printer:515/queue?resolv=SLP&proto=SCTP

However, this second mechanism still requires applications
to be updated each time new query options are to be supported,
but also to re-define the URI schemes that do not include a
query section, because it is an optional part of the current
generic URI syntax.

III. NESTED URIS

The previous possible solutions would not require the cur-
rent URI specification to be changed, as they are based on
the extensible sections of the general URI syntax. However,
the simplest way to handle these limitations, related to the
transport address identifiers, seems to be the authority section
itself; in particular the host and port components.

Unfortunately, the port section is not extensible at all, while
the host part can only be expanded to support alternative IP
addresses between square brackets, as IPv6 hexadecimal ones,
or future formats by defining a “v?.” prefix [1].

Therefore, it is necessary to modify the current URI syntax
definition in order to support other name-resolution mech-
anisms or to include transport protocol identifiers at the
authority section.

However, it is desirable that the new authority syntax should
be compatible with the other sections and even with the
previous one. Also, it should be easily read and written by
non-technical users, as common URIs are. Moreover, the new



URI = scheme ":" authority "/" path ["?" query]["#" frag]

authority = [userinfo "@"] host [":" port]

host = IPv4Address/reg-name/nested-uri

reg-name = *(unreserv/pct-encoded/sub-delims)

nested-uri = "[" (IPv4uri/IPv6uri/dns-uri/slp-uri) "]"

port = *DIGIT / "[" trans-proto ":" *DIGIT "]"

trans-proto = ("tcp"/"udp"/"sctp"/"dccp")

Fig. 3. Nested URI Generic Syntax

syntax should be extensible in order to support future name-
resolution mechanisms and transport protocols.

Then, Why not to employ URIs themselves? They are simple,
its syntax is well known and, with the proper encapsulation
mechanism, they can be compatible with previous syntax as,
by definition, they do not contain reserved characters.

For example, the following URIs identify IPv4, IPv6, and
even IPX addresses, a DNS hostname [11], a SLP service [12],
and transport protocol ports for TCP and SCTP, with an easily
readable and extensible representation:

ipv4:10.117.139.166
ipv6:2001:DB8::2c0:9fff:fe18:31d4
ipx:00000001:00081A0D01C2
dns:www.example.com
service:printer
tcp:80
sctp:80

When needed, these location URIs may be used to define the
host and/or port sections of a URI, although enclosed between
square brackets ("[","]") in order to identify them as nested
URIs (Fig. 3).

Note that this definition is not fully recursive but it only
allows one nesting level to ease URI parsing. Therefore
location URIs must not include other location URIs inside.

As described in the next section, the usage of square
brackets separators allows current applications to support the
host part of nested-URI syntax without being updated, as
URI parsing libraries usually do not process square bracket-
enclosed IPv6 addresses but return them as plain text strings.
Thus, nested-URIs would be successfully processed by most
of the current URI parsing routines.

This syntax is also backward-compatible with the standard
one [1], although nested-URI parsing code should take into
account that IPv6 addresses are also enclosed between square
brackets. As none of the standard URI schemes [10] can be

http://[dns:www.example.com]:[tcp:80]/index.html

http://[ipv4:10.117.139.166]:[tcp:80]/index.html

http://[ipv6:2001:DB8::2c0:9fff:fe18:31d4]:[tcp:80]/
index.html

Fig. 4. Simple nested URI examples

lpr://printer1.example.com:[sctp:515]

lpr://[dns:_lpr._tcp.example.com?type=SRV]

lpr://[service:printer;color=true]

Fig. 5. Service Discovery URIs

mistaken as an IPv6 address, the simplest way to support
legacy IPv6 addresses is to fallback to an IPv6 address parser
when no nested-URI schemes are found.

There are other alternatives to obtain full backwards-
compatibility between nested-URIs and the standard syn-
tax. For example, it could be possible to use a different
delimiter pair (e.g. "{","}"), or the IPvFuture format (e.g.
[v0:service:printer]) to enclose nested-URIs, although
these solutions would led to a more complex URI syntax, and
also require URI parsing routines of current applications to be
updated.

However, the above discussion only refers to nested-URIs
in the host part, as supporting nested-URIs in the port section
requires URI parsing libraries to be updated.

As an example of the new syntax, figure 4 shows the same
URIs of figure 2, this time employing nested URI locations.
However former URIs are still valid with the new syntax, and
even preferred, as they are shorter to type.

The real gain of the nested URI syntax comes from the
enhanced expressivity. For example, figure 5 shows three URIs
referring to a printer. The first one is almost a regular URI
but specifies that the SCTP transport protocol should be used,
instead of TCP.

The second one looks like the first example of figure 4, but it
specifies that the DNS server should be employed to discover
printers at the example.com domain, instead of specifying
the hostname of the printer. This is done by querying the
SRV Resource Record [7], that contains a list of printer’s
hostnames, that are associated with a weight in order to
perform load balancing among them.

The last URI employs SLP [4] in order to discover printers
at the local LAN. But, unlike the DNS SRV method, SLP
is a dynamic protocol, thus only the available printers will
be returned. Even more, SLP Service Requests could include
search predicates to filter Services. Therefore, this URI would
choose an available color printer.

Figure 6 shows more advanced uses of nested URIs. For
example, the IPv6 URI could specify the scope of the address,
that in the case of link local addresses is the interface identifier
(eth0).

telnet://[ipv6:fe80::2c0:9fff:fe18:31d4#eth0]

http://[dns:www.example.com?type=AAAA]/index.html

ftp://[dns://192.168.1.31:53/_drivers._sctp.example.com?
type=SRV]:[sctp:21]/acmelaser2000

Fig. 6. Advanced examples with nested URIs



Fig. 7. Printer example with conventional URIs

DNS hostname-resolution could also benefit from this
nested-URI syntax, as it can include options for the DNS
query. For example to choose the type of Resource Record
to be returned. Therefore, the second location URI does force
the use of IPv6 addresses only. The last URI is left as an
exercise for the reader.

Another big advantage of the nested URI solution, compared
to the other alternatives is that it does not require applications
to be modified in order to support it, as described in the next
section.

IV. IMPLEMENTATION DESIGN

In order to discuss about the implementation details to
support nested URIs, it is necessary to understand how ap-
plications employ URIs to access network services.

First network applications heavily depended on IPv4 ad-
dresses and DNS semantics, like the gethostbyname()

function, that was a direct mapping of a DNS query.
However when IPv6 started being defined, the application

level was also analyzed [13] in order to ease the development
of IP-independent applications. As a result of this review pro-
cess, the gethostbyname() function was declared obsolete
and was replaced by getaddrinfo() (Fig. 8), that hides

int getaddrinfo(const char *node,
const char *service,
const struct addrinfo *hints,

struct addrinfo **res);

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
size_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

Fig. 8. getaddrinfo() function definition

the details of name-resolution and IP addresses into protocol-
agnostic structures. This function is also much more service-
oriented, as it also handles transport port resolution.

Figure 10 shows the recommended [13] C source code
for developing an IP-independent TCP client application, by
means of the getaddrinfo() function.

For example, if this application supports a URI, like
lpr://printer1.example.com:515, to select the target
server, the connection process should look like the one in
figure 7:

1) The application parses the input URI to identify the host
and port parts, and the rest of the URI components, that
might control the application’s behavior.

2) The location information obtained at the previous step
(SERVER_NODE = "printer1.example.com", SERVICE =

"525") is passed to the getaddrinfo() function to
be resolved, specifying that any family of IP addresses
could be accepted (AF_UNSPEC), but the recommended
transport protocol should be connection-oriented, like
TCP (SOCK_STREAM).

3) As the SERVER_NODE string is neither an IPv4 nor
an IPv6 address, then the DNS resolver at the client
machine queries its recursive DNS server.

4) The DNS server returns the AAAA and A Resource
Records (10.117.139.166) associated to the specified
hostname.

5) The getaddrinfo() call returns an addrinfo struc-
ture containing all the transport addresses (sockaddr),
built from the specified port number and IP addresses
obtained from the DNS query.

6) Finally, a socket is created and connected to the first
server transport address, in order to run the application-
level protocol session over the the established TCP
connection.

Therefore, the getaddrinfo() library is able to handle
all the URI location part, as it returns all the information
needed by the applications to establish the transport connection
with the peer server. Thus, application code does not need to



Fig. 9. Printer example with nested URIs

understand whether the URI refers to a DNS hostname or a
literal IP address, and it just passes the opaque string down to
the name-resolver library.

This behavior is the key to seamlessly support nested URIs
without the need for applications to be modified. Instead, it
is only necessary to update the getaddrinfo() library to
understand nested URI syntax and to employ the appropriate
name-resolution mechanism to deal with it.

For example, figure 9 shows an enhanced system that
executes the same application of the previous example (Fig.
10), fed with the following nested-URI:
lpr://[service:printer]

As done before, the application extracts the host
("[service:printer]") and port (NULL) parts of the input
URI, and it passes them to the getaddrinfo() call, as if it
were a conventional URI.

struct addrinfo hints, * res;
int error, sockfd;

memset(&hints, 0, sizeof(hints));
hints.ai->family = AF_UNSPEC;
hints.ai->socktype = SOCK_STREAM;

error = getaddrinfo(SERVER_NODE, SERVICE, &hints, &res);
if (error != 0) {

/* handle getaddrinfo error */
}

sockfd = socket(res->ai_family, res->ai_socktype,
res->ai_protocol);

if (sockfd < 0) {
/* handle socket error */

}

error = connect(sockfd, res->ai_addr, res->ai_addrlen);
if (error < 0) {

/* handle connect error */
}

/* ... */

Fig. 10. Recommended protocol-independent network code

As the nested URIs are delimited by square brackets, current
URI parser libraries should identify the host section simply as
an IPv6 literal address. However, a nested port URI could be
treated as an error, and therefore some URI parsing libraries
might be updated to support nested-port URIs.

The name-address resolution library does recognize the
nested-URI (or just an IP address or hostname, and thus
previous URI does also work) and, depending on the initial
scheme ("service:"), the location URI is resolved by the
appropriate mechanism.

In this case, a SLP User Agent [4] should be employed,
although if the specified scheme does not have an associated
name resolution mechanism an EAI_NONAME error code should
be returned by the getaddrinfo() call.

The SLP User Agent sends a ServiceRequest to the
Directory Agent of the local network (or, if not present, to all
the Service Agents by means of multicast), in order to discover
all the printers in the LAN. As the Service Agents of the
printers have previously registered their service information at
the central Directory Agent, the DA is able to reply with the
list of all the available printers back to the User Agent.

This is an important difference between DNS-based service
discovery and a dynamic protocol like SLP, because a static
resolution mechanism like DNS returns all the configured
printers, no matter they are disabled or not; hence the ap-
plication connection could fail later. SLP, on the other hand,
only returns the available printers, according to the updates
received periodically.

When the SLP nested-URI is fully resolved, the resulting
transport addresses (i.e. including the port number that is also
learnt via SLP) are returned to the application, that is able to
access the selected printer.

This mechanism also enables application protocols to easily
support different transport protocols. For example, in this case
the transport protocol to be employed could be SCTP, even if
the application expects a TCP connection, because SCTP is



able to mimic [14] the TCP socket API functionalities (i.e.
this reasoning could also be applied to DCCP/UDP), while
offering advanced capabilities as multi-homing support.

V. CONCLUSION

Although Uniform Resource Identifier (URI) usage has
become very popular among protocol designers because of
its flexibility, and also for non-technical users because of its
readability, its current syntax [1] has two important limitations:

1) Resources can be located only by the IP address or the
hostname of the server providing it.

2) URIs may include a port number, but there is no way to
identify the transport protocol that should be employed
to access a given service.

Therefore, URI usage forces application protocols to employ
the DNS as the only name-resolution mechanism, and to
support just one transport protocol. For this reason Service
Discovery protocols like SLP [4], or new transport protocols
like SCTP [9] cannot be easily deployed, even when they
provide many advantages over their 20-year old counterparts:
DNS and TCP.

This work has defined a backwards-compatible generic
URI syntax, that allows users to choose the name-resolution
mechanism and the transport protocol that should be used,
by specifying them with nested URIs. This mechanism has
many advantages over other possible alternatives, as nested
URIs are easily readable, they do not require applications to
support new schemes or options, and it even enhances typical
URI usage to become even more flexible. For example, this
additional flexibility may allow name-resolution mechanisms
to be parametrized (e.g. to force a DNS query to return AAAA
Resource Records, or to support IPv6 address scopes).

This paper has also studied the requisites to support
nested-URIs in existing systems and applications. The con-
clusion is that IP-independent applications that employ the
getaddrinfo() call could support nested-URIs without be-
ing modified, as they are unaware of the name-resolution
mechanism employed to obtain the server transport addresses.

Therefore, it should be enough to upgrade the name-address
resolver libraries and some URI parser routines, in order
to enable nested-URI support to any existing application

that follows current recommended practices. This way, next-
generation applications will be able to benefit from state-
of-the-art transport protocols, as well as load balancing and
dynamic service discovery protocols.
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