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Abstract—Lately, there has been an increase in the number
of IEEE 802.11 devices that provide users with the ability to
modify the MAC parameters or do not conform to the standard
specification. This increases the risk of having a WLAN with
selfish stations that, through the CSMA/CA parameters, obtain
a larger share of the resources at the expense of well-behaved
users. In this letter we propose a mechanism to detect these
selfish stations that, unlike previous approaches, is not based on
heuristics nor makes any assumption about radio conditions.
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I. I NTRODUCTION

T HE EDCA mechanism of IEEE 802.11e standard [1]
extends the former DCF mechanism through the gener-

alization of the MAC parameters. As these parameters control
the behavior and randomness of stations when accessing the
channel, EDCA supports statistical service differentiation and
QoS provisioning. Nowadays there are many WLAN devices
that do not fully support the EDCA mechanism, but still im-
plement to some extent the ability to change configuration of
the MAC parameters (e.g., [2]). Furthermore, even (assumed)
802.11-compliant devices have recently been reported [3] to
deviate from the standard specification, leading to throughput
asymmetries and unfairness. We claim that, because of the
above two reasons, a mechanism to detectselfishconfigura-
tions that try to get a larger share of throughput is needed.

Despite these risks of selfish and unfair behavior in WLANs,
the design of an effective detection mechanism has received
little attention. We classify the main contributions in two
groups:i) changes to the MAC protocol [4], [5] that require
extending the EDCA mechanism and, therefore, are of limitted
applicability; andii) detection mechanisms [6]–[8] that, based
on an observed behavior, decide if a given station is acting
selfishly or not. In this letter we propose a simple and
robust mechanism of this second category that addresses the
weaknesses of previous approaches as follows:

• DOMINO [6] is a heuristic-based approach not supported
by analytical results with no means to design the trade-off
between detection and false alarm probabilities.

• The approach of [7] is built on top of some strong radio
assumptions that leads to unexpected poor performance
for realistic scenarios.
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• Our previous work of [8], based on the sampling distri-
bution of the mean, does not take full advantage of the
statistical information available and requires an optimally
configured WLAN to maximize its performance.

In contrast to these, in this letter we propose a robust scheme
to detect selfish configurations of standard-compliant stations
that i) it is not based on heuristics,ii) it does not make any
strong assumption about the scenario, andiii) it does not
require the estimation of any performance parameter.

II. D ETECTING SELFISH EDCA CONFIGURATIONS

The EDCA mechanism is a CSMA/CA based protocol that
uses channel sense to prevent simultaneous transmissions and
a binary exponential backoff to react to collisions. According
to the 802.11e standard, the Access Point (AP) broadcasts the
values of the MAC parameters to use through beacon frames,
controlling in this way the behavior of WLAN stations when
contending for channel access. These parameters are:

• The transmission opportunity (TXOP), that controls the
maximum time a station is allowed to spend sending data
frames once channel access is granted.

• The arbitration interframe space (AIFS), i.e., the time a
station has to wait once the channel is sensed idle before
sending a frame or reactivating the backoff process.

• The minimum and maximum contention window
(CWmin and CWmax, respectively), that control the
randomness of the backoff mechanism.

Misconfigurations of the AIFS or TXOP parameters are easy
to detect as they impose deterministic rules. Therefore, the
challenge lies in the randomness of the backoff mechanism
ruled by theCW parameters. We focus on the detection of
selfish configurations of theCWmin parameter, because we
argue it is the parameter most likely to be tuned by a selfish
user: in a properly configured EDCA WLAN the collision
probability will be very small, and therefore the gain from
misconfigurations of theCWmax parameter will be small1.

We base our algorithm on the following observation. In
order to prevent duplicates, the 802.11 standard uses aretry
bit to mark those frames that are being retransmitted, i.e., the
flag is set to0 on the first attempt, and set to1 on every
other transmission (see Fig. 1). This way, for the case of a
station always backlogged2, the number of slots between two
successfully received frames is uniformly distributed between
0 andCWmin if the retry bit of the second frame is set to03.

1Using a 2-laptop testbed we confirmed that settingCWmax = CWmin

results in a throughput gain of only 3%.
2Our algorithm aims at detecting configurations that obtain more bandwidth

than a well-behaved and constantly backlogged one would get.
3While changing theCWmin is easily done through a function call with

commodity hardware, changing the retry bit requires the useof low-level
firmware functions and therefore it can be assumed users cannot forge it.
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Based on the this, our algorithm works as follows. During
each observation intervalT , a controller station monitors all
the successful transmissions from a station under supervision,
counting the number of timeslots between them. When a
received frame has the retry bit set to0, the controller adds that
samplexi to the set of collected samples. Once the observation
interval is finished, a test is performed on theK collected
samples to test if they were drawn from a uniform distribution
between0 andCWmin or not. More specifically, since we are
interested in detecting selfish behaviours, we use a one-side
test with the following null hypothesis

H0 : F (x) ≤ U(CWmin), for all x (1)

where F (x) is the unknown distribution function of the
K samples, andU(CWmin) is the cumulative distribution
function (cdf) of a uniform variable between0 andCWmin.
For this goodnes-of-fit test we use the one-side Kolmogorov-
Smirnoff (K-S) test [9] as follows. First the empirical cdf
SK(x), is built

SK(x) =
1

K

K
∑

i=1

1(xi ≤ x) (2)

where1 is the indicator function. Then, the maximum differ-
enceD between the two cdfs is estimated through

D̂ = maxi {SK(xi) − U(CWmin)} (3)

and finally the significance level of the observed valueD̂ (i.e.
the disproof of the null hypothesis) is approximated by [10]

P (D > D̂) = e−2λ(D̂)2 (4)

where

λ(D̂) =

(√
K + 0.12 +

0.11√
K

)

D̂ (5)

Therefore the hypothesisH0 is rejected at a significance
level α if P (D > D̂) < α, this way supporting the tune of
the false alarm probabilityPFA

4. Note that, although [7] also
uses a K-S test on the sample distribution of timeslots, there
are at least two major differences between the two approaches:

1) Our proposal does not require the estimation of any
WLAN parameter: in [7], authors have to compute the so
calledcollision factorγ (the average number of stations
involved in a collision), and then use a polynomial
regression model to estimate the collision probabilityp̂c.

2) Our proposal does not make any assumption about the
radio conditions. In [7], authors assume there are no
losses due to noise and that in case of a collision all
frames are lost. However, this is not the case for real
WLANs, where thecapture effect(in case of a collision,
one of the frames may get through due to its larger
power) is quite common –see, e.g., [2].

Since our approach only considers the number of slots be-
tween two consecutive successful receptions when the second
frame has the retry bit set to0, we release the assumption on

4Note that the standard K-S test is accurate only for continuous distribu-
tions, and known to be conservative for the discrete case [11]. Nevertheless,
for simplicity we will assume (following [7]) that (4) leadsto accurate results.

Fig. 1. Use of the retry bitR = 0 of frames from the station under
supervision to collect backoff decrements in the(0, CWmin) range.
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Fig. 2. Probability of detection vs. selfish gain

the uniformity of the radio conditions. This way we achieve
a two-fold objective: first, for realistic WLAN scenarios, we
prevent a large false alarm rate (as we will see in the next
section); second, our algorithm is simpler and better suited
for a low-capacity device (e.g. an Access Point).

III. PERFORMANCEEVALUATION

We asses the effectiveness of our proposal to detect selfish
configurations by means of simulations. We first consider a
WLAN scenario with an AP andN = 10 stations. Stations
use the parameters of the 802.11b physical layer (in particular,
CWmin = 32) and always have 1500-byte frames ready
for transmission. The AP runs our detection algorithm every
T seconds, while the probability of false alarmPFA is set
through a significance level ofα = 0.05. To compute the
probability of detectionPD, we assume one of the users
reduces hisCWmin parameter and run simulations for more
than 20k observation intervals. We also compute the gain the
selfish user gets over the rest of the users of the WLAN, to
quantify thethreat and relate it to the detection probability:

Gain = Rsel/Rwell

where Rsel and Rwell are the throughput experienced by a
selfish and a well-behaved user, respectively.

Results forPD vs. gain are depicted in Fig. 2 for different
values ofT . Note that the caseGain = 1 corresponds to the
case when the user is well behaved (CWmin = 32), so in this
casePD corresponds toPFA. The results can be summarized
as follows. First, the typicalbeacon interval(T = 0.1s) is
not well suited to detect malicious configurations, even when
the selfish user is getting more than 1.5 times the bandwidth
of a well behaved user. Therefore policy decisions cannot be
taken in a beacon time, but rather some memory is needed
to achieve enough certainty. In case the timescale isT = 1s,
a selfish user may get around 20% more bandwidth than a
regular user before being detected with a 0.5 probability, a
result that quantifies the trade-off between detection certainty
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Fig. 3. Impact ofα on PD andPF A

and unfairness risk. Only for very large intervals (T = 10s) a
selfish user will be practically always detected before getting
more than 10% the bandwidth of a regular user.

To analyze the trade-off between thePD andPFA we now
supervise a selfish and a well-behaved station, and plot in
Fig. 3 the resulting probabilities for different values ofα and
gain (we setT = 1s). Considering the gain a selfish user may
get, results show there is little advantage in using values of
α > 0.10, as the growth ofPD is not compensated by the one
of PFA. Note that thePFA values are quite similar for the
three cases, and always belowα –a result expected because
of the discrete nature ofU(CWmin) [11].

Next we compare our approach against previous proposals
to detect selfishCWmin values. We first want to assess the
extent to which realistic radio conditions impact detection
performance. To this aim, we assume that all theN stations are
well-behaved and one is closer to the AP, this resulting in a
capture effect that benefits this station as follows: colliding
frames from this station are successfully received with a
probabilitypc, while the other(s) transmission(s) are lost.

We setT = 1s and α = 0.05 and count the number of
times the detection algorithm (wrongly) classifies a behavior
as selfish. Results are presented in Table I for the algorithm
of [7] (TLW) and the one presented in this letter (Ours). We
perform the test when the station is near and far from the AP
(near andfar, respectively), and forpc ranging from0 (no
capture) to1 (the frame from the near station always captures
the medium). The results show that the assumptions made in
[7] lead to quite low performance if a station benefits from
the radio conditions. More specifically, the TLW mechanisms
largely deviates from the targetPFA if a station captures the
channel in just 25% of the collisions, leading toPFA = 0.22.
If the station is so close to the AP that it captures the channel
in 75% of the collisions, the TLW mechanism will mark it
as misbehaving with practically no doubt (PFA = 0.999). We
conclude that the TLW algorithm is poorly suited for realistic
scenarios, while our proposal is oblivious to radio conditions,
with practically the same results for thenear andfar case.

Lastly, we compare the mechanism proposed against our
previous proposal based on the Central Limit Theorem
(CLT) [8] and DOMINO [6]. To that aim we use the same
scenario with one selfish user, and compare the minimum time
needed to obtain aPD ≥ 0.90 for the samePFA and different

TABLE I
IMPACT OF RADIO CONDITIONS ONPF A

pc

Ours TLW
near far near far

0.00 0.034 0.032 0.032 0.032
0.25 0.032 0.032 0.220 0.029
0.50 0.034 0.032 0.783 0.027
0.75 0.030 0.032 0.999 0.025
1.00 0.032 0.032 1.000 0.024

TABLE II
T IME REQUIRED FORPD ≥ 0.90, PF A = 0.05

N CWmin Gain Ours [s] CLT [s] DOMINO [s]

5
30 1.07 3.3 6.0 11.9
28 1.16 0.9 1.4 2.8
26 1.26 0.4 0.6 1.3

10
30 1.07 8.1 14.1 > 60
28 1.16 2.1 3.2 30.0
26 1.26 1.0 1.4 12.6

20
30 1.07 20.6 36.2 > 60
28 1.15 5.3 8.3 > 60
26 1.25 2.4 3.4 > 60

values of N . Results, in Table II, show that the K-S test
outperforms both proposals, with average time savings of 36%
compared to CLT and more than 80% compared to DOMINO5.
These time savings are caused byi) the use of more statistical
information, i.e., the cdf of the random variable, andii) the
ability to collect more samples by looking at the retry bit.

As compared to previous work, then, ours is an effective
approach well suited to be implemented in real devices, due
to its analytical foundations, the absence of assumptions about
radio conditions, and its low complexity.
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