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Abstract—Building vehicular networks in roads and highways vehicular network efficiently and effectively. Thus, chetea-
is a challenging research topic with a large number of appli- izing the distribution of vehicles and their speed in highsa
cations ranging from traffic jams and car collisions prevenion is a required step in order to be able to design mechanisms

to efficient route planning. The analysis of the distance beteen . . . .
vehicles in roads is a key factor in, e.g., designing vehicar that can operate efficiently in the vehicle environment doad t

networks protocols or planning a supporting infrastructure to  ¢an cope with iFS particular nature. AnaWZir‘g. the connegti
improve vehicular connectivity. level of a vehicular network requires building a model of

This work proposes a Gaussian-exponential mixture model to vehicular traffic from real measurements. Depending on whic
characterize the time distance between vehicles in a highwa technology the vehicles use to communicate, it is necessary

lane, based on measurements collected at different locatie in . . :
several highways of the city of Madrid, in Spain. The model ©N€ model or another. When vehicles communicate using

arises from the observed behavior that some vehicles travelery ~ Wireless short-range technologies (i.e., |IEEE 802.11p, [5]
close together, like in a burst mode, showing Gaussian inter the traffic model must consider the aggregation of vehicles
arrival times, while other vehicles are somehow isolatedf®wing  from different lanes in a highway. However, for the case of

exponentially distributed inter-arrival times. The experiments infrared communications [6], or the recent cases of visible

show that such a Gaussian-exponential mixture model accutaly light communications [71. 18], a model for single-lane fiaf
characterizes inter-vehicle times observed from real traes. .g (71, 18], 9 e
IS necessary.

. INTRODUCTION A number of previous modeling studies have attempted to

. : . . . . Characterize traffic inter-arrival times in the past [9J.1For
Very likely, in the future, vehicles will be provided W'thinstance, the authors in [10] claim that vehicle interealri

communications equipment that not only will allow them tQ; a5 follow an exponential distribution, while the autsor
share traffic-related information, but also provide a vekit i, 191 consider the log-normal distribution as the mostahiié
network infrastructure with services, like iin a ubiquitouy,q o characterize inter-vehicular times. Furthermdrese
computing fashion. A number of suitable applications fot(No studies also assume that inter-arrival times are inuiggret
such vehicular networks have already been proposed in PARH identically distributed random variables. Howeverwas
literature, ranging from exchanging information amongivei\Ni" show in the paper, this is not the case, as there actaatly

cles to preventing traffic jams and car collisions [1]. Othef, e gependences between consecutive vehicles, espatiall
applications already proposed in the literature includeallo highways with dense traffic

hazard warning, efficient route planning and coordinatibn o Indeed, we show from our traces that many vehicles travel

traffic flows [2]. i i ) ) close together like in a burst fashion, while others areaisal.
Indeed, both inter-vehicle (or vehicle-to-vehicle) [3]dan g,ch hursty vehicles exhibit Gaussian inter-arrival timefsile
vehicle-to-infrastructure communications [4] have been @nhe gthers show exponentially distributed times. Basedheset
active research topic during the past few years, and a numBgLerations, this work proposes an exponential-Gaussian
of working groups and standardization bodies have alreaglite model to characterize the inter-arrival times of visfsicas
put the first stones towards defining a common framework §}yserved from real traffic measurements collected fromrakve
this communications arena, as, for instance, IEEE 16@D  pighways in the surroundings of the city of Madrid, Spain.
TC20#, ETSI TC ITS and the Car to Car Communications g rest of this article is organized as follows: Section I
Consortiunt (C2C-CC). o briefly describes the measurement set under study. Sedction |
However, before all of these applications can be succegsfyherforms a deep analysis of the traces, showing the basic
deployed, it is necessary to identify the requirements tilal t5c(s that motivates the Gaussian-exponential mixtureahod
ttp:/Awww.standards. ts.dot govifasheet.asp?f=80 Section IV introduces the m.odel and copfirms its imprc_)ved
zhttp;//WWW:isotc204w§16.or§/ = R accuracy to model t_he behavior _obs_erv_ed in the t_races.lif,lnal
3http://portal.etsi.org/its/itstor.asp Section V summarizes the main findings of this work and
“4http://www.car-to-car.org/ describes our new research directions.



TABLE |
DATA SET COLLECTION.

Trace # Highway Veh/h | Avg. Speed]| Lane
[location in Fig. 1] [Km/h]

1 M-40 [D] 2038 102.64 L

2 A-6 [B 1800 65.62 R

3 A-6 [B 1744 68.20 R

4 A-6 [B 1688 68.33 R

5 A-6 [B 1522 85.88 L
AN 6 AG[B 1506 | 85.82 C
7 A-6 [A 1466 89.13 C

x i 8 A-6 [B 1090 77.38 C
V. : 9 M-50 [E 914 81.47 C

10 M-50 [E 888 108.97 L

11 M-50 [E 684 97.33 R

12 A-6 [B] 593 87.61 R

13 A-1[C 482 97.71 R

14 A-1[C 462 96.08 R

15 A-1[C 462 95.42 R

cases of Table I. We first analyze the vehicle inter-arrivaés

t;, and then we use the travel speegdgo build a model that

is able to both mimic the figures resulting from the traces and
provide some insight on drivers’ behavior.

Fig. 1. Location of the highways and the measurement points.

Il. DATA SET DESCRIPTION A. Is the arrival process a Poisson process?

Table | summarizes the data set used in this work. This\ye first focus on the inter-arrival times between vehicles in
comprisesM = 15 traces collected from different measuringy highway lane. This is, we are interested in analyzing wdreth
points on four important highways in the surroundings of th@e venicle arrival process can be modeled by a Poisson
city of Madrid, in Spain. Note that the traces are present%q;locess or not. Our motivation is that the classical “Paig=n
in decreasing order of traffic density, in terms of vehicles Passumption” is very common in the literature, partly beeaus
hour. The considered highways are: of its inherent analytical tractability (see, e.g., [9]2[L For

o M-40 and M-50 which are two orbital highways thathe arrival process to be Poissonian, the inter-arrivaesim

surround the City of Madrid. Their speed limits are 108hould follow an exponential random variable [13]. In ortier

and 120 km/h respectively. characterize the time between vehiclgs, then, we analyze
o A-6 is a highway linking the north-west of Spain andf their empirical distribution function matches the onerfr
Madrid. Its speed limit is 120 km/h. an exponential.
o A-1 is a highway linking the north-east of Spain and The cumulative distribution function (CDH) of an expo-
Madrid. Its speed limit is also 120 km/h. nential random variable of meaxr! is given by
Fig. 1 shows the four highways along with the location of the F(t)=1—e.

measuring points (A to E in the figure).

The traces were collected in the morning of four consecutiderefore, for the sake of ease, it is often better to use
working days, at two different time intervals: from 8.30 tdhe Complementary CDF (CCDF), as its logarithm follows
9.00 AM and from 11.30 to 12.00 AM. For trace (j = a straight line with slope-), i.e.,

1,...,15), the i-th vehicle measuredi (= 1, ..., N;, where B _

N; refers to the number of samples in th¢h trace) generates log(1 — F'(£)) = —Xt.

the following values: arrival tim&;, speedv; and lane in the  In order to analyze the time between cars, we first normalize
highway. In the followingt; shall denote the inter-arrival timeeach of the traces from Table | by their respective means
between the-th and the; — 1-th vehicles (i.e.t; = T; —T;_1). )\;1, and then compute the empirical CCDF. We plot the
Hence, thei-th measurement of thgth trace comprises the resulting figures in logarithmic scale in Fig. 2 using dashed
tuple {v;,t;}; (we discard the sample corresponding to thknes for Traces 1-5, along with the theoretical CCDF of an
first arriving vehicle of the trace as its inter-arrival tim@nnot exponential random variable with = 1 using a solid line. It

be defined). Note that, according to the classification in [9an be seen that the experimental data largely deviates from
these traffic traces can be considered as free-flow non-rikl exponential random variable, and therefesemust reject
hour traffic with moderate traffic volume and high speed. the hypothesis that vehicle arrival times follow a Poiss@s: d
tribution. In order to have more statistically-based confidence
on this result, we performed a Kolmogorov-Smirnoff (K-S)

In this section we start by analyzing the vehicle arrivajoodness of fit test [14] on the complete set of data, which
process at a given lane in a highway for some representatiegects the hypothesis of exponential inter-arrival timéath

IIl. ANALYSIS OF THE ARRIVAL PROCESS
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dependences with the previous or next car). We will analyze

Fig. 2.  Empirical CCDFs of the normalized time between ats\(dashed . . . L. .
9 P U with more detail this behavior in the next section.

lines) and theoretical CCDF of an exponential distribut{salid line).
C. Identifying bursts of vehicles

In addition to the above finding, there are two other ob- : . .
. : . e We claim that vehicles belonging to the same burst can be
servations that can be derived from Fig. 2. First, inteivalr . o .
identified because they travel at a similar speed to thatef th

times seem to behifted i.e., for each trace there seems t . .
be a minimum value of before the CCDF starts decreasing. ead of the burst, and the distances between them are typical

Given that we are analyzing the arrival process in a highWshort. To prove this assumption, we analyze the relatignshi

. . . . Petween consecutive speeds, i%..andv; 1, depending on
lane, this constitutes a quite expected result, as vehidewt the time distance; ,, between them. We proceed as follows.

overlap. Second, the experiments also show that, after & tiE]et 0 denote a time threshold. Based on thjfor each trace

threshold around 2 and 3 s, the experimental CCDFs showvz\;}g construct two sets of points: in one set (denoted.ag
exponential decay (i.e., a straight line in the log CCDF )plot P ) 5

which suggests that the exponential behavior is still saneh We_pqt those speed pars from cars that were relat|vely-plose
. while in the other set (denoted &S s) we put the other pairs,
present in the traces.

ie.,
B. On the dependence between consecutive vehicles (vi,vig1) € S<s if tiy1 <6,

Note that, had the CDF of the inter-arrival times resembled (vi,vip1) € Sss if tiyg > 6.
that of an exponential random variable, this wouldt have
implied that the times between vehicles are independent
and identically distributed (i.i.d.) random variablesdéed,
it is often observed that cars travel together following so
sort of bursts even in non-congested highways. Actually, it i

Fig. 4 shows the corresponding scatter plots of speeds for
the case of Trace 9 with = 1 s. That is, for all pairs of
vehicles that are separated by less than one second we plot in

ig. 4(a) their speeds vs. the speed of its predecessor whil

quite common to observe this phenomenon when a numbe do the same for vehicles traveling more than one second

cars are following a slow moving vehicle (e.g., a truck) thagPart in '.:'g' 4(b.)' It can be_se_en that, for the caseS‘gﬁ,
cannot be overtaken easily. In these situations, the disganconsecutive vehicles have S|m|I_ar speeds (the scatteriplot
between vehicles are typically short, aheir traveling speeds clearly placed around thg = « line), while for the case of

are similar, a behavior that introduces some inter-vehicl§>5 this behavior cgnnot be obser\_/ec_zl. :
dependences in the arrival process. In order to quantify the speed similarity, we compute the

In order to analyze if this behavior can be observed in Oglearson product-moment correlation coefficiefur each data

traces, we compute the correlation plot of the speed seeeen%et' For the case ofcs the resulting value is- = 0.84,

v, resulting in Fig. 3. From the figure, we can see tHaf6r which can be considered as a clear indicator of a “strong”

some traces, there exists a noticeable correlation betw&% t:féaaltl;?eﬁ,sv[\:qh;:?e:or—th% gasjtr?i>5ht2§”rens(;Jrllt'rr‘]% X?Iili)e%'s
speeds, and2] such correlation in some cases is particularlg = 9 99
high for consecutive cars (Lagzl)._ 5At least, according to the somehow arbitrary thresholdggsed in Cohen,
Based on these results, we conjecture that, for some traceg1988), Statistical power analysis for the behavioraérses (2nd ed.)
some vehicles travel like bursts (i.e., relatively closgetiner Miisdale, NJ. : Lawrence Erlbaum Associates. _
ith simil d hil th how isolaterhfr Note that the traffic regulations necessarily introduce esgorrelation, as
with similar spee S), while others are somenow | Odrivers tend to stay nearer to the speed limits. As we will sed, only in

the rest (i.e., with large distances between them and w®y sparse roads the correlation between speeds vanishes.
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Fig. 4. Scatter plot of the speed of consecutive vehi¢les 1, v;) depending on the time distan¢g

Hence,the time between vehicles and their speeds are remd its predecessor vanishes.

independent random variablesnce, as shown, vehicles that Based on the above, we could label vehiclesbassty or

are close together (at least, for the case;0f 1 s) present isolated depending on whether they are traveling together

high speed correlation. (with similar speeds) or not. In order to look inside the
So far, we have only studied the casejof 1 s for a given underlying distribution of the arrival process, we analyze

trace. In order to analyze the impact of this parameter, aflttribution of the inter-arrival time of Fig. 4, but diviu

whether we can observe a similar behavior in other tracestbe t;’s into two sets according to the identified threshold

not, we perform a sweep ahbetweer.1 s and6 s, and for 0; = 2.5 s. in set7p we put those values below thig

each delta value we compute the correlation paramétéor threshold (i.e., the ones that correspond to bursty asjival

the data sef<;. We plot the resulting values in Fig. 5, wherewhile in set7; we put the values above the threshold (the

the six traces with the highest density (in terms of vehicl@des corresponding to isolated arrivals),

per distance) are plot in the left figure, and the other traces

are plot in the right figure. The results can be summarized as

follows: ti €T if t; >2.5 s.

« For the case of Fig. 5(a) (dense traces), when distance
between vehicles are small, i.é.,< 1.5 s, there is a
relatively large correlation between speeds.

« In the same figure, whed € (1.5,2.5) there is a steep
descent in-2.

« Finally, for the case of dense traces, whiern 2.5 s the

tieTrpif t; <2.5 S,

She resulting histograms for each set of data are plot in
Fig. 6. According to these histograms, we further confirm the
behavior that we have identified, i.e., there i9 @hreshold
that separates two very different types of arrivals. On one
hand, we see when vehicles are relatively separateyl (

; . i ) the empirical distribution seems to match the probability
behavior ofr is relatively flat and independent to Changeaistribution function (PDF) of an exponential random vatéa

ono. which we plot in a continuous line in Fig. 6(b). This way,

» On the other hand, for the case of Fig. 5(b) (small den?Aihen vehicles are not traveling in bursts the arrival preces

ties), there is no apparent correlation between COnSGgcmf:\{)uld match a Poisson process. On the other side, however,
speeds regardless of the value of the paramgtaes the

_ 9 _ we observe that when the time distances are relatively short
behavior ofr® is practically fiat. () the empirical distribution does not resemble that of an
These results, derived from the use of formal statisticakponential random variable, but instead it is similar te th
tools, have actually a very intuitive explanation: for tlese of PDF of a Gaussian distributed random variable, which we plot
sparse lanes, drivers are quite unlikely to travel in buastsl in a continuous line in Fig. 6(a). Note that, because of thg wa

therefore there is no apparent correlation between thelspge we have performed the division intg and s, both random
consecutive vehicles regardless of the time distancesdagtwvariables are truncated (more specifically, the normalabdei
them. On the other hand, for the case of dense lanes, vehidteisuncated between 0 and 2.5 s, while the exponentiallvaria
are more likely to travel in bursts, and therefore the catieh is shifted 2.5 s).

values are large if the relative distances are small. Howeve We try to provide an explanation for the observed results
still in this case there is a threshold value for this distandn the following. When vehicles are in a burst, i.e., the case
(6 = 2.5 s), that once crossed the relation between one vehidé g, drivers are “traveling together”, and therefore the time
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between vehicles is very tied to the driversaction time We fits best. In addition, the hard decision itself of classityi
argue that this reaction time is around a few seconds, anddmples intorg and 7; results in the truncation of the used
is reasonable to assume that it follows a Gaussian diswibutvariables, which could prevent a proper fitting of the model.
(some human-related random variables that follow a normalln the next section we first formally define the random
distribution are, e.g., the distribution of height or th®.). variable that we claim can model the observed behavior; then
When vehicles are not bursty but isolated, the case; pthe we will describe a methodology to obtain the parameters for
arrival process does indeed match a Poisson process, ike othis model; finally, we will assess the relative ability ofeth
arrival process quite common in the literature (e.g., cusics proposed variable to model the behavior observed in the real
arrival in a queue, number of phone calls at a call center). traces, as compared to previous proposals.

We claim, based on the above, tltlag arrival process in a
highway can be modeled using two different random variables
one exponential and one Gaussiddowever, we note that
throughout the above analysis we have not derived a rigoroud3ased on the results from the previous section, we propose
methodo|ogy to estimate the parameters of these variaides, & Gaussian-exponential mixture model to characterize the
have assessed whether the resulting function will be able\@hicle inter-arrival times in a highway lane. More speailli
mimic the observed experimental values or not. Furthermokée propose a weighted mixture of:
the valued, = 2.5 s used to make thaard decision between « A Gaussian random variable, to mimic the behavior
exponential and normal can be seen as “upper bound” for all caused by vehicles traveling together in bursts (as seen
traces (as seen in Fig. 5), but not necessarily the value that in 7).

IV. AN GAUSSIAN-EXPONENTIAL MIXTURE MODEL OF
INTER-ARRIVAL TIMES



. . . : TABLE I
« A shifted exponential variable, to model the Poisson RESULTING VALUES OFO FOR THE TRACES OFTABLE .

arrival process of isolated cars (the one observed,)n

This way, our proposed random variakflg(t) to model the
time between vehicles arriving at a given point in a highway
lane is formally defined as

Trace #| wn wg o o A m
1 058 042 144 ] 0.46 | 0.36 | 0.50
2 065 045 145] 0.35] 0.31] 0.80
3 063 037 1.50] 0.50 ] 0.31] 0.80
4 050 050 1.06 | 0.34 ] 0.49 | 0.65
5 0.37| 063 | 1.77 ] 0.66 | 0.37 | 0.50
6
7
8
9

1 t—w)?
e 202 +wple M)
V2mo?
with the following set© of parameters:

fa(t) =wg 030 070 | 1.87 | 0.64 | 037 | 0.40
002 098 | 085 0.09 | 0.12 | 0.50
001 009 | T.11] 048 | 0.13| 055

0.05| 095 | 244 | 0.87 | 0.13 | 1.00

« 4 ando, which are the mean and standard deviation of 10 0.04| 096 | 0.73| 0.10 | 0.16 | 0.40
the Gaussian random variable. 11 011 089 152 041 ] 0.11 | 0.65

; ; ) 12 0.09| 091 1.08 | 0.41| 0.17 | 0.90

e A anld m, which are the rate and the shift of the expo 15 T o Wi I B
nential random variable. 1z 051 T 157 T 058 1 079 1 026 110

o wg andwg, which are the the weights of each distribu- 15 030 | 1.84 | 069 | 0.70 | 0.38 | 1.00

tion (and thereforevy + wg = 1).

Our model is, then, amnknownmixture of a normal and
an exponential random variables, whose parameters are &Rjgtive component of the exponential variable (in thisecas
unknown This is a well-known problem in statistics, namelyghifted) is quite small.
computing the maximum likelihood of a set of parameters In order to obtain a better representation of the matching
(the unobserved latent variables specified above) using a lgetween the empirical and the obtained distributions, vee pl
of observed data (the inter-arrival times), than can beesblvin Fig. 8 the resulting Q-Q plot for the same two traces used
using an expectation-maximization (EM) algorithm [15]6]1 in the previous figure. The results visually confirm that for
To estimate the required set of parameters, we implement Bgth for the case of dense traffic and the case of sparse {traffic
following EM-based algorithm using Matlab: our proposed model as described Py(t) is able to mimic

1) We initially setm = 0, i.e., we consider an unshifteqthe observed values of the distribution of mter-arnvaie!_s.

exponential random variable. We run our EM algorithm on the 15 traces considered

2) We run the EM algorithm for either 200 iterations of" the paper, with the resulting values shown in Table II.
until the algorithm converged to a set ffi, o, A, we } It is mterestmg to observe_ that these flgure_s, derlved. from
parameters. a numerical search as defined by the algorithm, are indeed

3) We compute the log-likelihood (denoted &%) of the quite intuitive and further confirm the results from the gsa

sequence of time between arrivalswith the obtained ©f Section lll and the proposed methodology. Indeed, we
o ie. can emphasize the following three resuli3: the relative

- . weight of the exponential variabter increases as the density
LL = log(£(t:1))- of vehicles decrease (note that the results are presented in
4) The aboveLL can be seen, after a run of the Emdecreasing order of densities, see Tabléi))by observing the

algorithm, as a functiorfgy of the set of observations values ofu+o, itis clear that distances between vehicles when

t; and the shift parameter of the exponentia) i.e., they travel in bursts are typically well below the identified

LL = fem(t;,m) that, givenm, assess the likelihood threshold of2.5 s; iii) in all cases, the shift parameter of

of the data according to the obtained model. Therefor@e exponential random variable is placed between the two

fem quantifies the goodness of a given valuenaf extreme values used in our numerical search.

5) We finally perform a sweep on the parameter from  Finally, in order to assess the ability of the proposed model

0 to 3 s in steps of 0.05 s, to obtain the value th&@ capture the observed behavior, comparing it againsiquev

maximizes the.L (i.e., the functionfey defined above). work, we proceed as followisFor each of the traces in Table |

In order to illustrate the operation of the EM algorithmVe compute the parameters for three different models:

we plot in Fig. 7 (above) the weighted components of the « The proposed mixture, with the set of paramet@ras
exponential and the normal random variables for the case of given by our EM algorithm.
trace 10 (a sparse trace) and trace 3 (a dense trace). We alsoAn exponential random variable (as proposed in [10]),
plot in Fig. 7 (below) the histograms of the empirical traces ~ computing its maximum likelihood rata as given by
along with the resulting theoretical PDFs from the operatio ~ Matlab. o _ o
of our algorithm. It can be seen in Fig. 7(a) that, for the cases A log-normal distribution (as proposed in [9]), with its
of a sparse trace, the normal component is relatively small maximum likelihood parametegsando as computed by
and most of the observed behavior can be captured using a
shifted exponential variable. On the other hand, for thee cas "Note that in Section Ill we performed a K-S test to reject tlypdihesis
fad . b) sh h h b ' d val that the inter-arrival times followed an exponential ramdeariable with mean
ora .ense trace, Fig. 7(b) S ows that t_ eo S.erve va.ues SHE However, for the case of distributions with estimatedameters, the
most likely to be modeled with a Gaussian variable, while th@lues used for the standard K-S test are invalid [17].
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Matlab for a given set;. Based on these results, we conclude that our model is the

best suited to mimic the behavior observed in a highway lane.

For each of the traces, we compute the log-likelihood of ﬂ]ﬁ addition, note that the model not only provides a better

observed values f_ortheS(_a tree mode_l, denoted/asy;, LL g “snumerical” performance that those of [9], [10], but also it
and L L, respectively, with the obtained results presented jn__ . L : , . .
. ; rovides valuable insight on drivers’ behavior, some ofakihi
Table IIl. We also show in the table the estimated parameters
- . ave been neglected so far, e.g., the dependence between
(A™", p and o) for the other exponential and log-norma

models. For each tracewe mark with a bold font the lar estconsecutive arrivals. As we describe in the next sectiori,gfa
: e 9 ?ur future work consists on revisiting this assumption oa th

value OU“L O.Ut of the three obtained likelihoods (in case OBLd. of the random variable modeling the vehicles’ arisva
a numerical tie, we mark both numbers). The results can be

summarized as follows:
V. SUMMARY AND FUTURE WORK

o Our model achieves the highest performance, as it pro-_ ) . . )
vides the largest likelihood in 86.6 % of the cases (13 This work has analyzed the inter-arrival times of vehicles

out of the 15 traces). from a set measured traces collected at different locations

« The log-normal distribution is the second best modethe city of Madrid. Next, we summarize the major findings of

being able to outperform our model in 2 out of the 181S work:

traces. o Vehicle arrivals, in general, do not follow a Poisson
o Finally, the exponential random variable is never able to  process. Their distribution is not i.i.d., so the intenaati

match the likelihood of the other two alternatives. time cannot be considered as a memoryless sequence.



TABLE Il

RESULTING LOG-LIKELIHOOD OF THE THREE MODELS CONSIDERED FOR

THE INTER-ARRIVAL TIME BETWEEN VEHICLES. [1]

Trace #| LLgn LLg AT LLy, 1 o
1 129 | 159 | 1.76 | -1.32 | 0.32 | 0.64
2 118 | -151 | 1.99 | -1.18 | 0.52 | 0.53 2]
3 115 | -150 | 2.06 | -1.19 | 1.05 | 0.85
4 118 | 147 | 212 | -1.18 | 0.55 | 0.57
5 124 | 141 | 2.36 | -1.23 | 0.66 | 0.62 13]
6 122 | 139 | 245 | -1.20 | 0.71 | 0.61
7 1.08 | -1.15 | 3.49 | -1.08 | 0.96 | 0.75
8 112 | 119 | 329 | -1.12 | 0.90 | 0.76
9 -1.02 | -1.08 | 3.92 | -1.02 | 1.07 | 0.76 [4]
10 101 | -1.06 | 405 | -1.02 | 1.05 | 0.85
11 087 | 090 | 524 | -0.89 | 1.28 | 0.89
12 080 | 084 | 585 081 | 149 0.78 (5]
13 066 | 069 | 731 | 066 | .71 | 0.76
14 069 | 072 737 | 070 | .73 | 0.77
15 068 | 070 | 7.78 | 069 | 1.72 | 0.84 (6]

(7]

There is some speed-correlation between vehicles such
that we can identify two types of cars: those traveling[8]
together at short distances with similar speeds (what
we called bursty behavior), and those traveling at large
distances with uncorrelated speeds (what we referred 3
as isolated).

For the case of bursty vehicles, the inter-arrival times can
be modeled with a Gaussian distribution. Isolated arrjvaf%ol
on the other hand, exhibit an exponential behavior.
Based on this findings, we propose a Gaussian-
exponential mixture model that characterizes the ot
groups. Its model parameters are estimated using the
Expectation-Maximization algorithm, which outputs thél2]
most likely parameter values from a given set of mea-
surements.

We further assessed the improved accuracy of the pia3]
posed model as compared against previous proposals[14

As future work, we are currently considering the following
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