
TUNABLE LEAST SERVED FIRST

A New Scheduling Algorithm with Tunable Fairness

Pablo Serrano, David Larrabeiti, and Ángel León
Universidad Carlos III de Madrid
Departamento de Ingenieŕıa Telemática
Av. Universidad 30, E-28911 Leganés, Madrid, Spain
{pablo,dlarra,aleon}@it.uc3m.es

Abstract At high transmission speeds, complexity of implementation for fair queu-
ing disciplines can impose a bottleneck to the overall system perfor-
mance. Available scheduling algorithms set a fixed trade off between
fairness and complexity, fairer systems involving more operations per
packet and vice versa. In this paper first a new fair queuing scheme
is proposed, with almost the same fairness and complexity propierties
achieved so far by most used algorithms. Later on a tunable parameter is
introduced, which allows the modification of the above mentioned trade
off between fairness and complexity depending on working conditions
and thus enlarging the field of application of the scheduler.

Keywords: Fair scheduling, tunable fairness.

Introduction
In past years, round-robin-like disciplines were the most established

schemes of scheduling. This was mainly because only one class of traffic
(computer data) was supported, with no quality of service (QoS) guar-
antees, and because packet transmission time was large compared to
round trip time (and thus reactive congestion control could be used to
control traffic sources). The emergence of high-speed data networks has
changed these conditions, leading researchers to investigate on new di-
rections for traffic control. First-in-first-out (FIFO) queuing disciplines
have been proved to be no good nor to provide QoS guarantees nor fair-
ness in the event of congestion. Three are the main properties required
for a queuing discipline ([Bensaou et al., 2001]):

Simplicity: the processing overhead must be orders of magnitude
smaller than the average packet transmission time.

Robustness (isolation): well-behaved traffic flows cannot be hurt
by misbehaving flows.

Fairness: all bandwidth should be given to active traffic flows pro-
portional to their weight.

2

Some examples of unfair queuing disciplines are: FIFO, where a ses-
sion can increase its share of service by just presenting more demand,
or Round robin (RR) ([Hahne, 1986]), where a flow with higher mean
packet size will obtain more bandwidth at the expense of another flow
with equal packet injection rate, but less sized packets.

Most Fair Queuing (FQ) algorithms aim to approach the fairness pro-
vided by the generalized processor sharing (GPS) algorithm [Parekh
and Gallager, 1993]. GPS, also called fluid fair queuing (FFQ), is a
theoretical algorithm based on the assumption that traffic is infinitesi-
mally divisible, and hence can be served by infinitesimally small quanta
(leading to the ideal situation where bits from different packet flows are
transmitted concurrently). But in real switched networks packets are
not divisible, and a flow seizes all channel during the transmission time
(so no other flow is given service), which prevents the implementation
of an absolute fairness system ([Golestani, 1994]).

Zhang’s virtual clock scheme [Zhang, 1990] can be considered pioneer-
ing, due to the introduction of a metric (a virtual clock), an effective tool
for both formulating fairness and representing the progress of work in
the queuing system. But virtual clock-based algorithms (WFQ [Demers
et al., 1990], W2FQ [Bennett and Zhang, 1996]) involves considerable
computational complexity. Most of the recent research in reducing the
processing requirement of the scheduler has concentrated on modifying
the basic WFQ paradigm. One exception is the DRR [Shreedhar and
Varghese, 1995] algorithm and its variants, which achieve lower com-
plexity at the expense of lower fairness. In [Chaskar and Madhow, 2003]
modifications to the weighted round-robin approach are discussed, with
performance characteristics similar to those of W2FQ but with lower
complexity of implementation (for fixed packet sizes).

This paper proposes and analyses a new paradigm of fair squeduling,
Least Served First (LSF), and extends it with a parameter which tunes
the trade off between complexity per packet and fairness (T-LSF). LSF
serves at any instant the flow which has received less service since it
arrived to the scheduler, while T-LSF deals with groups of flows that
have received similar service. This tunable fairness (and complexity)
enlarges the field of application of a scheduler: instead of imposing the
design criterium a priori (based on the expected number of flows, line
speeds, . . .), it is possible to tune a parameter a posteriori based on real
working conditions. On maximum fairness configuration it possesses
similar characteristics than those of SCFQ [Golestani, 1994].

The remainder of the paper is organized as follows. Section 1 deals
with the network model, giving definitions about fairness and the al-
gorithm. Section 2 presents the basic version of LSF, without tunable
fairness/complexity, and analyses its performance. On Section 2 we
present T-LSF, with the tunable parameter N that reduces (increases)
complexity (unfairness). Finally, on Section 3 we draw our conclusions
and point out future lines of research.

Tunable Least Served First 3

1. Preliminaries
The network node we consider is modeled as a multiplexer fed by a

superposition of M traffic flows, sharing a link of capacity C. Each flow
i, i = 1, . . . ,M is associated a counter Wi and a bandwidth share ri, with
∑M

i=1 ri = C. A flow i is said to be backlogged at time t if a packet from
flow i is being served or it is waiting to be served at that time. A flow
i is backlogged during (t1, t2) if it is backlogged during all the interval.
B(t1, t2) is the set of sessions which are backlogged during the entire
interval (t1, t2). According to a sorted flow list (based on the values of
the Wi), the LSF algorithm selects the next packet to be transmitted
and updates the value of the counters. Si(t1, t2) is the amount of traffic
served during (t1, t2) to flow i, while Wi(t1, t2) is the difference of the
values for the counter Wi (i.e. Wi(t1, t2) = Wi(t2)−Wi(t2)). Throughout
the paper, and until explicitly claimed, tn is the time when a packet n
has finished its transmission.

The notion of fairness in this paper is defined according to the cri-
terium of proportional rate sharing: if a traffic flow i is not active, its
bandwidth share ri should be allocated to the other active flows in a
fashion proportional to their share. Under the fluid flow assumption, a
scheduling algorithm is said to be fair if and only if

∀ t1, t2 ∀i, j : i, j ∈ B(t1, t2)

∣

∣

∣

∣

Si(t1, t2)

ri
−

Sj(t1, t2)

rj

∣

∣

∣

∣

= 0

Si(t1, t2)/ri is defined as the normalized service received by flow i. In a
non-fluid network model, where traffic flows are served by a non negli-
gible quantum of variable size, the aim is to give a bound for the above
substraction:

∣

∣

∣

∣

Si(t1, t2)

ri

−
Sj(t1, t2)

rj

∣

∣

∣

∣

≤ FI

FI is defined as the fairness index (also called proportional fairness
index [Chaskar and Madhow, 2003] or relative fairness [Zhou and Sethu,
2002]) of the scheduling discipline. The smaller the FI, the fairer the
scheduling algorithm. On the other hand, the absolute fairness is defined
as the difference on normalized service received between a flow served
by the queuing discipline under study, and the same flow in a GPS
environment. Although this is a better measurement of the performance
of the algorithm, in situations with a high number of flows both fairness
values remain close to each other ([Zhou and Sethu, 2002]), and thus we
are able to keep focus on FI.

The main features of most common available scheduling algorithms
are summarized on Table 1, and compared to LSF and T-LSF, i, j being
any two flows, M the number of flows and n the number of packets in the
system, and N the configurable parameter for T-LSF, N ∈ {2, 3, . . . ,M}
(although usually N << M).

4

Table 1. Fairness Bounds and Computational Complexity per Packet

Algorithm Fairness Bound Complexity

SCFQ LMAX
i /ri + LMAX

j /rj O(log(M))
W2FQ LMAX

i /ri + LMAX
j /rj O(log(n))

DRR LMAX
i + LMAX

i /ri + LMAX
j /rj O(1)

LSF 2 · max{LMAX
i /ri} O(log(M))

T-LSF 2 · max{LMAX
i /ri} ·

“

1 + 1

N−1

”

O(log(N))

2. Least Served First

General LSF Algorithm

Consider a system with M flows. A flow i, i ∈ {1, . . . ,M} is associated
a bandwidth share ri and a counter Wi. This counter is used to store
an estimation of the normalized service received by flow i. In order
to maximize fairness, the algorithm aims to minimize the maximum
difference in service received by any two flows: the flow with minimum
Wi is always the next flow to be served.

LSF Algorithm

Initialization.
Wi := 0, i = 1, . . . ,M

Operation.

1 Transmit the head-of-line (HOL) packet of flow j with mini-
mum Wi and size LHOL(j), i.e.

j := arg min1{Wi}

2 Once departed packet from flow j update Wj,

Wj := Wj + LHOL(j)/rj

3 Goto (1).

Flow arrival. When a flow k is backlogged, it is initialized to the
maximum of {Wi},

Wk := max {Wi}

In order to illustrate the behaviour of LSF with an example, suppose
a system with three flows, each of them backlogged with packets of
different sizes. This situation is represented on Fig. 1 (each packet is
given an identifier, with its size in parenthesis). All flows start with
Wi = 0, and ri = rj = 1,∀i, j. The scheduler algorithm will serve
packets as shown on Table 22. Due to the behaviour of the algorithm,
the maximum difference between any two normalized service counters

Tunable Least Served First 5

Figure 1. Example with three flows

Table 2. Example for LSF

Packet Served a1 b1 c1 a2 a3 b2 a4

WA 0 1 1 1 2 3 3 7
WB 0 0 2 2 2 2 4 4
WC 0 0 0 4 4 4 4 4

(|Wi − Wj) at any packet departure is equal to the maximum packet
length in the system, which is the base for the analysis of the fairness of
LSF.

Fairness Analysis

In this section we show that LSF achieves a fairness bound close to
the one obtained in [Demers et al., 1990, Bennett and Zhang, 1996,
Golestani, 1994]. This is stated on the following Theorem, proved through
a sequence of four lemmas.

Theorem 1 (Fairness Index of LSF) For any two flows i, j ∈ B(t1, t2)
and p ∈ {1, . . . ,M}

∣

∣

∣

∣

Si(t1, t2)

ri
−

Sj(t1, t2)

rj

∣

∣

∣

∣

≤ 2 ·maxp

(

LMAX
p

rp

)

For ease of notation, we are going to define the quantity Kp as:

Kp = maxp

(

LMAX
p

rp

)

, p ∈ {1, . . . ,M}

In order to demonstrate the Theorem, we will first bound the differ-
ence between Wi and Wj (at two different tn) for any two flows i and j
(by Lemma 2, Lemma 3 and Corollary 4). Then we will extend it for the
normalized service received, Si/ri (via Corollary 5). At last, we will al-
low the comparaison between any two time instants -not only departure
times- via Lemma 6, concluding the proof.

6

Lemma 2 For any two flows i, j ∈ B(tn, tm), if Wi(tn) = Wj(tn) then

|Wi(tn, tm)−Wj(tn, tm)| ≤ Kp

Proof: Because Wi(tn) = Wj(tn), we have |Wi(tn, tm) −Wj(tn, tm)| =
|(Wi(tm) −Wj(tm)) − (Wi(tn) −Wj(tn))| = |Wi(tm) −Wj(tm)|. With
p ∈ {1, . . . ,M} this difference is bounded by:

|Wi(tm)−Wj(tm)| ≤
∣

∣

∣
max {Wp}tm −min {Wp}tm

∣

∣

∣

With max{Wp}tm (min{Wp}tm) being the maximum (minimum) of all
active counters at tm. Because m ≥ n, and by writing m = n + k, we
can proceed by induction on k:

k = 1:
|max{Wi}tn+1

−min{Wi}tn+1
| ≤ Kp

The demonstration is trivial: Wi(tn) = Wj(tn), and in tn+1 only
one packet has departed, thus the difference in tn+1 is bounded by
the maximum of all possible increments (which is Kp).

k ⇒ k + 1:
for ease of notation (and without loss of generality), we can as-
sume n = 0, so tn+k+1 = tk+1. Then we have |max{Wi}(tk) −
min{Wi}(tk)| ≤ Kp, and we are going to prove it for k + 1. We
need to consider all possible cases:

– min{Wi}(tk) = min{Wi}(tk+1) and max{Wi}(tk+1) ≥ max{Wi}(tk)
This only happens if max{Wi}(tk) = min{Wi}(tk), an thus we are in
the case k = 1.

– max{Wi}(tk+1) = max{Wi}(tk) and min{Wi}(tk+1) ≥ min{Wi}(tk+1)
3.

In this case, |max{Wi}(tk+1) − min{Wi}(tk+1)| = |max{Wi}(tk) −
− min{Wi}(tk+1)| ≤ |max{Wi}(tk) − min{Wi}(tk)| ≤ Kp.

– max{Wi}(tk+1) ≥ max{Wi}(tk) and min{Wi}(tk+1) ≥ min{Wi}(tk)

The only possible case is max{Wi}(tk+1) = min{Wi}(tk)+ Lk

rk

, Lk being

the size of the packet transmitted at tk and rk the flow associated with it.
Then |max{Wi}(tk+1) − min{Wi}(tk+1)| ≤ |max{Wi}(tk+1) −

− min{Wi}(tk)| = |min{Wi}(tk) + Lk

rk

− min{Wi}(tk)| ≤ Kp

Lemma 3 For any two flows i, j ∈ B(tn, tm), if |Wi(tn)−Wj(tn)| ≤ Kp

the following inequality holds:

|Wi(tn, tm)−Wj(tn, tm)| ≤ 2 ·Kp

Proof: |Wi(tn, tm) − Wj(tn, tm)| = |(Wi(tm) − Wj(tm)) − (Wi(tn) −
Wj(tn))|. Because |A − B| ≤ |A| + |B|, we can bound |Wi(tn, tm) −
Wj(tn, tm)| ≤ |(Wi(tm)−Wj(tm))|+|(Wi(tn)−Wj(tn))|. The first term is
bounded by Kp by Lemma 2, and the second term bounded by hypothesis.

Corollary 4 For any two flows i, j ∈ B(tn, tm),

|Wi(tn, tm)−Wj(tn, tm)| ≤ 2 ·Kp

Tunable Least Served First 7

Proof: On tn, there are two possibilities for the relation between Wi

and Wj: either Wi(tn) = Wj(tn), or Wi(tn) 6= Wj(tn). The first case
is bounded via Lemma 2 by Kp. The second case is bounded via Lemma
3: in LSF any flow i who begins backlogged its counter Wi is imposed
to initialize from the maximum of active counters. By Lemma 2, the
maximum difference between any two active counters is Kp, which is the
hypothesis of Lemma 3.

Corollary 5 For any two flows i, j ∈ B(tn, tm),

∣

∣

∣

∣

Si(tn, tm)

ri
−

Sj(tn, tm)

rj

∣

∣

∣

∣

≤ 2 ·Kp

Proof: First we are going to define the predicate isMin

isMin(Wl, {Wp})

{

1, l = arg min{Wp}

0, l 6= arg min{Wp}

Then we can Wi(tm) as

Wi(tm) = Wi(tn) +
m
∑

k=1

(isMin(Wi, {Wp})×
Lk

i

ri

When the predicate isMin equals 1 is when packet i is the next to be
served; thus we have

Wi(tm)−Wi(tn) =
m
∑

k=1

(isMin(Wi, {Wp})×
Lk

i

ri

∆
=

Si(tn, tm)

ri

And then the bound of Corollary 4 on |Wi(tn, tm) −Wj(tn, tm)| applies
directly to |Si(tn, tm)/ri − Sj(tn, tm)/rj |

Lemma 6 For any two flows i, j ∈ B(t1, t2) (t1, t2 being any two instants
of time, and not just packet departure instants), the following inequality
holds:

∣

∣

∣

∣

Si(t1, t2)

ri

−
Sj(t1, t2)

rj

∣

∣

∣

∣

≤ 2 ·Kp

Proof: For a continuous tk, we define tk+ as the instant when the
next packet leaves the system after tk, and tk− when the previous packet
has left the system. Thus we have either i, j ∈ B(t1−, t2+) or i, j /∈
B(t1−, t2+).

1 i, j ∈ B(t1−, t2+). Because the difference is bounded for discretized
tn, it is bounded for the intervals (t1−, t2+), (t1−, t2−), (t1+, t2+)
and (t1+, t2−). Depending on whether i of j transmit, and on rela-
tive values of Si and Sj, it is easy to bound the difference between

8

them (using the pinching or sandwich theorem [de Burgos, 1995]).
The detailed demonstration for this case is given on the Appendix.

2 i, j /∈ B(t1−, t2+). We have to consider t1 and t2 nearness.

t2. If i (j) /∈ B(t2, t2+), then no packet from i (j) left the
system at t2+ and thus Si(j)(t1, t2) = Si(j)(t1, t2−).

t1. If both i, j /∈ B(t1−, t1), none of them receives service at
t1 and Si,j(t1, t2) = Si,j(t1−, t2).
If flow i was receiving service on t1, flow j will behave as
any other flow k, k ∈ B(t1−, t2), which received service just
before t1−, and whose difference on service is bounded. If no
other flow k is available, flow j will initialize with Wj(t1) =
Wi(t1−) and we could extend Sj(t1, t2) to Sj(t1−, t2) without
any obstacles.

Complexity

The initializing/flow arrival phase does not involve any significant
number of operations. Packet departure, on the other hand, besides a
fixed number of operations (a multiplication and an addition) requires
the management of a sorted list. This list does not need to be sorted
at each packet departure, because only the served flow may change its
placement. Thus the required complexity for LSF is O(log(M)), M being
the number of flows at the system. All possible improvements discussed
in [Bensaou et al., 2001] (independence of counters, flow insertion while
a packet is served) are also applicable.

Tunable LSF
Tunable LSF Algorithm For N batches,

Initialization. Initialize counters and insert all flows into the first
batch,

Wi := 0, batch1 ← i, i = 1, . . . ,M

Operation.

1 Serve a flow j on the first batch (with any scheduling disci-
pline, e.g. round robin)

2 Once departed packet from flow j, proceed to update Wj ,

Wj = Wj + Lj/rj

3 Assign j to a batch k, k = 1 . . . N ,

(k − 1) ·
Kp

N − 1
≤Wi < k ·

Kp

N − 1
⇒ batchk ← i

Tunable Least Served First 9

Table 3. Example for T-LSF, N=2, PQ

Packet Served a1 a2 a3 a4 b1 b2 c1 shift

WA 0 1 2 3 7 7 7 7 3
WB 0 0 0 0 0 2 4 4 0
WC 0 0 0 0 0 0 0 4 0

4 Goto (1) until batch1 becomes empty (i /∈ batch1,∀i, i =
1, . . . ,M).

5 Proceed to normalize the {Wi},

Wi := Wi −
Kp

N − 1
, i = 1, . . . ,M

6 Reassign flows to batches (shift from batchn to batchn−1, n =
1, . . . , N)

7 Goto (1)

Flow arrival. When a new flow k arrives to the system, its counter
is initialized to the maximum value of Wi, and it is placed on
batchN .

Wk := max {Wi} , batchN ← k

An example of T-LSF operation with the situation of Fig. 1 with N =
2 it is shown on Table 3. A ”priority queuing” discipline is considered
inside the batches. When a counter Wi exceeds the maximum packet
size (Kp = 4) the flow is moved to the second batch (packets a4, b2
and c1 for each flow). After first batch is emptied (departure of c1), all
counters are shifted Kp. For this case, the maximum difference between
any two counters is less than twice Kp.

Fairness Analysis of T-LSF

LSF bounds the maximum difference between any two counters Wi
and Wj by Kp. From this quantity is obtained the fairness index FI,
twice this value. Tunable LSF bounds that difference by twice the value.
Following the same steps of Section 2, the fairness index (which is a
function of N , the number of batches) is

FI(N) = 2 ·Kp ·

(

1 +
1

N − 1

)

Complexity

Complexity of LSF is related to the number of elements of a list. By
modifying this number, more unfairness is allowed in order to decrease
computational burden. This way, in situations where M >> 1 and

10

computational burden imposes an appreciable bottleneck, choosing a
N << M will decrement the complexity at the expense of losing fairness.
It should be noted that with M = N , T-LSF performs worse than LSF,
because the comparisons are made with thresholds that need not to
coincide with the counter values {Wi}.

3. Conclusions and Future Work
In this paper we proposed a new family of fair scheduling algorithms,

with the main newness of a tunable trade-off between fairness and com-
plexity. No fixed size nor any other additional hypothesis is assumed.
For the most complex case the fairness is close to the one obtained by
similar complexity algorithms. The flexibility of our algorithm allows
the establishment of a trade off between complexity and fairness once
real working conditions are known. We believe this is a new path of
research in fair queuing. On future work we will continue analyzing the
features of T-LSF, providing bounds for delay. We will also provide a
full comparison between it and the other algorithms, both by theoretical
analysis and simulation.

Acknowledgments

This work has been partly supported by the European Union under
the e-Photon/ONe Project (FP6-001933) and by the Spanish Research
Action CICYT CAPITAL (MEC, TEC2004-05622-C04-03/TCM). We
also thank the reviewers of this paper for their valuable comments.

Appendix: Proof of Part (1) of Lemma 6

We have to prove
˛

˛

˛

˛

Si(t1, t2)

ri

−
Sj(t1, t2)

rj

˛

˛

˛

˛

≤ 2 · Kp

Taking into account that i, j ∈ B(t1−, t2+), and the difference is bounded for any pair
of discretized tk. We consider all possible cases (for ease of notation, we omit the ri,j

in the demonstration):

Neither i nor j transmitted at t1− or t2−. So Si,j(t1, t2) = Si,j(t1−, t2+) which
is bounded by Lemma 6.

Only flow i transmits at t1− but not at t2−. Then Si(t1+, t2) < Si(t1, t2) <
Si(t1−, t2). Because Sj(t1+, t2) = Sj(t1, t2) = Sj(t1−, t2), we have |Si(t1−, t2)−
Sj(t1, t2)| ≤ Kp and |Si(t1+, t2)−Sj(t1, t2)| ≤ Kp, thus we conclude |Si(t1, t2)−
Sj(t1, t2)| ≤ Kp.

Only flow i transmits at t2− but not at t1. The demonstration is analogous to
the previous case.

Flow i transmits at both t1− and t2−. The demonstration is again analogous,
starting with Si(t1+, t2−) < Si(t1, t2) < Si(t1−, t2+).

Flow i transmits at t1− and flow j transmits t2−. We consider two cases:

– Suppose Si(t1, t2) > Sj(t1, t2). Then Si(t1, t2)−Sj(t1, t2) < Si(t1, t2−)−
Sj(t1, t2−) < Si(t1−, t2−) − Sj(t1−, t2−) < Kp.

– If Sj(t1, t2) > Si(t1, t2). Then Sj(t1, t2) − Si(t1, t2) < Sj(t1+, t2) −
Si(t1+, t2) < Sj(t1+, t2+) − Si(t1+, t2+) < Kp.

Which closes the proof.

References

[Bennett and Zhang, 1996] Bennett, J. C. R. and Zhang, H. (1996). Wf2q: Worst-
case fair weighted fair queueing. In In Proc. IEEE INFOCOM 96, San Francisco,
CA, Mar. 1996.

[Bensaou et al., 2001] Bensaou, B., Tsang, D.H.K., and Chan, King Tung (2001).
Credit-based fair queueing (cbfq): a simple service-scheduling algorithm for packet-
switched networks. In Networking, IEEE/ACM Transactions on , Volume: 9 ,
Issue: 5 , Oct. 2001 Pages:591 - 604.

[Chaskar and Madhow, 2003] Chaskar, Hemant M. and Madhow, Upamanyu (2003).
Fair scheduling with tunable latency: a round-robin approach. IEEE/ACM Trans.
Netw., 11(4):592–601.

[de Burgos, 1995] de Burgos, Juan (1995). Calculo infinitesimal de una variable.
McGraw-Hill, Madrid.

[Demers et al., 1990] Demers, A., Keshav, S., and Shenker, S. (1990). Analysis and
simulation of a fair queueing algorithm. In Journal of Internetworking Research and
Experience, pages 3-26, October 1990. Also in Proceedings of ACM SIGCOMM89,
pp 3-12.

[Golestani, 1994] Golestani, S. (1994). A self-clocked fair queueing scheme for broad-
band applications. In Proceedings of IEEE INFOCOM 94, pages 636-646, Toronto,
CA, June 1994.

[Hahne, 1986] Hahne, E. (1986). Round robin scheduling for fair flow control. In
Ph.D. thesis, Dept. Elect. Eng. And Comput. Sci., M.I.T., Dec. 1986.

[Parekh and Gallager, 1993] Parekh, Abhay K. and Gallager, Robert G. (1993). A
generalized processor sharing approach to flow control in integrated services net-
works: the single-node case. IEEE/ACM Trans. Netw., 1(3):344–357.

[Shreedhar and Varghese, 1995] Shreedhar, M. and Varghese, George (1995). Effi-
cient fair queueing using deficit round robin. In Proceedings of the conference on
Applications, technologies, architectures, and protocols for computer communica-
tion, pages 231–242. ACM Press.

[Zhang, 1990] Zhang, L. (1990). Virtual clock: a new traffic control algorithm for
packet switching networks. In Proceedings of the ACM symposium on Communi-
cations architectures & protocols, pages 19–29. ACM Press.

[Zhou and Sethu, 2002] Zhou, Y. and Sethu, H. (2002). On the relationship between
absolute and relative fairness bounds. In IEEE Comm. Letters, vol. 6, no. 1, pp.
37–39, Jan. 2002.

