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Abstract—Building vehicular networks in roads and highways
is a challenging research topic with a large number of appli-
cations ranging from traffic jams and car collisions prevention
to efficient route planning. The analysis of the distance between
vehicles in roads is a key factor in, e.g., designing vehicular
networks protocols or planning a supporting infrastructur e to
improve vehicular connectivity.

This work proposes a Gaussian-exponential mixture model to
characterize the time distance between vehicles in a highway
lane, based on measurements collected at different locations in
several highways of the city of Madrid, in Spain. The model
arises from the observed behavior that some vehicles travelvery
close together, like in a burst mode, showing Gaussian inter-
arrival times, while other vehicles are somehow isolated, showing
exponentially distributed inter-arrival times. The experiments
show that such a Gaussian-exponential mixture model accurately
characterizes inter-vehicle times observed from real traces.

I. I NTRODUCTION

Very likely, in the future, vehicles will be provided with
communications equipment that not only will allow them to
share traffic-related information, but also provide a vehicular
network infrastructure with services, like in a ubiquitous
computing fashion. A number of suitable applications for
such vehicular networks have already been proposed in past
literature, ranging from exchanging information among vehi-
cles to preventing traffic jams and car collisions [1]. Other
applications already proposed in the literature include local
hazard warning, efficient route planning and coordination of
traffic flows [2].

Indeed, both inter-vehicle (or vehicle-to-vehicle) [3] and
vehicle-to-infrastructure communications [4] have been an
active research topic during the past few years, and a number
of working groups and standardization bodies have already
put the first stones towards defining a common framework in
this communications arena, as, for instance, IEEE 16091, ISO
TC2042, ETSI TC ITS3 and the Car to Car Communications
Consortium4 (C2C-CC).

However, before all of these applications can be successfully
deployed, it is necessary to identify the requirements to build a

1http://www.standards.its.dot.gov/factsheet.asp?f=80
2http://www.isotc204wg16.org/
3http://portal.etsi.org/its/itstor.asp
4http://www.car-to-car.org/

vehicular network efficiently and effectively. Thus, character-
izing the distribution of vehicles and their speed in highways
is a required step in order to be able to design mechanisms
that can operate efficiently in the vehicle environment and that
can cope with its particular nature. Analyzing the connectivity
level of a vehicular network requires building a model of
vehicular traffic from real measurements. Depending on which
technology the vehicles use to communicate, it is necessary
one model or another. When vehicles communicate using
wireless short-range technologies (i.e., IEEE 802.11p [5]),
the traffic model must consider the aggregation of vehicles
from different lanes in a highway. However, for the case of
infrared communications [6], or the recent cases of visible
light communications [7], [8], a model for single-lane traffic
is necessary.

A number of previous modeling studies have attempted to
characterize traffic inter-arrival times in the past [9]–[11]. For
instance, the authors in [10] claim that vehicle inter-arrival
times follow an exponential distribution, while the authors
in [9] consider the log-normal distribution as the most suitable
one to characterize inter-vehicular times. Furthermore, these
two studies also assume that inter-arrival times are independent
and identically distributed random variables. However, aswe
will show in the paper, this is not the case, as there actuallyare
some dependences between consecutive vehicles, especially at
highways with dense traffic.

Indeed, we show from our traces that many vehicles travel
close together like in a burst fashion, while others are isolated.
Such bursty vehicles exhibit Gaussian inter-arrival times, while
the others show exponentially distributed times. Based on these
observations, this work proposes an exponential-Gaussianmix-
ture model to characterize the inter-arrival times of vehicles, as
observed from real traffic measurements collected from several
highways in the surroundings of the city of Madrid, Spain.

The rest of this article is organized as follows: Section II
briefly describes the measurement set under study. Section III
performs a deep analysis of the traces, showing the basic
facts that motivates the Gaussian-exponential mixture model.
Section IV introduces the model and confirms its improved
accuracy to model the behavior observed in the traces. Finally,
Section V summarizes the main findings of this work and
describes our new research directions.
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Fig. 1. Location of the highways and the measurement points.

II. DATA SET DESCRIPTION

Table I summarizes the data set used in this work. This
comprisesM = 15 traces collected from different measuring
points on four important highways in the surroundings of the
city of Madrid, in Spain. Note that the traces are presented
in decreasing order of traffic density, in terms of vehicles per
hour. The considered highways are:

• M-40 and M-50 which are two orbital highways that
surround the City of Madrid. Their speed limits are 100
and 120 km/h respectively.

• A-6 is a highway linking the north-west of Spain and
Madrid. Its speed limit is 120 km/h.

• A-1 is a highway linking the north-east of Spain and
Madrid. Its speed limit is also 120 km/h.

Fig. 1 shows the four highways along with the location of the
measuring points (A to E in the figure).

The traces were collected in the morning of four consecutive
working days, at two different time intervals: from 8.30 to
9.00 AM and from 11.30 to 12.00 AM. For tracej (j =
1, . . . , 15), the i-th vehicle measured (i = 1, . . . , Nj , where
Nj refers to the number of samples in thej-th trace) generates
the following values: arrival timeTi, speedvi and lane in the
highway. In the following,ti shall denote the inter-arrival time
between thei-th and thei−1-th vehicles (i.e.,ti = Ti−Ti−1).
Hence, thei-th measurement of thej-th trace comprises the
tuple {vi, ti}j (we discard the sample corresponding to the
first arriving vehicle of the trace as its inter-arrival timecannot
be defined). Note that, according to the classification in [9],
these traffic traces can be considered as free-flow non-rush
hour traffic with moderate traffic volume and high speed.

III. A NALYSIS OF THE ARRIVAL PROCESS

In this section we start by analyzing the vehicle arrival
process at a given lane in a highway for some representative

TABLE I
DATA SET COLLECTION.

Trace # Highway Veh/h Avg. Speed Lane
[location in Fig. 1] [Km/h]

1 M-40 [D] 2038 102.64 L
2 A-6 [B] 1800 65.62 R
3 A-6 [B] 1744 68.20 R
4 A-6 [B] 1688 68.33 R
5 A-6 [B] 1522 85.88 L
6 A-6 [B] 1506 85.82 L
7 A-6 [A] 1466 89.13 C
8 A-6 [B] 1090 77.38 C
9 M-50 [E] 914 81.47 C
10 M-50 [E] 888 108.97 L
11 M-50 [E] 684 97.33 R
12 A-6 [B] 593 87.61 R
13 A-1 [C] 482 97.71 R
14 A-1 [C] 462 96.08 R
15 A-1 [C] 462 95.42 R

cases of Table I. We first analyze the vehicle inter-arrival times
ti, and then we use the travel speedsvi to build a model that
is able to both mimic the figures resulting from the traces and
provide some insight on drivers’ behavior.

A. Is the arrival process a Poisson process?

We first focus on the inter-arrival times between vehicles in
a highway lane. This is, we are interested in analyzing whether
the vehicle arrival process can be modeled by a Poisson
process or not. Our motivation is that the classical “Poissonian
assumption” is very common in the literature, partly because
of its inherent analytical tractability (see, e.g., [9], [12]). For
the arrival process to be Poissonian, the inter-arrival times
should follow an exponential random variable [13]. In orderto
characterize the time between vehiclesti’s, then, we analyze
if their empirical distribution function matches the one from
an exponential.

The cumulative distribution function (CDF)F of an expo-
nential random variable of meanλ−1 is given by

F (t) = 1− e−λt.

Therefore, for the sake of ease, it is often better to use
the Complementary CDF (CCDF), as its logarithm follows
a straight line with slope−λ, i.e.,

log(1− F (t)) = −λt.

In order to analyze the time between cars, we first normalize
each of the traces from Table I by their respective means
λ−1
i , and then compute the empirical CCDF. We plot the

resulting figures in logarithmic scale in Fig. 2 using dashed
lines for Traces 1–5, along with the theoretical CCDF of an
exponential random variable withλ = 1 using a solid line. It
can be seen that the experimental data largely deviates from
the exponential random variable, and thereforewe must reject
the hypothesis that vehicle arrival times follow a Poisson dis-
tribution. In order to have more statistically-based confidence
on this result, we performed a Kolmogorov-Smirnoff (K-S)
goodness of fit test [14] on the complete set of data, which
rejects the hypothesis of exponential inter-arrival timeswith



95% confidencein all the tracesof Table I. These results are
not shown for the sake of brevity.
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Fig. 2. Empirical CCDFs of the normalized time between arrivals (dashed
lines) and theoretical CCDF of an exponential distribution(solid line).

In addition to the above finding, there are two other ob-
servations that can be derived from Fig. 2. First, inter-arrival
times seem to beshifted, i.e., for each trace there seems to
be a minimum value oft before the CCDF starts decreasing.
Given that we are analyzing the arrival process in a highway
lane, this constitutes a quite expected result, as vehiclesdo not
overlap. Second, the experiments also show that, after a time
threshold around 2 and 3 s, the experimental CCDFs show an
exponential decay (i.e., a straight line in the log CCDF plot),
which suggests that the exponential behavior is still somehow
present in the traces.

B. On the dependence between consecutive vehicles

Note that, had the CDF of the inter-arrival times resembled
that of an exponential random variable, this wouldnot have
implied that the times between vehiclesti are independent
and identically distributed (i.i.d.) random variables. Indeed,
it is often observed that cars travel together following some
sort ofbursts, even in non-congested highways. Actually, it is
quite common to observe this phenomenon when a number of
cars are following a slow moving vehicle (e.g., a truck) that
cannot be overtaken easily. In these situations, the distances
between vehicles are typically short, andtheir traveling speeds
are similar, a behavior that introduces some inter-vehicle
dependences in the arrival process.

In order to analyze if this behavior can be observed in our
traces, we compute the correlation plot of the speed sequences
vi, resulting in Fig. 3. From the figure, we can see that (1) for
some traces, there exists a noticeable correlation between
speeds, and (2) such correlation in some cases is particularly
high for consecutive cars (Lag=1).

Based on these results, we conjecture that, for some traces,
some vehicles travel like bursts (i.e., relatively close together
with similar speeds), while others are somehow isolated from
the rest (i.e., with large distances between them and no

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10

r2

Lag

Fig. 3. Correlation plot of the sequences of speedsvi.

dependences with the previous or next car). We will analyze
with more detail this behavior in the next section.

C. Identifying bursts of vehicles

We claim that vehicles belonging to the same burst can be
identified because they travel at a similar speed to that of the
head of the burst, and the distances between them are typically
short. To prove this assumption, we analyze the relationship
between consecutive speeds, i.e.,vi and vi+1, depending on
the time distanceti+1 between them. We proceed as follows.
Let δ denote a time threshold. Based on thisδ, for each trace
we construct two sets of points: in one set (denoted asS≤δ)
we put those speed pairs from cars that were relatively close,
while in the other set (denoted asS>δ) we put the other pairs,
i.e.,

(vi, vi+1) ∈ S≤δ if ti+1 ≤ δ,

(vi, vi+1) ∈ S>δ if ti+1 > δ.

Fig. 4 shows the corresponding scatter plots of speeds for
the case of Trace 9 withδ = 1 s. That is, for all pairs of
vehicles that are separated by less than one second we plot in
Fig. 4(a) their speeds vs. the speed of its predecessor, while
we do the same for vehicles traveling more than one second
apart in Fig. 4(b). It can be seen that, for the case ofS≤δ,
consecutive vehicles have similar speeds (the scatter plotis
clearly placed around they = x line), while for the case of
S>δ this behavior cannot be observed.

In order to quantify the speed similarity, we compute the
Pearson product-moment correlation coefficientr for each data
set. For the case ofS≤δ the resulting value isr = 0.84,
which can be considered as a clear indicator of a “strong”
correlation5, while for the case ofS>δ the resulting value is
noticeable smaller,r = 0.6, although still non negligible6.

5At least, according to the somehow arbitrary thresholds proposed in Cohen,
J. (1988), Statistical power analysis for the behavioral sciences (2nd ed.)
Hillsdale, NJ. : Lawrence Erlbaum Associates.

6Note that the traffic regulations necessarily introduce some correlation, as
drivers tend to stay nearer to the speed limits. As we will seenext, only in
very sparse roads the correlation between speeds vanishes.
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Fig. 4. Scatter plot of the speed of consecutive vehicles(vi−1, vi) depending on the time distanceti.

Hence, the time between vehicles and their speeds are not
independent random variablessince, as shown, vehicles that
are close together (at least, for the case ofti ≤ 1 s) present
high speed correlation.

So far, we have only studied the case ofδ = 1 s for a given
trace. In order to analyze the impact of this parameter, and
whether we can observe a similar behavior in other traces or
not, we perform a sweep onδ between0.1 s and6 s, and for
each delta value we compute the correlation parameterr2 for
the data setS≤δ. We plot the resulting values in Fig. 5, where
the six traces with the highest density (in terms of vehicles
per distance) are plot in the left figure, and the other traces
are plot in the right figure. The results can be summarized as
follows:

• For the case of Fig. 5(a) (dense traces), when distances
between vehicles are small, i.e.,δ < 1.5 s, there is a
relatively large correlation between speeds.

• In the same figure, whenδ ∈ (1.5, 2.5) there is a steep
descent inr2.

• Finally, for the case of dense traces, whenδ > 2.5 s the
behavior ofr is relatively flat and independent to changes
on δ.

• On the other hand, for the case of Fig. 5(b) (small densi-
ties), there is no apparent correlation between consecutive
speeds regardless of the value of the parameterδ, as the
behavior ofr2 is practically flat.

These results, derived from the use of formal statistical
tools, have actually a very intuitive explanation: for the case of
sparse lanes, drivers are quite unlikely to travel in bursts, and
therefore there is no apparent correlation between the speeds of
consecutive vehicles regardless of the time distances between
them. On the other hand, for the case of dense lanes, vehicles
are more likely to travel in bursts, and therefore the correlation
values are large if the relative distances are small. However,
still in this case there is a threshold value for this distance
(δ ≈ 2.5 s), that once crossed the relation between one vehicle

and its predecessor vanishes.
Based on the above, we could label vehicles asbursty or

isolated, depending on whether they are traveling together
(with similar speeds) or not. In order to look inside the
underlying distribution of the arrival process, we analyzethe
distribution of the inter-arrival time of Fig. 4, but dividing
the ti’s into two sets according to the identified threshold
δt = 2.5 s: in set τB we put those values below thisδt
threshold (i.e., the ones that correspond to bursty arrivals),
while in set τI we put the values above the threshold (the
ones corresponding to isolated arrivals),

ti ∈ τB if ti ≤ 2.5 s,

ti ∈ τI if ti > 2.5 s.

The resulting histograms for each set of data are plot in
Fig. 6. According to these histograms, we further confirm the
behavior that we have identified, i.e., there is aδ threshold
that separates two very different types of arrivals. On one
hand, we see when vehicles are relatively separated (τI )
the empirical distribution seems to match the probability
distribution function (PDF) of an exponential random variable,
which we plot in a continuous line in Fig. 6(b). This way,
when vehicles are not traveling in bursts the arrival process
could match a Poisson process. On the other side, however,
we observe that when the time distances are relatively short
(τB) the empirical distribution does not resemble that of an
exponential random variable, but instead it is similar to the
PDF of a Gaussian distributed random variable, which we plot
in a continuous line in Fig. 6(a). Note that, because of the way
we have performed the division intoτI andτB, both random
variables are truncated (more specifically, the normal variable
is truncated between 0 and 2.5 s, while the exponential variable
is shifted 2.5 s).

We try to provide an explanation for the observed results
in the following. When vehicles are in a burst, i.e., the case
of τB, drivers are “traveling together”, and therefore the time
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Fig. 5. Correlation of the speed between consecutive vehicles when their relative distances isti ≤ δ.
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Fig. 6. Histogram of the time between arrivals.

between vehicles is very tied to the drivers’reaction time. We
argue that this reaction time is around a few seconds, and it
is reasonable to assume that it follows a Gaussian distribution
(some human-related random variables that follow a normal
distribution are, e.g., the distribution of height or the I.Q.).
When vehicles are not bursty but isolated, the case ofτI , the
arrival process does indeed match a Poisson process, like other
arrival process quite common in the literature (e.g., customers
arrival in a queue, number of phone calls at a call center).

We claim, based on the above, thatthe arrival process in a
highway can be modeled using two different random variables:
one exponential and one Gaussian. However, we note that
throughout the above analysis we have not derived a rigorous
methodology to estimate the parameters of these variables,nor
have assessed whether the resulting function will be able to
mimic the observed experimental values or not. Furthermore,
the valueδt = 2.5 s used to make thehard decision between
exponential and normal can be seen as “upper bound” for all
traces (as seen in Fig. 5), but not necessarily the value that

fits best. In addition, the hard decision itself of classifying
samples intoτB and τI results in the truncation of the used
variables, which could prevent a proper fitting of the model.

In the next section we first formally define the random
variable that we claim can model the observed behavior; then,
we will describe a methodology to obtain the parameters for
this model; finally, we will assess the relative ability of the
proposed variable to model the behavior observed in the real
traces, as compared to previous proposals.

IV. A N GAUSSIAN-EXPONENTIAL MIXTURE MODEL OF

INTER-ARRIVAL TIMES

Based on the results from the previous section, we propose
a Gaussian-exponential mixture model to characterize the
vehicle inter-arrival times in a highway lane. More specifically,
we propose a weighted mixture of:

• A Gaussian random variable, to mimic the behavior
caused by vehicles traveling together in bursts (as seen
in τB).



• A shifted exponential variable, to model the Poisson
arrival process of isolated cars (the one observed inτI ).

This way, our proposed random variablefA(t) to model the
time between vehicles arriving at a given point in a highway
lane is formally defined as

fA(t) = wG

1√
2πσ2

e−
(t−µ)2

2σ2 + wEλe
−λ(t−m),

with the following setΘ of parameters:

• µ andσ, which are the mean and standard deviation of
the Gaussian random variable.

• λ andm, which are the rate and the shift of the expo-
nential random variable.

• wG andwE , which are the the weights of each distribu-
tion (and thereforewN + wE = 1).

Our model is, then, anunknownmixture of a normal and
an exponential random variables, whose parameters are also
unknown. This is a well-known problem in statistics, namely
computing the maximum likelihood of a set of parameters
(the unobserved latent variables specified above) using a set
of observed data (the inter-arrival times), than can be solved
using an expectation-maximization (EM) algorithm [15], [16].
To estimate the required set of parameters, we implement the
following EM-based algorithm using Matlab:

1) We initially setm = 0, i.e., we consider an unshifted
exponential random variable.

2) We run the EM algorithm for either 200 iterations or
until the algorithm converged to a set of{µ, σ, λ, wG}
parameters.

3) We compute the log-likelihood (denoted asLL) of the
sequence of time between arrivalsti with the obtained
Θ, i.e.,

LL = log(L(ti|Θ)).

4) The aboveLL can be seen, after a run of the EM
algorithm, as a functionfEM of the set of observations
ti and the shift parameter of the exponentialm, i.e.,
LL = fEM(ti,m) that, givenm, assess the likelihood
of the data according to the obtained model. Therefore,
fEM quantifies the goodness of a given value ofm.

5) We finally perform a sweep on them parameter from
0 to 3 s in steps of 0.05 s, to obtain the value that
maximizes theLL (i.e., the functionfEM defined above).

In order to illustrate the operation of the EM algorithm,
we plot in Fig. 7 (above) the weighted components of the
exponential and the normal random variables for the case of
trace 10 (a sparse trace) and trace 3 (a dense trace). We also
plot in Fig. 7 (below) the histograms of the empirical traces,
along with the resulting theoretical PDFs from the operation
of our algorithm. It can be seen in Fig. 7(a) that, for the case
of a sparse trace, the normal component is relatively small
and most of the observed behavior can be captured using a
shifted exponential variable. On the other hand, for the case
of a dense trace, Fig. 7(b) shows that the observed values are
most likely to be modeled with a Gaussian variable, while the

TABLE II
RESULTING VALUES OFΘ FOR THE TRACES OFTABLE I.

Trace # wN wE µ σ λ m

1 0.58 0.42 1.44 0.46 0.36 0.50
2 0.65 0.45 1.45 0.35 0.31 0.80
3 0.63 0.37 1.50 0.50 0.31 0.80
4 0.50 0.50 1.06 0.34 0.49 0.65
5 0.37 0.63 1.77 0.66 0.37 0.50
6 0.30 0.70 1.87 0.64 0.37 0.40
7 0.02 0.98 0.85 0.09 0.12 0.50
8 0.01 0.99 1.11 0.48 0.13 0.55
9 0.05 0.95 2.44 0.87 0.13 1.00
10 0.04 0.96 0.73 0.10 0.16 0.40
11 0.11 0.89 1.52 0.41 0.11 0.65
12 0.09 0.91 1.08 0.41 0.17 0.90
13 0.14 1.04 0.30 0.86 0.22 1.00
14 0.21 1.57 0.58 0.79 0.26 1.10
15 0.30 1.84 0.69 0.70 0.38 1.00

relative component of the exponential variable (in this case
shifted) is quite small.

In order to obtain a better representation of the matching
between the empirical and the obtained distributions, we plot
in Fig. 8 the resulting Q-Q plot for the same two traces used
in the previous figure. The results visually confirm that for
both for the case of dense traffic and the case of sparse traffic,
our proposed model as described byfA(t) is able to mimic
the observed values of the distribution of inter-arrival times.

We run our EM algorithm on the 15 traces considered
in the paper, with the resulting values shown in Table II.
It is interesting to observe that these figures, derived from
a numerical search as defined by the algorithm, are indeed
quite intuitive and further confirm the results from the analysis
of Section III and the proposed methodology. Indeed, we
can emphasize the following three results:i) the relative
weight of the exponential variablewE increases as the density
of vehicles decrease (note that the results are presented in
decreasing order of densities, see Table I);ii) by observing the
values ofµ+σ, it is clear that distances between vehicles when
they travel in bursts are typically well below the identified
threshold of2.5 s; iii) in all cases, the shift parameterm of
the exponential random variable is placed between the two
extreme values used in our numerical search.

Finally, in order to assess the ability of the proposed model
to capture the observed behavior, comparing it against previous
work, we proceed as follows7. For each of the traces in Table I
we compute the parameters for three different models:

• The proposed mixture, with the set of parametersΘ as
given by our EM algorithm.

• An exponential random variable (as proposed in [10]),
computing its maximum likelihood rateλ as given by
Matlab.

• A log-normal distribution (as proposed in [9]), with its
maximum likelihood parametersµ andσ as computed by

7Note that in Section III we performed a K-S test to reject the hypothesis
that the inter-arrival times followed an exponential random variable with mean
one. However, for the case of distributions with estimated parameters, the
values used for the standard K-S test are invalid [17].
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Fig. 7. Components of the Gaussian-exponential mixture andresulting PDF for two traces.
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Fig. 8. Q-Q plot for the resulting theoretical and empiricaldistributions.

Matlab for a given setti.

For each of the traces, we compute the log-likelihood of the
observed values for these tree model, denoted asLLEM , LLE

andLLL, respectively, with the obtained results presented in
Table III. We also show in the table the estimated parameters
(λ−1, µ and σ) for the other exponential and log-normal
models. For each tracej we mark with a bold font the largest
value ofLL out of the three obtained likelihoods (in case of
a numerical tie, we mark both numbers). The results can be
summarized as follows:

• Our model achieves the highest performance, as it pro-
vides the largest likelihood in 86.6 % of the cases (13
out of the 15 traces).

• The log-normal distribution is the second best model,
being able to outperform our model in 2 out of the 15
traces.

• Finally, the exponential random variable is never able to
match the likelihood of the other two alternatives.

Based on these results, we conclude that our model is the
best suited to mimic the behavior observed in a highway lane.
In addition, note that the model not only provides a better
“numerical” performance that those of [9], [10], but also it
provides valuable insight on drivers’ behavior, some of which
have been neglected so far, e.g., the dependence between
consecutive arrivals. As we describe in the next section, part of
our future work consists on revisiting this assumption on the
i.i.d. of the random variable modeling the vehicles’ arrivals.

V. SUMMARY AND FUTURE WORK

This work has analyzed the inter-arrival times of vehicles
from a set measured traces collected at different locationsin
the city of Madrid. Next, we summarize the major findings of
this work:

• Vehicle arrivals, in general, do not follow a Poisson
process. Their distribution is not i.i.d., so the interarrival
time cannot be considered as a memoryless sequence.



TABLE III
RESULTING LOG-LIKELIHOOD OF THE THREE MODELS CONSIDERED FOR

THE INTER-ARRIVAL TIME BETWEEN VEHICLES.

Trace # LLEM LLE λ−1 LLL µ σ

1 -1.29 -1.59 1.76 -1.32 0.32 0.64
2 -1.18 -1.51 1.99 -1.18 0.52 0.53
3 -1.15 -1.50 2.06 -1.19 1.05 0.85
4 -1.18 -1.47 2.12 -1.18 0.55 0.57
5 -1.24 -1.41 2.36 -1.23 0.66 0.62
6 -1.22 -1.39 2.45 -1.20 0.71 0.61
7 -1.08 -1.15 3.49 -1.08 0.96 0.75
8 -1.12 -1.19 3.29 -1.12 0.90 0.76
9 -1.02 -1.08 3.92 -1.02 1.07 0.76
10 -1.01 -1.06 4.05 -1.02 1.05 0.85
11 -0.87 -0.90 5.24 -0.89 1.28 0.89
12 -0.80 -0.84 5.85 -0.81 1.49 0.78
13 -0.66 -0.69 7.31 -0.66 1.71 0.76
14 -0.69 -0.72 7.37 -0.70 1.73 0.77
15 -0.68 -0.70 7.78 -0.69 1.72 0.84

• There is some speed-correlation between vehicles such
that we can identify two types of cars: those traveling
together at short distances with similar speeds (what
we called bursty behavior), and those traveling at large
distances with uncorrelated speeds (what we referred to
as isolated).

• For the case of bursty vehicles, the inter-arrival times can
be modeled with a Gaussian distribution. Isolated arrivals,
on the other hand, exhibit an exponential behavior.

• Based on this findings, we propose a Gaussian-
exponential mixture model that characterizes the two
groups. Its model parameters are estimated using the
Expectation-Maximization algorithm, which outputs the
most likely parameter values from a given set of mea-
surements.

• We further assessed the improved accuracy of the pro-
posed model as compared against previous proposals.

As future work, we are currently considering the following
topics. First, we are revisiting the assumption on the i.i.d.
of the random variables that characterize the arrival process
of vehicles. We are also working on the analysis of the
distribution of vehicles’ speed. Furthermore, our future work
also includes coming up with a model that is able to generate
arrival patterns that are able to capture the behavior that we
observe on the real traces. Last, but not least, we will also
validate our current and future findings with additional traces,
representing additional types of roads and different traffic
situations (e.g., hour of the day, number of lanes, etc.).
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