
A SCALABLE SERVICE DISCOVERY FRAMEWORK
WITH LOAD SHARING CAPABILITIES

Manuel Urueña, David Larrabeiti and Pablo Serrano
Universidad Carlos III de Madrid Av. Universidad 30, Leganés. Spain
{muruenya,dlarra,pablo}@it.uc3m.es

Abstract In order to ease mobility, users should be able to access available services and
resources of the local network without manually reconfigure its terminal at each
visited network. Therefore, some kind of automatic mechanism is needed to
dynamically locate the best available services from any network. The eXtensi-
ble Service Discovery Framework (XSDF) is a novel solution to this problem.
XSDF is an evolution of the Service Location Protocol (SLP) architecture, that
also integrates the load balancing and high-availability capabilities from the Re-
liable Server Pooling (Rserpool) framework in order to bridge together scalable
service discovery with extensible load sharing selection policies. This paper pro-
vides a brief overview of XSDF, and compares it against SLPv2 (including its
Attribute List Extension) employing several simulations in different scenarios.

1. Introduction
Mobility may become “the next big thing”, wireless technologies as Wi-Fi

or 3G will allow users to connect anytime, anywhere to the ubiquitous Internet,
and laptops roaming between multiple networks may become commonplace.
However, this future scenario poses many challenges at multiple layers, from
low-level wireless transmission to user programs, in order to achieve seamless
roaming between networks.

In particular, applications should not be statically configured anymore, they
should adapt themselves dynamically to the new network. For example, the
user’s web browser should be configured with the local web proxy, the list of
the available printers should be updated, etc.

Scalability is another important service-related challenge for mobile net-
works. They must be carefully planned to easily grow from a couple of users
to hundreds when a special event takes place. In this case, the network would
need additional bandwidth and service resources. The latter can be achieved
by replacing the old server with a better one or just by deploying additional
low-cost servers.

216

Although both issues have been hot topic for many years, as far as we know,
load sharing has not been integrated in any service discovery framework to
date.

This paper provides a brief overview of the eXtensible Service Discovery
Framework (XSDF), a scalable architecture that integrates into a single process
the discovery and selection of network services, even from remote locations
across Internet. Thus, mobile terminals connected to a network supporting
XSDF will be able to locate the best available services dynamically, without
any kind of manual configuration.

Service Location Protocol (SLP)
The benefits of Service Discovery have driven the development of many

protocols, including SLP [3], an IETF standard that has been designed to find
available services in the local network. However, while most of the Service
Discovery protocols are focussed on unmanaged LANs, as a typical SOHO
environment, SLP has been carefully designed to scale from these small LANs
to big enterprise sites.

This scalability is achieved by combining multiple mechanisms. In small
networks without a stable infrastructure, User Agents (UA) locate services by
issuing multicast queries to the so-called Service Agents (SA) which reside in
all the computers providing Services. However, when the number of users and
services increase, the multicast traffic could overwhelm the network. In that
case, an optional entity called Directory Agent (DA) may be deployed as a
central repository of service information, where Service Agents publish their
Services. This allows User Agents to send unicast queries to the Directory
Agent. Thus, multicast is not employed but to bootstrap and locate the DA1. In
order to scale even more, or when an organization has different departments,
groups of Users and Services may be split in several independent Scopes which
may have their own Directory Agents.

Furthermore, SLP achieves this scalability while remaining lightweight and
simple. However, this simplicity has become sometimes a problem. A good
example is the way a “Service” is modeled. In SLP a Service is represented
just as a URL plus an optional set of attribute-value pairs, and the URL is also
employed as the Service’s identifier. In [5], Guttman analyzes the problems
derived from this design: 1) a service is tied to a single location, 2) it cannot
be accessed by multiple protocols, and 3) URLs cannot tell which transport
protocols may be employed to access a service.

To overcome these problems Guttman suggests [5] to identify services with
a UUID URN, while its supported transport and application protocols, location

1Multicast is not even needed if DHCP is employed to configure the DA location

A Scalable Service Discovery Framework with Load Sharing Capabilities 217

and additional information (name, description, etc) are carried as attributes.
While this modification allows protocol messages to be backward compatible,
the User Agents and even the applications must modify its behavior. Also,
complex services may require too many textual-encoded attributes, which may
lead to a severe overhead, as we will analyze in section 3.

Reliable Server Pooling (Rserpool)
As employing multiple replicated servers has become a common mechanism

to achieve incremental scalability and high-available Services, load balancing
between loosely-coupled servers has become a hot topic in both the literature
and commercial arena, especially for web servers [1].

Although the DNS-Round Robin technique has become quite popular, it
provides just “coarse-grained” load sharing, specially under high loads. There-
fore many organizations have deployed L4/L7 Switches (a.k.a. “Load Bal-
ancers”) in the front-end of the web-cluster in order to achieve a better load
distribution. These elements behave as a NAT, hiding the back-end servers,
and implement different selection algorithms to choose the best server based
on metrics as the server weight, workload, response time or current number of
connections.

An alternative mechanism for load sharing is the client-side server selection
[2], which is fully compatible with the end-to-end architecture of Internet. The
ongoing Rserpool IETF Working Group is a good example of this kind of tech-
nique. It defines an architecture [9] very similar to SLP, where a set of servers
providing the same service are aggregated into a Pool. Before a client accesses
a particular server of a Pool, the Pool User (PU) asks to the server pool man-
ager -called Name Server (NS)- for all the available Pool Elements (PE), and
finally, the PU chooses the best one among them. As the server selection is
very dependent of the service, Rserpool is extensible and allows several load
balancing mechanisms and metrics. Moreover, as the client knows alternative
servers for a service, it may choose, via the Aggregate Server Access Protocol
(ASAP) [8], an alternative server if the first one fails. Besides, in order to pro-
vide scalability and high-availability to the name resolution process, Rserpool
employs several Name Servers that are coordinated by the Endpoint Name
Resolution Protocol (ENRP) [16].

Rserpool employs SCTP as a mandatory transport protocol. However, the
delay of the SCTP connection setup when asking the Name Server may be
too high for some interactive services. For example Web browsing, where the
overhead of the much simpler DNS name resolution mechanism could affect
[7] the user-perceived latency.

218

2. eXtensible Service Discovery Framework (XSDF)
The eXtensible Service Discovery Framework (XSDF) has been designed to

try to solve the issues outlined in the previous section altogether, as it integrates
both, Service Discovery and Load Sharing into a common architecture. Like
other Service Discovery Frameworks, XSDF is composed of multiple Agents
and the protocols to communicate among them, as shown in figure 1. In par-
ticular, XSDF borrows the architecture and nomenclature from SLP, although
there are many differences between them. Maybe the most visible one is that
XSDF defines four, simpler protocols instead of a single one as SLP does.
Each of these client-server protocols deals with a different part of the Service
Discovery process:

eXtensible Service Location Protocol (XSLP) [12]: User Agents (UA)
employ this protocol to get Service information from Service Agents
(SA) and/or Directory Agents (DA). This is the main protocol of XSDF
and allows either unicast queries to a DA, or multicast queries to all SAs
when no DAs have been deployed.

eXtensible Service Register Protocol(XSRP) [13]: When a Scope is
managed by one or more Directory Agents, Service Agents must em-
ploy XSRP to register Service information at their DA, aggregating all
Services of the Scope in a central cache to enable XSLP unicast queries.

eXtensible Service Subscription Protocol (XSSP) [14]: This protocol
allows any XSDF Agent to be subscribed to some Services by registering
a notification channel. Then, all the changes of the Service information
covered by the specified subscription are notified through that channel.

eXtensible Service Transfer Protocol (XSTP) [15]: In order to achieve
high availability and scalability, each Scope can be managed by multiple
Directory Agents. These DAs employ the XSTP protocol to obtain all
the Service information known by the other DAs, and later, to keep the
common service repository in sync.

Although XSDF may seem more complex than SLP or Rserpool that only
employ one or two protocols, the authors consider that this separation eases the
operation and management of the whole framework. For example, in SLP and
Rserpool, UA/PU queries and SA/PE registrations belong to the same protocol
(SLP/ASAP), although each operation has very different semantics, source and
destination Agents, and security requirements. By splitting these disjoint op-
erations in two protocols, it is easier to enforce simple pool perimeter security
by filtering all XSDF protocol ports but the XSLP one, to allow external UAs
queries.

A Scalable Service Discovery Framework with Load Sharing Capabilities 219

Figure 1. Overview of the XSDF architecture and protocols.

Service Model
In SLP, a Service is defined by a URL and a set of attribute-value pairs.

In Rserpool, Service information only contains one or more transport protocol
identifiers, that is, a port and one or more IP addresses per transport protocol,
along with its selection policy information.

The XSDF Service model mixes both approaches by defining an extensi-
ble description model, that allows complex Services to be represented in a
compact-manner by employing the eXtensible Binary Encoding (XBE32) [10].
The XSDF Service model splits Service information into five parts:

Service Identifier: Each Service is identified by a 128 bit UUID, which
must be unique whithin a Domain.

Service State: It contains the volatile information about the Service that
cannot be cached for long time (e.g. the workload of the server). Also,
Service State includes some version fields of the other Service Informa-
tion elements, to easily check if they have changed.

Service Main Information: These data includes the Type of the Service,
its selection policy, and other important Service-dependent information.
For example, whether a printer supports color or not.

Service Location Information: In order to establish a connection with a
network Service, clients need to know where to reach it, and the available
protocols to access the Service. “Location Information” specifies such
data, as IPv4/6 addresses, transport ports and upper application proto-
cols.

Service Additional Information: While previous information allows
automatic Service Discovery, the so-called “Additional Information” con-

220

tains data intended for human interaction as a textual description of the
Service or the contact data of the Service administrator.

When requesting Service information, a UA may specify which kind of data
it is interested in. This allows non-interactive UAs to download Service State,
Main and Location Information to choose a Service, and later just to check
the State to see if other Service information needs to be updated. Everything
without downloading the Additional information that may be quite big as it is
very verbose.

This service model is so extensible, that it even allows XSDF Agents to be
represented as Services2, thus XSDF Agents may be discovered as any other
Service and they also benefit from the load-sharing capabilities of the frame-
work.

Service Selection Model
When a UA requests Service information via XSLP, it can find several Ser-

vice instances that fit its needs. In that case, some kind of selection process
should take place. For example, a list of all Services (e.g. printers) could be
displayed to the user who chooses one of them.

For Services that allow automatic selection, XSDF provides a version of the
selection model from Rserpool. Each Service Type may have an associated se-
lection policy, and each server may provide some metrics about the “goodness”
of its Service instance. XSDF allows each Service Type to implement its own
selection policy and its related metrics, although XSDF defines the following
standard selection policies:

Round Robin: This policy states that each time a client wants to access
a Service, it should choose a different one. Services may have an asso-
ciated weight information, thus Service instances with greater weight
should be accessed proportionality more times than servers with lower
weight values.

Least Used: Services under this selection policy indicate that clients
should access the server with the lowest workload state value.

Most Resources: Services with this policy tell clients that they should
access the server with the greatest resources state value. When a ser-
vice has zero resources left, clients could try the next discovered ser-
vice, sorted by the selection policy in use.

Along with the weight, workload and resources values, XSDF defines
a fourth selection metric that is applied before any other selection policies:

2As a comparison, SLP has special messages to advertise Directory Agents

A Scalable Service Discovery Framework with Load Sharing Capabilities 221

priority. When two Services of the same type have different priority
value, clients should access the Service with the greatest one. Only if the
Service with the greatest priority is offline, clients are able to access the next
Service with greater priority.

Unlike ASAP [8], where selection process is always performed on the client
side, in XSDF the selection process could be done by the UA, the DA, or both.
SAs may include the selection data inside the Service information for the UAs
to choose the best discovered Service. Also SAs may specify in the XSRP
registration some selection information for the DA. In that case, the DA sorts
the registered Services and, when a UA requests some Service information, the
DA provides just a subset of the best Service instances.

Deployment Scenarios
As XSDF extends the SLP architecture, it also inherits its scalability proper-

ties. It could be deployed in a broad set of scenarios: from unmanaged LANs to
big enterprise networks and the Internet. Each scenario requires only a subset
of XSDF Agents and protocols.

In unmanaged LANs, XSLP is the only protocol needed, as User Agents
may easily query Service Agents in multicast/broadcast for services, and later
choose among them. However, in bigger networks it could be better to define
Scopes and to deploy Directory Agents as multicast searches could be too inef-
ficient. Therefore XSRP is needed to register Services at the DA, and Service
selection could be performed both by the DA cache or by the final UA. At last
XSTP and XSSP should be employed to synchronize the service repository of
multiple DAs when high-availability is required.

An XSDF Realm extends the SLP Scope concept and adds a DNS domain
name. Therefore XSDF may be also employed to advertise public Services in
the Internet (e.g. a pool of Web servers may employ XSDF to achieve load
balancing). This could be done by deploying public DAs managing the pool
Services, and advertising those DAs in DNS SRV Resource Records. This
mechanism [17] was also outlined for SLP although it was not part of the base
specification.

In this scenario, a UA willing to access a Service from the example.com

Domain firstly asks for the _xslp._udp.example.com DNS SRV Resource
Record. This record contains a list of the preferred public DAs. Then, the
UA is able to ask, via XSLP, for the desired Service (e.g. www) in the remote
PUBLIC Scope. Lastly, the DA replies with the available, less-loaded servers.

3. A quantitative comparison between XSDF and SLPv2
This section compares the resource usage of the XSDF protocols compared

to SLPv2 (and some of its variants) by evaluating several simulation scenarios.

222

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 11 22 33 44 55

Fr
am

es
 (M

B
yt

es
)

Number of UAs+SAs

 SLPv2 Unmanaged (60s)
 XSDF Unmanaged (60s)

SLPv2+Ext Unmanaged (60s)
 SLPv2 Managed (60s)
 XSDF Managed (10s)
 XSDF Managed (15s)
 XSDF Managed (60s)

Figure 2. Simulation of XSDF and SLPv2 protocols

We have developed two simulation packages employing the OMNeT++ dis-
crete event simulator [6]. The first one is an implementation of the SLPv2 pro-
tocol, the Attribute List Extension [4], the serviceid modification for complex
services and the SLP API. The second one includes all three XSDF agents (UA,
SA and DA), the XSLP and XSRP protocols, and a simple API derived from
SLP’s one. Both models are integrated in a simplified network environment
with Server and Client hosts. Each Server has an associated Service Agent
where it registers the Service it provides, and each Client requests services to
its local User Agent.

Figure 2 shows the sum of all layer-2 frames 3 (in Megabytes) generated by
several Service Discovery protocols in a 8 hour simulation of different scenar-
ios. The X axis shows the number of User Agents and Service Agents of the
network (there is a 10:1 ratio between clients and server, thus the 22 network
has 2 SAs and 20 UAs). The Clients request services every 15 minutes, while
the Servers update their Service information every 60 seconds.

As the Unmanaged scenarios does not include a Directory Agent, there is no
Service update traffic and Service Requests must be sent in multicast packets.
As it could be seen, basic SLPv2 multicast search does not scale well in big
networks because two multicast requests are required, the first one (SrvRqst)

3A single multicast packet generates N − 1 layer-2 frames.

A Scalable Service Discovery Framework with Load Sharing Capabilities 223

to obtain the Service URI and a second one (AttrRqst) to fetch the Service
Attributes. As XSLP, the Attribute List Extension [4] for SLPv2 (SLPv2+Ext)
allows UAs to get the Service URL and its attributes with a single multicast
search (SrvRqst), thus both protocols show a dramatical improvement com-
pared to basic SLPv2 muticast search.

The Managed scenarios have an additional host that runs a Directory Agent
which centralizes all Service information. In those cases XSDF shows a clear
advantage over SLPv2, due to the compact XBE32 encoding [10], and spe-
cially due to the XSDF Service Model. While SLP User Agents always need
to fetch the entire Service data (including unnecessary one), XSDF UAs may
keep the information in the local cache and request periodically just the Service
State, which also allows UA to know when other Service information changes.
For example, the traffic required by basic SLPv2 to update Service information
every 60 seconds will allow XSDF to update Service information between 10
and 15 seconds, an improvement greater than 4x.

Although the Attribute List Extension has many advantages in multicast
search, it may become a problem for unicast requests of complex Services,
due to MTU restrictions. SLPv2 and XSDF messages must fit into a single
UDP datagram, thus the number of Services in the reply is limited. This is
not a problem for basic SLPv2 as the first SrvRply just contains the Service
URIs, and their Attributes are sent in separate AttrRply messages. With the
Attribute List Extension, the Service URI and its Attributes are returned inside
a single message, and therefore, the Service information size may become a
problem. For example in the last scenario, basic SLPv2 and XSDF protocols
were able to retrieve the information about all the 5 complex Services, while
SLPv2 with the Attribute List Extension will only get the information of a
single Service per request.

4. Conclusions
When a mobile user enters into a new network, she has two choices: The

first one is to ask the network administrator for all the services she needs, and
then to manually configure her applications. The second one is to employ
some Service Discovery mechanism to dynamically locate the best available
services.

This paper has provided an overview of one of these automatic mechanisms:
the eXtensible Service Discovery Framework (XSDF), a novel solution for Ser-
vice Discovery and Load Sharing that brings together the scalable architecture
of the Service Location Protocol (SLP), with the high available load sharing
service of the Reliable Server Pooling (Rserpool) framework.

In section 3 we have compared the resource usage of XSDF versus SLPv2
in different scenarios, including managed (i.e. with a Directory Agent) and

224

unmanaged Scopes. From these simulations we conclude that Services in a
XSDF managed framework could be updated more frequently (4 times) than
in a SLPv2 environment, while consuming less resources.

This study has also analyzed the Attribute List Extension and it shows that
employing of this SLPv2 extension greatly improves the scalability of SLP in
unmanaged environments. However, this extension should be deployed with
care in managed scopes, as centralized requests may return only a small num-
ber of complex Services with many attributes, because SLPv2 messages are
restricted to fit in a single UDP datagram.

References
[1] V. Cardellini, E. Casalicchio, M. Colajanni and P. S. Yu. The State of the Art in Locally

Distributed Web-server Systems, IBM Technical Report RC22209. October 2001.

[2] S. Dykes, K. Robbins and C. Jeffery. An Empirical Evaluation of Client-Side Server Selec-
tion Algorithms. Proc. of INFOCOM 2000.

[3] E. Guttman, C. Perkins, J. Veizades and M. Day. RFC 2608: Service Location Protocol,
Version 2. June 1999.

[4] E. Guttman. RFC 3059: Attribute List Extension for the Service Location Protocol. 2001.

[5] E. Guttman. The serviceid: URI Scheme for Service Location
<draft-guttman-svrloc-serviceid-02.txt>. August 2002.

[6] OMNeT++ simulator site: <http://www.omnetpp.org>

[7] A. Shaikh, R. Tewari and M. Agrawal. On the Effectiveness of DNS-based Server Selection.
Proc. of IEEE INFOCOM 2001. April 2001.

[8] R. Stewart, Q. Xie, M. Stillman and M. Tuexen. Aggregate Server Access Protocol (ASAP)
<draft-ietf-rserpool-asap-08.txt>. October 2003.

[9] M. Tuexen, Q. Xie, R. Stewart, M. Shore, L. Ong, J. Loughney and M. Stillman. Architec-
ture for Reliable Server Pooling <draft-ietf-rserpool-arch-07.txt>. October 2003.

[10] M. Urueña and D. Larrabeiti. eXtensible Binary Encoding (XBE32)
<draft-uruena-xbe32-00.txt>. March 2004.

[11] M. Urueña and D. Larrabeiti. XSDF: Common Elements and Procedures
<draft-uruena-xsdf-common-00.txt>. March 2004.

[12] M. Urueña and D. Larrabeiti. eXtensible Service Location Protocol (XSLP)
<draft-uruena-xslp-00.txt>. March 2004.

[13] M. Urueña and D. Larrabeiti. eXtensible Service Registration Protocol (XSRP)
<draft-uruena-xsrp-00.txt>. March 2004.

[14] M. Urueña and D. Larrabeiti. eXtensible Service Subscription Protocol (XSSP)
<draft-uruena-xssp-00.txt>. March 2004.

[15] M. Urueña and D. Larrabeiti. eXtensible Service Transfer Protocol (XSTP)
<draft-uruena-xstp-00.txt>. March 2004.

[16] Q. Xie, R. Stewart and M. Stillman. Endpoint Name Resolution Protocol (ENRP)
<draft-ietf-rserpool-enrp-07.txt>. October 2003.

[17] W. Zhao. Finding Remote Directory Agents and Service Agents in the Service Location
Protocol via DNS SRV <draft-zhao-slp-remote-da-discovery-06.txt>. March 2004.

