Fast Robust Hashing

Manuel Urueiia, David Larrabeiti and Pablo Serrano
Universidad Carlos III de Madrid
E-28911 Leganés (Madrid), Spain
Email: {muruenya,dlarra,pablo} @it.uc3m.es

Abstract— As stateful flow-aware services are becoming com-
monplace, distributed router architectures have to quickly assign
packets being forwarded to service-specialized processors in or-
der to balance flow processing and state among them. Moreover,
packets belonging to the same flow must be always assigned to
the same CPU, even if some of the service processors become
unavailable. This paper presents two novel Fast Robust Hashing
algorithms for persistent Flow-to-CPU mapping, that require
less hashing operations per packet than previous Robust Hash
algorithms, thus being able to fulfill all the above requirements
to implement flow-aware services at wire-speed.

Index Terms— Robust Hashing, Flow Processing

I. INTRODUCTION

Providing flow-aware services for hundreds of thousands of
flows per second arriving through high-speed interfaces poses
significant technical challenges. A common solution is to em-
ploy distributed systems that allows parallel packet processing.
These multi-processor router architectures [8] allow flow state
to be distributed among specialized CPUs, or even among
external devices. For example deploying a cluster of NAT
appliances attached to the access router of an organization
is quite common nowadays.

In any case, those stateful services require some kind of
mapping mechanism that does not only balance flows among
CPUs or external devices, but it must also ensure that all
packets belonging to the same flow are always processed by
the same CPU. Otherwise, for example in the case of a stateful
firewall, any mismatched packets will be dropped as only the
initial CPU is aware of such connection.

A mapping scheme based on hash functions seems ideal
for distributed packet processing, as it does not require a
central flow table, that could easily become the bottleneck of
the system. Instead it is only necessary to perform one hash
operation to the packet flow identifier in order to find the CPU
that must process all the packets belonging to that flow.

However, this scheme fails when the number of available
processors varies, for example when one of the NAT boxes
in the cluster goes down. In that case, the return range of the
hash function should be reduced by one in order to skip the
disabled processor. But changing the hash function means that
the Flow-to-CPU mapping obtained by the old hash function
will differ from the one being performed by the new hash
function, leading to the disruption of all the re-mapped flows.
In fact, whenever any of the n CPUs goes down, most of the
flows (”T_l) [7] will be re-mapped (and therefore discarded),
due to the load-balancing property of hashing.

The Robust Hashing mechanism was designed to address
the above issue. Its objective is that, whenever a processor
goes down, the only re-mapped flows are the ones that would
be assigned to the disabled CPU (%). The solution is quite
simple: instead of performing a single hash operation that
returns the chosen CPU, each CPU has an associated hash
function that gives its “affinity” to that flow. Then, the CPU
with the greatest affinity value is chosen. When a CPU goes
down its hashing function is not computed, thus it cannot be
chosen. Therefore, only the flows assigned to it are re-mapped
because, by definition, the rest of flows have a greater affinity
with one of the remaining CPUs.

The term Robust Hashing was firstly introduced by Ross in
[6] for the Web-caching domain. Later, the Highest Random
Weight algorithm [7] by Thaler and Ravishankar enhanced the
Robust Hash mechanism to support heterogeneous caches, by
assigning them static weights. Finally, Kencl and Le Boudec
[3] have defined a method for dynamically adjusting the
weights associated to each CPU depending on its workload.

A drawback of all these techniques is that each mapping
requires as many hash operations as CPUs are available. Be-
cause hash functions are quite complex operations and all these
computations should be performed for each arriving packet,
this load-balancing process could become the bottleneck of
the whole system, thus limiting the scalability of the service-
processor cluster.

This paper presents two novel algorithms, designed to
reduce the number of hash computations per packet while
keeping the same useful properties of the classical Robust
Hash techniques: the Small Robust Hash and the Big Robust
Hash algorithms.

II. SMALL ROBUST HASHING

The objective of the Small Robust Hash algorithm is to
assign a packet to a CPU with just one hash operation.
Therefore it employs a single hash function that never changes,
even when a CPU is disabled, in order to maintain previous
mappings.

The algorithm works as follows: when a packet arrives, its
flow identifier f is employed as the argument of the hash
function. However, this hash operation h(f) does not return
the CPU itself but a position in the “Mapping Vector”, which
contains the selected CPU.

In order to achieve probabilistic load balancing [7], the
Mapping Vector must contain the same number of entries for
each available CPU. Therefore, if a CPU goes down, all its

h(f) > [123412341234]
l CPU 3 goes down:
-Replace 3 with {1,2,4}
h(f) = [12[T]a122]412[E4]
l CPU 1 goes down:
-Replace 1 with {2,4}

h(f) — [[212[a]a[2]2 2 4[d]2 4 4]

Fig. 1. Evolution of the Mapping Vector for the Small Robust Hash algorithm
(n =4, CPUs 3 and 1 are disabled)

entries in the Mapping Vector are renamed with the remaining
CPUs in a round-robin fashion.

For example, for the Mapping Vector in Fig. 1 and employ-
ing h(f) = f mod 12 as a simple hash function, all packets
of flow 17 will be assigned to CPU 2, even if CPUs 1 and
3 go down. On the other hand, flows with identifier 14 start
being processed by CPU 3, but later ones will be assigned
to CPU 1 and then to CPU 4 when CPUs 3 and 1 go down,
respectively.

A. Memory requirements

Small Robust Hash algorithm requires a Mapping Vector of
length m such that, for any number of disabled CPUs, there
should be an equal share of entries for each of the available
CPUs left.

This requirement is quite strong, as it means that, if n is
the total number of CPUs, m should be a multiple of n,
(n — 1), ..., that is, all the possible number of available
CPUs. Otherwise if m is not a multiple of the number of
available CPUgs, it is not possible to rewrite all the disabled
CPU’s entries with a fair round-robin, leading to some degree
of load imbalance among the remaining CPUs.

Therefore, m = [] p* where p* < n is the greatest i power
of every prime number p € [2,n].

As it could be seen on the first row of Table I, m could
be a huge value but for a relatively small number of CPUs.
However this is only necessary in order to support an arbitrary
number of CPUs going down, which is quite an improbable
situation. Therefore it is possible to save some memory if only
a subset of values between 2 and n is chosen, thus providing
partial fault-tolerance just for a reasonable number of disabled
CPUs. The second and third rows of Table I show the memory
requirements of the Small Robust Hash algorithm in order to
support a CPU failure rate of 25% and 10% without load-
imbalance among the surviving ones.

B. Performance

The Small Robust Hash algorithm poses an optimal perfor-
mance, as it always finds each packet-to-CPU mapping with
just one hash operation plus a memory access, no matter how
many CPUs are down. Thus its complexity is O(1).

Also, when a CPU is disabled, all its ﬁ entries at the
Mapping Vector should be found and replaced by available
ones, being n — k the number of CPUs left. Thus, the

complexity to update the Mapping Vector is O(m).

TABLE I
MEMORY REQUIREMENTS (IN BYTES)

Number of CPUs (n) 4 8 16 32
Small Robust Hash 100% | 12 840 7-10° 14-1013
Small Robust Hash 25% | 12 168 21840 17-108
Small Robust Hash 10% | 12 56 1680 4-10°

Big Robust Hash 10 36 136 528

However, the memory requirements of the Small Robust
Hash algorithm make it applicable just for systems allowing
partial fault-tolerance or having a small number of CPUs,
hence its name. For distributed architectures with a greater
number of processors, an algorithm with less memory require-
ments is proposed in the next section.

III. B1IG ROBUST HASHING

The Big Robust Hash algorithm also applies hash functions
to the packet’s flow identifier in order to obtain a Mapping
Vector’s index. However, the Big Robust Hashing algorithm
does not employ a single hash function but several ones, each
one associated to a different Mapping Vector. All the Mapping
Vectors together are called the “Mapping Matrix”.

When all CPUs are active, this algorithm resembles the
Small Robust Hashing one: there is one Mapping Vector (with
a single entry per CPU) and a hash function that returns a
position inside this vector. The differences only arise if some
CPUs are disabled: the Big Robust Hash algorithm does not
employ a single, long vector but many.

When a CPU goes down, a new Mapping Vector containing
the remaining CPU entries, and its associated hash function
are added. Then, the disabled CPU entry at the initial vector
is replaced by a pointer (called hop) to the second vector, as
shown in Fig. 2.

Then, the Mapping process works as follows: given f, the
flow identifier of the packet, the initial hash function h(f)
returns a position at the initial Mapping Vector. If that entry
is an available CPU, the mapping is done. Else, when a hop is
found, the following hash function should be applied to select
a position in the new vector. In general, this process is repeated
until an available CPU is found.

Although this mechanism employs several hash functions,
no disruption occurs as they are always applied in the same
order. Flows previously assigned to an available CPU will be
mapped again by the same hash function because its entry
at the top Mapping Vector remains unchanged. On the other
hand, new flows that would be assigned to the disabled CPU
by the first hash function will find the hop entry, and then
the second hash function »’(f) will assign them to one of the
available CPUs at the new vector. Thus the remaining CPUs
will absorb an equal share of the flows that would be otherwise
assigned to the disabled CPU.

If a second CPU goes down, another hash function h”(f)
and its Mapping Vector are added, and the entries of the
disabled CPU in all other vectors are renamed with hop entries
pointing directly to the third Mapping Vector.

Notice that the new vector does not replace the previous
one, but it is added at the bottom of the Mapping Matrix. The

h(f) = [1 2 3 4 5] =0
CPU 3 goes down:
-Add vector [1,2,4,5]

-Replace 3 with hops {-1}

h(f) =11 2[1 4 51 I=0
h'(f)—[1 2 4 5] I=1
CPU 1 goes down:

-Add vector [2,4,5]

-Replace 1 with hops {-2,-1}

h(f) > 2-145] [=0
h'()—[[Q 2 4 51 I=1
h'()—>[2 4 5] =2

Fig. 2. Evolution of the Mapping Matrix for the Big Robust Hash algorithm
(n =5, CPUs 3 and 1 are disabled)

intermediate vectors and their hash functions are needed to
avoid the disruption of the flows that were mapped employing
them, right before the last CPU was disabled.

Let us illustrate the behavior of the Big Robust Hash
algorithm with the aid of the Mapping Matrices of Fig. 2 and a
simple family of hash functions based on the module operator
(h(f) = f mod i): h(f) = f mod 5, A'(f) = f mod 4,
and so on. For example, flow 13 is always processed by CPU
4 because whenever the first hash function 2 (13) is computed,
it founds CPU 4 available every time. On the other hand, once
CPUs 3 and 1 are disabled, packets with flow identifier 12 are
mapped employing the three hash functions. ~(12) finds a —1
hop to the second Mapping vector and applying h'(12) over
the second vector has the same result. Finally h”(12) assigns
these packets to CPU 2. However packets of flow 10 will be
classified just with two hash operations, because the —2 hop
found at the first Mapping Vector redirects the search to the
bottom one, which always succeeds (h”(10) — CPU 4).

A. Memory requirements

As the Mapping Matrix is initialized with a Mapping Vector
of length n, and a new one is added whenever a CPU goes
down, the maximum number of Mapping Vectors is n + 1.
Then, as the full Mapping Matrix is triangular, it only requires
memory for storing w positions.

Table I shows, for different values of nm, the maximum
size of the Mapping Matrix required by the Big Robust
Hash algorithm. Those values are small enough to fit in the
data cache of commercial Network Processor [1], [2] micro-
engines, thus memory access latency does not seem to be a
major problem.

B. Performance

If £ € [0,n] is the number of disabled CPUs, classical
Robust Hash algorithms require n — k hash operations in
order to perform each flow-to-CPU mapping, that is, one hash
operation per available CPU. That means that, when all CPUs
are up an running, it is necessary to compute n hash operations
per packet and choose the biggest value. On the other hand,
both Fast Robust Hash algorithms presented in this paper
require just one hash operation and a fast SRAM memory
access per packet in the most common case, when all CPUs
are available.

The complexity to update the Mapping Matrix when a CPU
goes down is O(k) because only one entry per Mapping Vector
should be rewritten.

The Big Robust Hash algorithm performance study is less
trivial than previous ones as, unlike the classical and Small
variants, each packet is not always mapped after a fixed num-
ber of hash operations, but each one may require a different
number of operations. Although, obviously, the maximum
number of operations per packet is k41, as this is the number
of Mapping Vectors when k CPUs are down.

In order to study the mapping process, each vector of the
Mapping Matrix is called level, and they are numbered in
reverse order, from the bottom Mapping Vector to the top
one, as shown in Fig. 2. This way, the level number [€ [0, k]
also indicates the number of disabled CPUs/hop entries at that
level. Other useful functions that characterize a [level are:

Peopys(l): Probability to find any available CPU at level [

n—=k

Forvsl) =250

(1)

Phops(1): Probability to find any hop entry at level !

l
Phops(l) =1~ PCPUs(l) = m (2)
All hop entries in a level are equiprobable (by the load-
balancing property of the hash functions), thus P, () is the
probability to find one particular hop redirection at level I:
_ DPhops (1) 1

Propll) = 2222 = — 3)

Let H(l) be the random variable that defines the number
of hash operations required to find an available CPU, starting
with the hash function/Mapping Vector at level /. Then, we
are interested in H (k), that is, the average number of hash
operations until an available CPU is found, starting at the top
of the mapping matrix (I = k).

The bottom level of the mapping matrix (I = 0) does not
have any hop entries, thus only one hash operation is needed:

H(0)=1= H(0)=1)

At upper levels (I > 0), the average number of hash
operations is: 1 if a CPU entry is found (Pgpys(1)), or 1 plus
the average number of operations from a lower level (H (I— 7))
when the hop to that level is found. In every level there are
l equiprobable hop entries, each one pointing to a different
lower level (see level | = 2 at the bottom of Fig. 2), therefore:

H(1) = Pepus(1) - 14 Phops(1)(1 + H(0))

H(2) = Popys(2) -1+ Ph%s(?)(l + H(1))+
P”%‘s(z)u + H(0))
) Py L 5)
H() = Popus() + ===+ ; H (i)
-1
=1+ Puop(l) p_ H(i)

K2

I
=)

Particularizing it for the [— 1 level:
H(l=1)=1+ Puop(l —1)(H(0) + ... + H(l —2))
H(l-1)—-1 (6)
Prop(l—1)
Extending the elements of the summatory in equation (5)
and replacing most of them with equation (6):

H() =1+ Phop()(H(O) + ... + H(l —2) + H(l — 1))

HO)+..+H(l-2)=

Hl-1)-1 _
=1 _ -1
Prop() 5 .

= —_— -1)-1 -1

1+ Prop(l — 1) (H(l=1)=1)+ Prop(DH(- 1)
)

Taking into account that:
PhO;D(l) TL—%iZ-‘rl 1
= =1- =1—Ppop(l

Prop(l—1) n—k+1 hon(1) (8)

From equations (7) and (8) we get:

H(I) = 14 (1 = Poop(0)) (H(l — 1) = 1) + Prop (VH(~ 1)
=H(—1)+ Prop(l)
Extending the recursive elements of the formula:
H(l) = H(l — 1) + Phop(l)
= (I:I(l - 2) + Phoz)(l -1)+ wap(l)

= (H(0) + Phop(1)) + Prop(2) + -+ + Phop(l)

By (4) this arithmetic series could be summarized as:

1

n—k+1 ©)

k k
HE) =1+ Prp) =1+
=1 =1

Therefore, as we will see in Section IV, the average number
of hash operations for the Big Robust Hash algorithm (H (k))
is logarithmic with the number of disabled CPUs.

In order to characterize better the distribution of the number
of hash operations per packet, we are also interested in the
probability function Pjqsp (h,(): Probability to perform h hash
operations to find an available CPU, starting at level [.

The only way to perform a single hash operation is to find
any of the available CPUs in the current level, thus:

Phash(la l) = PCPUS(Z)

In order to employ 2 hashes, the first hash query must return
one of the [hops at that level, and the next query at a lower
level i € [0,] — 1] must succeed. Thus, the total probability is
the sum of all the possible paths:

-1
Phash(Q; Z) = Z Phop(l) . Phash(Li)
=0

The reasoning for 3 hashes is the same, although in this case
the hop to the bottom vector is forbidden, as it has no further
hops and it is not possible to perform the 2 hash operations
left. Thus, ¢ € [1,1 — 1]:

-1
Phash(ga l) = Z Phop(l) ' Phash,(27 Z)
=1

Robust Hash (theo)
14 + Big Robust Hash: maximum (theo)
Big Robust Hash: average (theg) -------
13 } Big Robust Hash: average (sim) ©
Small Robust Hash (theo) -------
12
11
g 1wt
S
&
S of
5]
a
7 8
2
8
B 7
g
o 6
E
T S5r
4+
3k
2k
ol T S T T TS T S TS ST ST S S S

L
0123 456 7 8 910111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
CPUs down (k)

Fig. 3. Comparison of different Robust Hash algorithms (n = 32)

Therefore, as all hops are equiprobable, the general expres-
sion is:

Pepus(l) if h=1

Phash(h7 l) = -1

Prop(l) S Prasn(h—1,i) if h>2

i=h—2
(10)
To validate these analytical results, Section IV compares the
estimation of the average number of hash operations and the
probability mass function of Big Robust Hash operations with
trace-driven simulation measurements.

IV. PERFORMANCE EVALUATION

All simulations are based on a frame trace from a bi-
directional Gigabit Ethernet link at the University of Purdue
[5]. The trace spans 90 seconds and contains 18.7 million IP
packets from 871 thousand distinct flows, with 933 Mbps and
210 thousand packets per second on average.

The flow identifier employed is the 32 bit integer built as
the XOR of the source and destination IP addresses, protocol
and TCP/UDP port numbers, with the protocol number and
the greater port in the upper 16 bits and the other one in the
lower 16 bits. Then a Fibonacci hash function [4], with the
appropriate modulo, is employed to query the Mapping Vector.

Fig. 3 compares the performance of all the Robust Hash
algorithms analyzed in this paper: Classic Robust Hash must
execute n — k hash operations per packet. Of course, the best
performer is the Small Robust Hash algorithm which requires
just one hash operation per packet irrespective of how many
CPUs are down. However this result is purely theoretical, as
the memory requirements for 32 CPUs with full fault-tolerance
are far beyond from any practical implementation.

The Big Robust Hash is in a middle ground between them,
as it trades-off performance for memory (528 Bytes for a
32 CPU cluster). Fig. 3 shows the theoretical curves of the
average number of hash operations (Eq. (9)) and the k + 1
upper limit of the Big Robust Hash algorithm. Regarding
to the simulation measurements of the Big Robust Hash
algorithm, the minimum, first quartile, mean, third quartile
and the maximum number of hash operations employed per
mapping are shown.

Big Robust Hash k=4~ ---x---
Big Robust Hash k=16 ----& -
Big Robust Hash k=24 ---&
o

09
Big Robust Hash k=30 ---e---

08 f

06!

Probability

03

02

01f,-"

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Hash operations per packet

Fig. 4. Probability mass functions of Big Robust Hashing algorithm (n = 32)

As expected, the average number of operations increases
much slower than the maximum values (i.e. with 31 Mapping
Vectors, one of the 2 CPUs left is found only after 3.63 hash
operations in average). This behavior could be better seen
in Fig. 4 which shows, for representative values of k, the
histograms with the number of hash operations employed by
the Big Robust Hash simulation.

Table II shows the cumulative probability to perform h or
less hash operations per packet for different values of n and k.
These values have been obtained by evaluating the theoretical
Eq. (10). For example, the fifth row (n = 32, k = 16) indicates
that when only half of the 32 CPUs are available, the 99% of
packets will be mapped with 4 or less hash operations, and
most of them will require just 2 hashes (85%).

Another scalability property illustrated by Table II is that
the number of hash operations does not depend on the total
number of CPUs but on the available/total CPU ratio. For
example, the cumulative probabilities when 50% CPUs are
down (i.e. 2nd, 5th and 8th rows) are almost identical, in spite
of the fact that the cluster size doubles in every step. Therefore,
although increasing n implies a slight performance decrease,
clearly the main factor is the % ratio.

These results confirm that Big Robust Hash mappings
does employ a very small number of hash operations when
compared to classical Robust Hash algorithms. Moreover,
the probability of performing more hash operations than the
average value quickly tends to zero, as show in Fig. 4.

V. CONCLUSION

Nowadays, flow processing at edge routers is becoming
commonplace (e.g. stateful firewalls, NAT, Session Border
Controllers, etc.). Therefore, multi-processor routers need a
fast, distributed, and scalable mechanism to load-balance flows
among all their available service-specialized CPUs or to a
cluster of external devices, while ensuring that all packets of
a given flow are assigned to the same CPU. Robust Hash
techniques are specially well suited to address this issue,
although classical Robust Hash algorithms require several
hash operations per packet in order to find which CPU is
processing that flow.

TABLE II
CUMULATIVE PROBABILITY OF THE NUMBER OF HASH OPERATIONS (h)
FOR THE BIG ROBUST HASH ALGORITHM

h 1 2 3 4 5
n=16,k=4 | 075 09738 0.9987 0.9999 1.0
n=16,k=28 05 0.8627 09771 09975 0.9998
n=16,k=12 | 025 0.6212 0.8694 0.9683 0.9944
n=32,k=8 | 075 09697 09978 0.9999 0.9999
n=32,k=16 | 05 08545 0.9720 0.9962 0.9996
n=232,k=24] 025 0.608 0.8531 0.9586 0.9909
n==64k=16 | 0.75 09677 0.9973 0.9998 0.9999
n==64k=32] 05 08505 0.9694 0.9953 0.9994
n=64,k=48 | 025 0.6025 0.8449 09533 0.9887

This paper presents two Fast Robust Hash algorithms that
require only one hash operation to perform each mapping
when all CPUs are available, while classical Robust Hash
algorithms do require one hash operation for each available
CPU. These new algorithms achieve a better performance by
employing Mapping Vectors to maintain a persistent mapping,
even when several CPUs are disabled. The Small Robust
Hash algorithm always finds the mapping with a single hash
operation. However, when full fault-tolerance is required, it
has severe memory requirements, thus it is only applicable to
architectures with a small number of CPUs.

On the other hand, the Big Robust Hash algorithm does not
employ a single, large Mapping Vector, but a small Mapping
Matrix. In the worst case it requires one hash operation and
a fast SRAM memory access for each disabled CPU, plus the
initial ones. However, the average number of hash operations
is far below this limit, as it is demonstrated with analytical
and trace-driven simulation results. Therefore, the Fast Robust
Hashing algorithms could be good design choices for cluster
load-balancers or next generation multi-processor edge router
architectures.

ACKNOWLEDGMENTS

This work is being funded by the Spanish MEC under
project IMPROVISA TSI12005-07384-C03. The authors wish
also to thank Raquel Panadero, Ivdn Vidal, Ricardo Romeral,
Carlos Jesis Bernardos for their valuable comments.

REFERENCES

[1] J. Allen et al. IBM PowerNP Network Processor: Hardware Software
and Applications. IBM Journal of Research and Development. Vol. 47,
pp. 177-194, March/May 2003.

[2] Intel IXP2XXX Product Line of Network Processors: <http://
www.intel.com/design/network/products/npfamily/ixp2xxx.htm>

[3] L. Kencl and J. Y. Le Boudec. Adaptive Load Sharing for Network
Processors. Proceedings of the IEEE INFOCOM 2002. Vol. 2, pp. 545-
554, June 2002.

[4] D. E. Knuth. The Art of Computer Programming: Seminumerical Algo-
rithms Second Edition. Addison-Wesley 1997.

[5] NLARN Trace from a Gigabit Ethernet link at the University of Purdue:
<ftp://pma.nlanr.net/traces/daily/20060228/PUR-1141097090.erf.gz>.
28 February 2006.

[6] K. W. Ross. Hash routing for collections of shared web caches. IEEE
Network, Vol. 11, No. 6, pp. 37-44, November/December 1997.

[7]1 D. G. Thaler and C. V. Ravishankar. Using name-based mappings to
increase hit rates. IEEE/ACM Transactions on Networking, Vol. 6, No.
1, pp. 1-14, February 1998.

[8] L. Yang, R. Dantu, T. Anderson and R. Gopal. Forwarding and Control
Element Separation (ForCES) Framework. RFC 3746, April 2004.

