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Abstract—Distributed Opportunistic Scheduling (DOS) is in-
herently more difficult than conventional opportunistic schedul-
ing due to the absence of a central entity that knows the channel
state of all stations. With DOS, stations use random access to
contend for the channel and, upon winning a contention, they
measure the channel conditions. After measuring the channel
conditions, a station only transmits if the channel quality is
good; otherwise, it gives up the transmission opportunity. The
distributed nature of DOS makes it vulnerable to selfish users:
by deviating from the protocol and using more transmission
opportunities, a selfish user can gain a greater share of wireless
resources at the expense of “well-behaved” users. In this paper,
we address the problem of selfishness in DOS from a game
theoretic standpoint. We propose an algorithm that satisfies
the following properties: (i) when all stations implement the
algorithm, the wireless network is driven to the optimal point
of operation, and (ii) one or more selfish stations cannot obtain
any gain by deviating from the algorithm. The key idea of
the algorithm is to react to a selfish station by using a more
aggressive configuration that (indirectly) punishes this station. We
build on multivariable control theory to design a mechanism for
punishment that is sufficiently severe to prevent selfish behavior
yet not so severe as to render the system unstable. We conduct
a game theoretic analysis based on repeated games to show the
algorithm’s effectiveness against selfish stations. These results are
confirmed by extensive simulations.

Index Terms—Contention-based channel access, distributed
opportunistic scheduling, game theory, multivariable control
theory, repeated games, selfish stations, wireless networks

I. INTRODUCTION

OPPORTUNISTIC scheduling techniques have been
shown to significantly improve performance in wireless

networks. These techniques take advantage of the fluctuations
in the channel conditions of different wireless stations over
time; by selecting the station with the best instantaneous
channel for data transmission, opportunistic scheduling can
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utilize wireless resources more efficiently. A key assumption
of most opportunistic scheduling techniques [1], [2] is that
the scheduler is centralized and has knowledge of the instan-
taneous channel conditions of all stations.

Distributed Opportunistic Scheduling (DOS) techniques
[3]–[6] have been proposed only recently. In contrast to
centralized schemes, with DOS each station has to make
scheduling decisions without knowing the channel conditions
of the other stations. Stations contend for the channel using
random access with a given access probability. After suc-
cessful contention, a station measures the channel and, if the
channel conditions are poor (i.e., the instantaneous transmis-
sion rate is below a given threshold), the station gives up the
transmission opportunity. This allows all stations to contend
for the channel again, letting a station with better conditions
win the contention, which increases the overall throughput.
DOS techniques thus exploit both multi-user diversity across
stations and time diversity across slots.

The lack of global channel information makes DOS systems
very vulnerable to selfish users. By deviating from the above
protocol and using a more aggressive configuration, a selfish
user can easily gain a greater share of wireless resources at
the expense of the other, well-behaved users. In this paper,
we address the problem of selfishness in DOS from a game
theoretic standpoint. In our formulation of the problem, the
players are wireless stations that implement DOS and strive
to obtain as great a share of resources as possible from the
wireless network. We show that, in the absence of penalties,
the wireless network naturally tends to either great unfairness
or network collapse. Building on this result, we design a
penalty mechanism in which any player who misbehaves will
be punished by other players in such a way that there is
no incentive to misbehave. A key challenge when designing
such a penalty scheme is to carefully adjust the punishment
inflicted on a misbehaving station. If the punishment is too
light, a selfish station may still benefit from misbehaving. If
it is too excessive, however, the punishment itself could be
interpreted as misbehavior and trigger punishment from other
stations, leading to an endless spiral of increasing punishments
and ultimately throughput collapse. We address this challenge
through a combination of game theory and control theory.

The most relevant prior work on DOS by Zheng et al. [3]
lays the basic foundations of distributed opportunistic schedul-
ing. The authors propose a mechanism based on optimal stop-
ping theory and analyze its performance with well-behaved as
well as selfish users. The aim of the algorithm is to maximize
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the total throughput of the network. [4]–[6] extend the basic
mechanism of [3] by analyzing the case of imperfect channel
information [4], improving channel estimation through two-
level channel probing [5], and incorporating delay constraints
[6]. While our algorithm deals with the basic DOS mechanism
of [3], it can be extended to incorporate the enhancements of
[4]–[6]. The key contributions of our work are as follows:

1) We perform a joint optimization of both the transmission
rate thresholds and the access probabilities, whereas [3]
only optimizes the thresholds.

2) We provide a proportionally fair allocation that achieves
a good tradeoff between total throughput and fairness.
In contrast, [3] maximizes the total throughput of the
network and, as a result, it risks starving stations with
poor channel conditions.

3) We propose a simple algorithm based on control theory
that guarantees stability and quick convergence to the
optimal point of operation, in contrast to the compara-
tively complex heuristics of [3].

4) Our game theoretic analysis considers that users can
selfishly configure both their access probability and
transmission rate threshold, whereas the analysis of [3]
assumes that selfish users only have control over the
thresholds.

5) We use a penalty mechanism to force an optimal Nash
equilibrium, whereas [3] introduces a pricing mechanism
which may not be practical in many scenarios; further-
more, the performance of the pricing mechanism relies
heavily on the cost parameter and it is suboptimal even
for the best parameter setting.

Some of the concepts and tools used in this paper build
on our previous works of [7] and [8]. In [7] we proposed
an algorithm based on control theory to optimally adjust the
configuration of DOS. In contrast to [7], in this paper our
aim is to prevent selfish users from obtaining any benefit by
deviating from the optimal configuration, which is a much
more difficult problem. In [8] we designed an algorithm based
on multivariable control theory to adjust the contention param-
eters of a WLAN. In this paper, we obtain the same linearized
system as [8], and hence we use the corresponding part of the
analysis from that paper; however, the purpose, algorithm and
most of the analysis of this paper differ substantially from [8].

The remainder of the paper is organized as follows. In
Section II, we present an analysis of our system and derive
the optimal configuration of access probabilities and trans-
mission rate thresholds. In Section III, we show that, in
the absence of penalties, the wireless network tends to a
highly undesirable resource allocation. We then propose an
algorithm called Distributed Opportunistic scheduling with
distributed Control (DOC) that avoids this by implementing
a decentralized penalty mechanism to control selfish users.
Section IV shows by means of control theory, that when all the
stations implement DOC, the system is stable and converges
to the optimal point of operation derived in Section II. In
Section V, we conduct a game theoretic analysis of DOC to
show that stations cannot obtain any gain by behaving selfishly.
The performance of the proposed scheme is extensively eval-
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Fig. 1. Example of channel contention.

uated through simulations in Section VI. Finally, Section VII
provides some concluding remarks.

II. ANALYSIS AND OPTIMAL CONFIGURATION

In the following, we present our system model and analyze
the throughput as a function of the access probabilities and
transmission rate thresholds. We then compute the optimal
configuration of these parameters for a proportionally fair
throughput allocation, which is well known to provide a good
tradeoff between total throughput and fairness.1

A. System model

Our system model follows that of [3]–[6]. We consider a
single-hop wireless network with N stations, where station i
contends for the channel with an access probability pi. We
assume a collision model for the channel access, where a
station contends successfully for the channel if no other station
contends at the same time. Let τ denote the duration of a mini
slot for channel contention, which can either be empty, contain
a successful contention, or a collision.

As in [3]–[6], we assume that a station i obtains its local
channel conditions after a successful contention. Let Ri(θ)
denote the corresponding transmission rate at time θ. If Ri(θ)
is small (indicating a poor channel), station i gives up this
transmission opportunity and lets all the stations contend for
the channel again. Otherwise, it transmits for a duration of
T . Fig. 1 depicts an example of such channel contention.
Our model, like that of [3]–[6], assumes that Ri(θ) remains
constant for the duration of a data transmission and that
different observations of Ri(θ) are independent.2 From [3],
we have that the optimal transmission policy is a threshold
policy: for a given threshold R̄i, station i only transmits after
a successful contention if Ri(θ) ≥ R̄i.

B. Throughput analysis

The throughput ri achieved by station i is a function of the
parameters pi and R̄i. Let li be the average number of bits
that station i transmits following a successful contention and

1The notion of proportional fairness was originally proposed by F. Kelly [9]
and has been later applied to opportunistic scheduling [2]. According to [9],
an allocation {r1, . . . , rN} is proportionally fair if (i) it is feasible, and
(ii) for any other feasible allocation, the aggregate of proportional changes is
zero or negative. [9] shows that the proportionally fair allocation maximizes∑

i log(ri).
2The assumption that Ri(θ) remains constant during a data transmission is

a standard assumption for the block-fading channel in wireless communica-
tions [10], [11]. The assumption that different observations are independent
is justified in [3] through numerical calculations which show that in many
practical scenarios the channel correlation between two adjacent successful
contentions of a station is very small with a very high probability.
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Ti be the average time it holds the channel (including the time
spent in contention). Then, the throughput of station i is

ri =
ps,ili∑

j ps,jTj + (1− ps)τ
(1)

where ps,i is the probability that a mini slot contains a
successful contention of station i,

ps,i = pi
∏
j ̸=i

(1− pj) (2)

and ps is the probability that the minislot contains a successful
contention of any station in the system

ps =
∑
i

ps,i. (3)

Both li and Ti depend on R̄i. When a station contends
successfully, it holds the channel for a time T +τ if it transmits
data and τ if it gives up the transmission opportunity. Thus,
Ti can be computed as

Ti = Prob(Ri(θ) < R̄i)τ + Prob(Ri(θ) ≥ R̄i)(T + τ). (4)

When the station uses the transmission opportunity, it trans-
mits a number of bits given by Ri(θ)Ti, which yields

li =

∫ ∞

R̄i

rTifRi
(r)dr (5)

where fRi(r) is the pdf of Ri(θ).
Based on the above, we can compute ri from p =

{p1, . . . , pN} and R̄ = {R̄1, . . . , R̄N}. In the following, we
obtain the optimal configuration of these parameters to achieve
proportional fairness.

C. Optimal pi configuration

The problem of determining the configuration that provides
proportional fairness can be formulated as the unconstrained
optimization problem of finding the p and R̄ configuration
that maximizes

∑
i log(ri). We start by computing the optimal

configuration of p. Let us define wi as

wi =
ps,i
ps,1

(6)

where we take station 1 as reference. From the above equation
we have that ps,i = wips/

∑
j wj . Substituting this into (1)

yields

ri =
wipsli∑

j wjpsTj +
∑

j wj(1− ps)τ
. (7)

Following the results of [12], we approximate the optimal
success probability ps by P = (1 − 1/N)N−1, which is
more accurate than the well-known approximation of 1/e
for slotted random access.3 The numerical results provided
in Section VI-A confirm the accuracy of the approximation.
Substituting ps by the constant value P in (7) gives

ri =
wili∑

j wjTj +
∑

j wj(1/P − 1)τ
. (8)

3[13] shows that the approximation of 1/e holds both for symmetric and
asymmetric access probabilities, and it further shows that this approximation
is accurate as long as the number of stations is sufficiently large and the
access probabilities are sufficiently small.

The problem of determining the optimal p configuration is
equivalent to finding the wi values that maximize

∑
i log(ri),

for ri defined in (8). To obtain these wi values, we impose

∂
∑

j log(rj)

∂wi
= 0 (9)

which yields

1

wi
−N

Ti + (1/P − 1)τ∑
j wjTj +

∑
j wj(1/P − 1)τ

= 0. (10)

Combining this expression for wi and wj , we obtain

wi

wj
=

Tj + (1/P − 1)τ

Ti + (1/P − 1)τ
. (11)

From the above, the values of p that solve the optimization
problem are those that satisfy both ps = P and (11). These
values can be obtained by solving the following system of
equations: ∑

i

pi
∏
j ̸=i

(1− pj) = P (12)

pi
∏

j ̸=i 1− pj

p1
∏

j ̸=1 1− pj
=

T1 + τ(1/P − 1)

Ti + τ(1/P − 1)
, i = 2, . . . , N.

(13)
As P is only an approximation to the optimal ps, the above

system of equations has in fact two solutions. This can be
seen as follows. From (13) we can express {pi}i=2,...,N as
a function of p1. With this, (12) becomes an equation with
only one unknown (p1). The left-hand side of this equation
increases from 0 (for p1 = 0) to a maximum value that is
greater than P and then decreases to 0 (for p1 = 1). Hence,
there are two distinct values of p1 that solve (12). Taking
these two values of p1 and computing the corresponding values
of {pi}i=2,...,N in each case, we obtain the two solutions
of the system of equations. For one of the solutions, all
of the access probabilities are larger than the corresponding
ones from the other solution; we select the solution with
the larger access probabilities. As an exception to this, when
all access probabilities are equal, the optimal ps is exactly
P and the system has only one solution; in this case, we
select this unique solution. We denote the selected solution
by p∗ = {p∗1, . . . , p∗N}, and refer to these probabilities as the
optimal access probabilities.

To determine p∗ above, the Ti values have to be computed
for all stations. These depend on the optimal configuration of
the thresholds R̄. In the following section, we compute the
optimal R̄, which we denote by R̄∗ = {R̄∗

1, . . . , R̄
∗
N}.

D. Optimal R̄i configuration

In order to obtain the optimal configuration of R̄, we need
to find the transmission threshold of each station that, given
the p∗ computed above, optimizes the overall performance in
terms of proportional fairness. This is given by the following
theorem.

Theorem 1: Consider a station k that is alone in the network
and contends for the channel with pk = P . Let R̄1

k be
the transmission rate threshold that optimizes the throughput
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of this station under the assumption that different channel
observations are independent. Then, R̄∗

k = R̄1
k.

Proof: The proof is by contradiction. Assume there exists
a configuration R̄∗ with R̄∗

k ̸= R̄1
k for some station k that

provides proportional fairness.
Let l1k and T 1

k be the values of lk and Tk for the threshold
R̄1

k and l∗k and T ∗
k the corresponding values for R̄∗

k. Since R̄1
k

maximizes rk when station k is alone:

l1k
T 1
k + (1/P − 1)τ

>
l∗k

T ∗
k + (1/P − 1)τ

. (14)

Consider a network with N stations that use configuration
R̄∗. Given R̄∗, the p∗ that maximizes

∑
i log(ri) is given

by (12) and (13). This results in the following throughput for
station k:

r∗k =
p∗s,kl

∗
k∑

j p
∗
s,j(T

∗
j + (1/P − 1)τ)

=
l∗k

N(T ∗
k + (1/P − 1)τ)

(15)
and for the other stations:

r∗i =
l∗i

N(T ∗
i + (1/P − 1)τ)

∀i ̸= k. (16)

Let us now consider the alternative configuration R̄1
k for

station k and R̄∗
i for the other stations. If we take the p1k

and p1i configuration that satisfies (12) and (13) with this
alternative configuration, we obtain the following throughput
for station k:

r1k =
l1k

N(T 1
k + (1/P − 1)τ)

> r∗k (17)

and for the other stations:

r∗i =
l∗i

N(T ∗
i + (1/P − 1)τ)

∀i ̸= k. (18)

With the above, we have found an alternative configuration
that provides a higher throughput to station k and the same
throughput to all other stations. This alternative configura-
tion thus increases

∑
i log(ri), which contradicts the initial

assumption that the configuration R̄∗ provides proportional
fairness.

Following the above theorem, the optimal configuration of
the thresholds R̄∗ can be computed using optimal stopping
theory. This is done in [3], which finds that the optimal
threshold R̄∗

i can be obtained by solving the following fixed
point equation:

E
(
Ri(θ)− R̄∗

i

)+
=

R̄∗
i τ

T P
. (19)

The above concludes the search for the optimal configura-
tion. The key advantage of this configuration is that it allows
each station to compute its R̄∗

i based on local information
only, and thus decouples the computation of R̄∗

i from that of
p∗i . We use this finding to design a distributed mechanism for
computing the optimal configuration, where each station uses
a fixed R̄i = R̄∗

i obtained locally, together with an adaptive
algorithm to determine the optimal p∗i .

III. DOC ALGORITHM

In this section we propose an adaptive algorithm that satis-
fies the following properties: (i) when all stations implement
the algorithm, it leads to the optimal configuration computed
above, and (ii) a selfish station cannot obtain any gain by
deviating from the algorithm. We first motivate our algorithm
by showing that, in the absence of punishments, the system
will naturally tend to a highly undesirable point of operation.
We then present our algorithm, which uses punishments to
drive the system to the optimal point of operation derived in
the previous section.

A. Motivation

If no constraints are imposed on the wireless network and
stations are allowed to configure their {pi, R̄i} parameters to
selfishly maximize their own benefit, the network will not
naturally tend to the optimum configuration derived above.
To show this, we model the wireless system as a static game
in which each station can choose its configuration without
suffering any penalty. The following theorem characterizes the
Nash equilibria of this game.

Theorem 2: In the absence of penalties, there is at least one
station that plays pi = 1 in any Nash equilibrium.

Proof: The proof is by contradiction. Let us assume that
there is a Nash equilibrium such that pj ̸= 1 ∀j.

If we consider one player i and take the partial derivative
of its throughput ri, we obtain

∂ri
∂pi

=

∏
j ̸=i (1− pj)liT̂−i(

piT̂i + (1− pi)T̂−i

)2 > 0 (20)

where T̂i is the average duration during which the channel
is occupied when station i transmits and T̂−i is the average
duration of a transmission or an empty mini slot when station
i does not transmit.

From the above, it can be seen that the throughput ri is
a strictly increasing function of pi. It follows from this that
{pi, R̄i}, with pi ̸= 1, is not the best strategy for player i
given the configuration of the other stations, since station i
could obtain a higher throughput by increasing pi to 1 and
using the same R̄i. The configuration {pi, R̄i}, with pi ̸= 1, is
therefore not a Nash equilibrium, which contradicts our initial
assumption.

Any of the above Nash equilibria are highly undesirable.
If station i is the only one that plays pi = 1, then player i
achieves non-zero throughput while all other players have zero
throughput. Conversely, if some other station j also plays pj =
1, the result is a network collapse with all players obtaining
zero throughput.

We conclude from the above that, in the absence of punish-
ments, selfish behavior will severely degrade the performance
of the wireless system. In the following, we propose an
algorithm that addresses this problem by implementing a
distributed punishment mechanism.
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B. Rationale behind the algorithm

Before presenting the algorithm, we first discuss the ratio-
nale behind its design. This rationale relies heavily on the
notion of channel time that a station obtains over a certain
interval Θ, defined as

ti(Θ) =

ni(Θ)∑
k=1

(
T k
i (Θ) + (1/P − 1)τ

)
(21)

where ni(Θ) is the number of successful contentions of station
i in that period and T k

i (Θ) is the duration of the kth successful
contention of the station in the interval. The above definition
comprises the aggregate transmission time of the station plus
a fixed overhead of (1/P − 1)τ that is added every time the
station accesses the channel.

An important observation that drives the design of our algo-
rithm is that, with the configuration of Section II, all stations
receive the same channel time on average, i.e., ti = tj ∀i, j
(where ti = E[ti(Θ)]). This can be seen as follows. From (21)
we have

ti
tj

=
E[ni(Θ)]

(
E[T k

i (Θ)] + (1/P − 1)τ
)

E[nj(Θ)]
(
E[T k

j (Θ)] + (1/P − 1)τ
)

=
ps,i(Ti + (1/P − 1)τ)

ps,j(Tj + (1/P − 1)τ)
. (22)

Furthermore, from (13) we have ps,i(Ti + (1/P − 1)τ) =
ps,j(Tj + (1/P − 1)τ) and thus ti = tj .

When all stations use the optimal configuration, the over-
head in the definition of channel time, (1/P − 1)τ , coincides
with the average time between two successes. As a result, for
an interval Θ of duration Tinterval it holds that

∑
i E[ti(Θ)] =

Tinterval. From this and ti = tj , we have that with the optimal
configuration, all stations receive an average channel time of

E[ti(Θ)] = Tinterval/N ∀i. (23)

We define this average channel time as the optimal channel
time and denote it by t∗ (i.e., t∗ = Tinterval/N ).

The last observation upon which our algorithm relies is that
as long as a selfish station does not receive more channel time
than t∗, it cannot increase its throughput. The throughput of
a station with a given channel time and R̄i is equal to the
throughput it would obtain if it were alone in the channel
during this time with pi = P and the same R̄i. From Theorem
1, we have that this throughput is maximized for the optimal
transmission rate threshold R̄∗

i . Therefore, as long as the
station does not receive extra channel time, it will not be able
to achieve a higher throughput.

Given these observations, we base our algorithm on the
following principles: (i) if a given station i detects that another
station k is receiving more channel time than itself, it considers
station k to be selfish and indirectly punishes it by using a
more aggressive configuration, and (ii) when punishing station
k, the punishment needs to be severe enough to keep station
k’s channel time below t∗ so that station k does not benefit
from misbehaving.

PI

controller

station 1

Wireless

network

E1( )
Eq.(25)

P1( ) p1( )

PI

controller
Eq.(25)

PN( ) pN( )EN( )

station N

Fig. 2. DOC control system.

C. Algorithm design

The objective of DOC is to drive the system to the optimal
configuration {p∗, R̄∗} obtained in Section II. As discussed
in Section II-D, each station can locally compute its optimal
configuration of R̄i independently of the configuration of the
other stations. Therefore, with DOC each station maintains
a fixed R̄i (equal to the optimal value) and implements an
adaptive algorithm to configure its access probability pi.

Time is divided into intervals of fixed length Tinterval, and
each station updates its access probability pi at the beginning
of every interval. We use the discrete variable Θ to refer to
the different intervals, and pi(Θ) to denote the value of pi in
a given interval Θ. The central idea behind DOC is that when
a misbehaving station is detected, the other stations increase
their access probabilities in subsequent intervals to prevent the
selfish station from benefiting from its misbehavior.

A key challenge in DOC is to determine the appropriate
reaction against a selfish station. If the reaction is not severe
enough, a selfish station may benefit from misbehaving. How-
ever, if the reaction is too severe, the system may become
unstable by entering an endless loop where all stations indef-
initely increase their pi to punish each other.

Control theory is a particularly suitable tool to address this
challenge, as it helps guarantee the convergence and stability
of adaptive algorithms. We use techniques from multi-variable
control theory [14] for the design of the DOC algorithm. The
algorithm is based on the classic system illustrated in Fig. 2,
where each station runs an independent controller to compute
its configuration. The controller that we have chosen for this
paper is a proportional-integral (PI) controller, a well-known
controller from classic control theory.

As shown in the figure, the PI controller of station i takes
as input the error signal measured over an interval Θ, Ei(Θ),
and provides as output the control signal Pi(Θ) for the next
interval. The error signal indicates how far the system is from
the desired point of operation. If the system is operating as
desired, the error signals of all stations are zero; otherwise, the
error signals are non-zero and the state of the system needs to
change from its current point of operation to the desired one.
To do this, the PI controller adjusts the control signal Pi(Θ),
increasing it if Ei(Θ) > 0 and decreasing it otherwise. In the
following, we address the design of Pi(Θ) and Ei(Θ).
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D. Control signal Pi

The DOC algorithm needs to adjust the access probability
pi(Θ) based on the control signal. To do this, there needs to be
a one-to-one mapping between the control signal Pi(Θ) given
by the controller and pi(Θ). In addition, we design the system
such that the Pi(Θ) values are the same for all stations at the
optimal point of operation. This latter requirement is necessary
to derive the conditions for stability in Section IV.

Based on the above requirements, we design Pi(Θ) as

Pi(Θ) =
pi(Θ)

1− pi(Θ)
(Ti + (1/P − 1)τ) . (24)

A station can therefore compute its pi(Θ) from the control
signal Pi(Θ) as

pi(Θ) =
Pi(Θ)

Ti + (1/P − 1)τ + Pi(Θ)
. (25)

E. Error signal Ei

The design of the error signal Ei(Θ) has the following
two goals: (i) selfish stations should not be able to obtain
extra channel time from the wireless network by using a
configuration different from the optimal, and (ii) as long as
there are no selfish stations, p(Θ) should converge to the
optimal p∗.

For the design of the error signal, DOC relies (like [15],
[16]) on the broadcast nature of the wireless medium, which
enables stations to overhear the transmissions of the other
stations. In particular, in every interval Θ, each station
measures (i) the channel time used by the other stations,
tj(Θ), and (ii) the average time (over the interval) that they
hold the channel upon a successful contention, Tj(Θ) =∑nj(Θ)

k=1 T k
j (Θ)/nj(Θ). Based on this, station i computes the

error signal at the end of the interval as

Ei(Θ) =
∑
j ̸=i

(tj(Θ)− ti(Θ))− Fi(Θ) (26)

where Fi(Θ) is a function that we design below. The error
signal Ei(Θ) consists of the following two components:

• The first component,
∑

j ̸=i tj(Θ)− ti(Θ), punishes self-
ish stations. If a station i receives less channel time than
the other stations, this component will be positive and
hence station i will increase its access probability pi(Θ).

• The second component, Fi(Θ), drives the system to
the desired point of operation in the absence of selfish
behavior (i.e., when all stations receive the same channel
time).

We next address the design of the function Fi(Θ). In order
to drive p(Θ) to the desired p∗ when all stations receive the
same channel time, we need Fi(Θ) > 0 for pi(Θ) > p∗i ,
such that in this case pi(Θ) decreases, and Fi(Θ) < 0 for
pi(Θ) < p∗i .

The design of Fi(Θ) should also prevent selfish stations
from obtaining more channel time than t∗. In the following,
we derive the conditions that Fi(Θ) needs to meet in order to
satisfy this requirement. To derive these conditions, we assume
that the system is in steady state, which implies that selfish

stations play with a static configuration. (In the analysis of
Section V we show that DOC is also effective against selfish
strategies that change the configuration over time.)

We first consider the case where one station k is selfish and
all others are well-behaved and run the DOC algorithm. Since
the PI controller drives the error signal Ei(Θ) to 0 in steady
state, the following holds for all well-behaved stations:

Fi(Θ) =
∑
j ̸=i

tj(Θ)− ti(Θ). (27)

Summing Fi(Θ) over all stations except the selfish one
yields:∑
i ̸=k

Fi(Θ) = (N−1)tk(Θ)−
∑
i ̸=k

ti(Θ) = Ntk(Θ)−
∑
i

ti(Θ).

(28)
If we combine the above with the requirement that the

selfish station cannot gain, i.e., tk(Θ) ≤ t∗, we obtain the
following inequality, ∑

i ̸=k

Fi(Θ) ≤ D(Θ) (29)

where D(Θ) is defined as the difference between the sum of
channel times in optimal operation and the sum of channel
times in the current interval, i.e., D(Θ) = Nt∗ −

∑
i ti(Θ).

Note that, if the current access probabilities are not optimal,∑
i ti(Θ) will be smaller than Nt∗. Hence, D(Θ) reflects the

channel time lost due to non-optimal access probabilities.
The following upper bound on Fi(Θ) guarantees that (29)

is satisfied, and thus ensures that a selfish station does not
benefit from misbehaving:

Fi(Θ) ≤ 1

N − 1
D(Θ). (30)

The intuition behind this upper bound is as follows. When a
selfish station misbehaves, it receives more channel time than
the well-behaved stations. This, however, moves the point of
operation away from the optimal access probabilities, reducing
the overall efficiency in terms of aggregate channel time. The
above upper bound ensures that the additional channel time
received by the selfish station does not outweigh the channel
time it loses due to the overall loss of aggregate channel time.
This guarantees that the selfish station does not receive more
channel time and hence does not benefit from misbehaving.

We next consider the case of multiple selfish stations. In
this case, the aggregate channel time received by the selfish
stations must not exceed the aggregate channel time that they
would receive in optimal operation, i.e.,

∑m
i=1 ti(Θ) ≤ mt∗

(where {1, . . . ,m} is the set of selfish stations). Following
similar reasoning to that above, we obtain the upper bound

Fi(Θ) ≤ m

N −m
D(Θ). (31)

Given all the above requirements, we design Fi(Θ) as:

Fi(Θ) =min
(
(N− 1)D(Θ), D(Θ)

N

)
, pi(Θ) > pmin

i

min
(
(N− 1)D(Θ),−D(Θ)

N , (N− 1)∆
)
, pi(Θ) ≤ pmin

i

(32)
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Fig. 3. Fi as a function of pi(Θ) when ti = tj ∀i, j.

where pmin = {pmin
1 , . . . , pmin

N } are the access probabilities
that minimize D = E[D(Θ)] subject to ti = tj ∀i, j, and ∆
is the value that D takes at this point,

∆ = D|p=pmin . (33)

In order to compute pmin and ∆, the Tj of all stations are
required. For these, we use the Tj(Θ) values measured over
the current interval.

The above design satisfies all of our previous requirements:
• The term D(Θ)/N ensures that (30) and (31) are satisfied

when D(Θ) > 0 and the term (N −1)D(Θ) ensures that
they are satisfied when D(Θ) < 0. This provides the
required protection against (one or more) selfish stations.

• As illustrated in Fig. 3, when all stations have the same
expected channel time, the expected value of Fi(Θ) is
positive for pi(Θ) > p∗i and negative otherwise. This
ensures that p(Θ) is driven to the desired p∗.

The above design of the DOC algorithm is based on
the assumption that the number of stations in the wireless
network is fixed. In the following, we address the case of
stations joining and leaving the network. With DOC, each
station only keeps the state maintained by the PI controller,∑

Θ

∑
j ̸=i

(
tj(Θ)− ti(Θ)

)
+ Fi(Θ), which accounts for the

deficit or surplus of the station’s channel time over the other
stations in the network. When a new station joins the wireless
network, this station does not have a surplus or deficit, and
therefore the other stations keep their state. The new station
initializes the state of its PI controller such that its initial
pi corresponds to the optimal p∗i . When a station leaves, the
remaining stations keep their state: this ensures that the deficit
accumulated by a selfish station is not reset if it leaves and
rejoins the network.

This concludes the design of the algorithm. In the following
two sections, we analytically evaluate its performance when all
stations are well-behaved (Section IV) and when some stations
misbehave (Section V).

IV. DOC ANALYSIS

In this section we analyze the performance of DOC when
all stations are well-behaved. As stations do not obtain any
benefit from misbehaving, it is to be expected that they will all
play DOC, and therefore this is the most meaningful scenario
for the performance analysis of the system. We first analyze
the wireless system under steady state conditions and show
that it is driven to the desired point of operation obtained in

Section II. We then conduct a transient analysis and derive
sufficient conditions for stability.

A. Steady state analysis

Our analysis is based on the system model of Fig. 4.
In this model, C represents the function implemented by
the controllers, which computes the control signals Pi(Θ),
taking the error signals Ei(Θ) as input. H represents the
wireless system which provides the error signals Ei(Θ) based
on the control signals Pi(Θ). In line with standard control
theory [17], we model the randomness of the channel with
the noise signals Wi(Θ) and let Ei(Θ) represent the expected
value of the error signal for the given control signals Pi(Θ).
Since the controller includes an integrator, there is no steady
state error [17] and the steady state solution can be obtained
from

Ei(Θ) = 0 ∀i. (34)

Using (26) and (32), Ei(Θ) can be computed from p(Θ).
This enables (34) to be expressed as a system of equations in
p(Θ). The following theorem guarantees that the the solution
of this system of equations is unique and shows that the unique
stable point in steady state is the desired point of operation
from Section II.

Theorem 3: The unique stable point of operation of the
system in steady state is p(Θ) = p∗.

Proof: Let us consider two stations i and j. From (34)
we have Ei(Θ)− Ej(Θ) = 0, which yields

Ntj(Θ) + Fj(Θ)−Nti(Θ)− Fi(Θ) = 0. (35)

Note that tj(Θ) > ti(Θ) implies Fj(Θ) ≥ Fi(Θ), and vice
versa. This can be seen as follows: If pj(Θ) > pmin

j and
pi(Θ) > pmin

i , then Fj(Θ) = Fi(Θ). If pj(Θ) ≤ pmin
j and

pi(Θ) ≤ pmin
i , then also Fj(Θ) = Fi(Θ). If pj(Θ) > pmin

j

and pi(Θ) ≤ pmin
i , then Fj(Θ) ≥ Fi(Θ). When tj(Θ) >

ti(Θ), we are in one of these three cases, and hence Fj(Θ) ≥
Fi(Θ). Combining this with (35) yields ti(Θ) = tj(Θ) ∀i, j.
Substituting this into Ei(Θ) = 0 yields Fi(Θ) = 0. Given
ti(Θ) = tj(Θ), Fi(Θ) is an increasing function of pi(Θ) that
crosses 0 at pi(Θ) = p∗i . Hence, the only pi(Θ) that satisfies
Fi(Θ) = 0 is p∗i . Since this holds for all i, the unique stable
point of operation is pi(Θ) = p∗i ∀i.

B. Stability analysis

We now conduct a stability analysis of DOC to configure
the parameters of the PI controller. According to the definition
of a PI controller [17], station i computes the value of Pi

at interval Θ′ as a function of the error values measured by
the station in the current and previous intervals based on the
following equation:

Pi(Θ
′) = KpEi(Θ

′) +Ki

Θ′−1∑
Θ=0

Ei(Θ) (36)

where Kp and Ki are the parameters of the controller that we
need to configure.

In order to analyze our system from a control theoretic
standpoint, we need to characterize the transfer functions C
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Fig. 4. Control system.

and H in the system model of Fig. 4. The control and error
signals in the figure are given by the following vectors in the
z-domain [17]:

P(z) = (P1(z), . . . , PN (z))
T (37)

and
E(z) = (E1(z), . . . , EN (z))

T
. (38)

Our control system consists of one PI controller in each
station i that takes Ei(z) as input and provides Pi(z) as output.
We can therefore express the relationship between E(z) and
P(z) as follows

P(z) = C ·E(z) (39)

where

C =


CPI(z) 0 0 . . . 0

0 CPI(z) 0 . . . 0
0 0 CPI(z) . . . 0
...

...
...

. . .
...

0 0 0 . . . CPI(z)

 (40)

with CPI(z) being the z-transform of a PI controller [17],

CPI(z) = Kp +
Ki

z − 1
. (41)

In order to characterize our wireless system with a transfer
function H that takes P(z) as input and has E(z) as output,
we proceed as follows. Equation (26) provides a nonlinear
relationship between E(Θ) and P(Θ). To express this rela-
tionship as a transfer function, we linearize it at the optimal
point of operation.4 We then study the linearized model and
ensure its stability through appropriate choice of parameters.
Note that the stability of the linearized model guarantees that
our system is locally stable.5

We express the perturbations around the stable point of
operation as follows:

P(Θ) = P∗ + δP(Θ) (42)

where P∗ is the stable point of operation as given by (24)
with p(Θ) = p∗.

With the above, the perturbations of E can be approximated
by

δE(Θ) = H · δP(Θ) (43)

4This linearization provides a good approximation of the behavior of the
system when it suffers small perturbations around the stable point of operation.

5A similar approach was used in [18] to analyze RED from a control
theoretic standpoint.

where

H =


∂E1(Θ)
∂P1(Θ)

∂E1(Θ)
∂P2(Θ) . . . ∂E1(Θ)

∂PN (Θ)
∂E2(Θ)
∂P1(Θ)

∂E2(Θ)
∂P2(Θ) . . . ∂E2(Θ)

∂PN (Θ)

...
...

. . .
...

∂EN (Θ)
∂P1(Θ)

∂EN (Θ)
∂P2(Θ) . . . ∂EN (Θ)

∂PN (Θ)

 . (44)

To compute these partial derivatives we proceed as follows.
The error signal Ei(Θ) can be expressed as

Ei(Θ) = Tinterval

∑
j ̸=i

(
ps,j(Θ)

(
Tj +

(
1
P − 1

)
τ
)∑

k ps,k(Θ)Tk + (1− ps(Θ))τ

−
ps,i(Θ)

(
Ti +

(
1
P − 1

)
τ
)∑

k ps,k(Θ)Tk + (1− ps(Θ))τ

)
− Fi(Θ).

(45)

The above can be rewritten as a function of P(Θ) given by

Ei(Θ) = Tinterval

∑
j ̸=i (Pj(Θ)− Pi(Θ))∑

j Pj(Θ)− ps(Θ)
pe(Θ) (

1
P − 1)τ + 1−ps(Θ)

pe(Θ) τ

− Fi(Θ) (46)

where pe(Θ) =
∏

j 1− pj(Θ).
We start by showing that ∂Fi(Θ)/∂Pi(Θ) = 0 at the stable

point of operation. It follows from (32) that

∂Fi(Θ)

∂Pi(Θ)
= 0 ⇐⇒ ∂D(Θ)

∂Pi(Θ)
= 0. (47)

D(Θ) can be expressed as

D(Θ) = Nt∗ − Tinterval

∑
i ps,i(Θ)Ti + ps(Θ)(1/P − 1)τ∑

i ps,i(Θ)Ti + (1− ps(Θ))τ
.

(48)
The partial derivative of D(Θ) can be computed as

∂D(Θ)

∂Pi(Θ)
=

∂D(Θ)

∂pi(Θ)

∂pi(Θ)

∂Pi(Θ)
. (49)

Taking the partial derivative of (48) with respect to pi(Θ)
and evaluating it at the stable point of operation yields

∂D(Θ)

∂pi(Θ)
= Tinterval

(
τ/P∑

i ps,i(Θ)Ti + (1/P − 1)τ

)
∂ps(Θ)

∂pi(Θ)
.

(50)
Since ps(Θ) has a maximum value at the stable point of

operation, we have that ∂ps(Θ)/∂pi(Θ) = 0, which yields
∂D(Θ)/∂Pi(Θ) = 0 and hence

∂Fi(Θ)

∂Pi(Θ)
= 0. (51)

The partial derivative of Ei(Θ) evaluated at the stable point
of operation can then be computed from (46) as

∂Ei(Θ)

∂Pi(Θ)

∣∣∣∣
P(Θ)=P∗

= −(N − 1)Tinterval
1∑
j P

∗
j

. (52)

Using similar reasoning, we can see that

∂Ej(Θ)

∂Pj(Θ)

∣∣∣∣
P(Θ)=P∗

= Tinterval
1∑
j P

∗
j

. (53)
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Substituting these expressions in matrix H yields

H = KH


−(N − 1) 1 . . . 1

1 −(N − 1) . . . 1
...

...
. . .

...
1 1 . . . −(N − 1)


(54)

where
KH = Tinterval

1∑
j Pj

∗ . (55)

Thus, the linearized system is fully characterized by the
matrices C and H . The next step is to configure the Kp

and Ki parameters. The following theorem provides sufficient
conditions which {Kp,Ki} must meet to ensure stability:

Theorem 4: The linearized system is guaranteed to be stable
as long as Kp and Ki meet the following conditions:

Ki < Kp +
1

NKH
, Ki > 2Kp −

1

NKH
. (56)

Proof: The reader is referred to [8] for the proof of the
theorem. Since [8] uses the same linearized system as this
paper, the proof follows very closely that of [8].

In addition to guaranteeing stability, our goal in the config-
uration of the {Kp,Ki} parameters is to find the right balance
between reaction time in transients and oscillations in steady
state. To this end, we use the Ziegler-Nichols rules [17], which
have been designed for this purpose. Following these rules (see
[8] for a detailed description), we obtain the configuration:

Kp =
0.4

2NKH
, Ki =

(
1

0.85 · 2

)
0.4

2NKH
. (57)

The stability of the resulting configuration is guaranteed by
the following corollary:

Corollary 1: The Kp and Ki configuration given by (57)
is stable.

Proof: The proof follows from the fact that the configu-
ration of (57) meets the conditions of Theorem 4.

Note that the above control theoretic analysis guarantees
that the system will always converge to the desired point of
operation regardless of the initial state. This implies that the
system remains stable in the presence of any kind of per-
turbation. Such perturbations include, among others, transient
selfish behavior or stations joining and leaving the network.

V. GAME THEORETIC ANALYSIS

In the previous section we have shown that, when all stations
implement the DOC algorithm, they all play with pi = p∗i and
R̄i = R̄∗

i , which leads to the optimal throughput allocation
r∗i obtained in Section II.6 In this section we conduct a game
theoretic analysis to show that one or more stations cannot
obtain any gain by deviating from DOC. In what follows, we
say that a station is honest or well-behaved when it implements
the DOC algorithm to configure its pi and R̄i parameters,
while we say that it is selfish or misbehaving when it plays a

6Since the throughput allocation {r∗1 , . . . , r∗N} maximizes
∑

i log(ri), it
is Pareto optimal. This follows from the fact that if there existed another
feasible allocation that provided all stations with more throughput than r∗i ,
this allocation would yield a larger

∑
i log(ri).

strategy different from DOC to configure these parameters in
order to obtain a greater share of wireless resources.

The game theoretic analysis conducted in this section as-
sumes that users are rational and want to maximize their
own benefit or utility, which is given by the throughput.
Furthermore, it is reasonable to assume that the game is non-
cooperative in that no binding agreements can be reached
between the players as to their their future play [16]. The
model is based on the theory of repeated games [19]. In
repeated games, time is divided into stages and a player
can take new decisions at each stage based on the observed
behavior of the other players in the previous stages. This
matches our algorithm, where time is divided into intervals
and stations update their configuration at each interval.7 Like
previous analyses on repeated games [15], [16], we consider
an infinitely repeated game, which is a common assumption
when the players do not know when the game will end.

A. Single selfish station

While the design of the DOC algorithm in Section III
guarantees that a station cannot benefit from playing with a
fixed selfish configuration, selfish stations might still benefit
by varying their configuration over time. As an example, let
us consider a naive algorithm that only takes into account the
stations’ behavior in the previous stage. While this algorithm
may be effective against a fixed selfish configuration, it could
easily be defeated by a selfish station that alternates between
a selfish configuration (pk = 1, R̄k = 0) and an honest one
(pk = p∗k, R̄k = R̄∗

k) at every other stage. Since this station
would play selfish when all the others play honest, it would
achieve a significantly higher throughput every other interval,
thus benefiting from its misbehavior.

The above example shows that it is important to ensure that
a selfish station cannot obtain any gain no matter how it varies
its configuration over time. The following theorem confirms
the effectiveness of DOC against any (fixed or variable) selfish
strategy. The proof of the theorem relies on the integrator
component of the PI controller, which keeps track of the
aggregate channel time received by all stations and can thus be
used to guarantee that this aggregate does not exceed a given
amount.

Theorem 5: Let us consider a selfish station that uses a
pk(Θ) and R̄k(Θ) configuration that can vary over time.
If all the other stations implement the DOC algorithm, the
throughput received by this station will be no larger than r∗k.

Proof: The PI controller computes Pi at a given interval
Θ′ according to the following expression:

Pi(Θ
′) = P initial

i +Kp

(∑
j ̸=i

(tj(Θ
′)− ti(Θ

′))− Fi(Θ
′)

)

+Ki

Θ′−1∑
Θ=0

(∑
j ̸=i

(tj(Θ)− ti(Θ))− Fi(Θ)

)
. (58)

7Note that the game theoretic study conducted in Section III-A was based
on static games instead of repeated ones. The reason is that we considered a
system without penalties where a user does not react to the behavior of other
users. Hence, we could model it as a static game where all players only make
a single move at the beginning of the game.
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With the above, Pi(Θ
′) stays between 0 and a given

maximum value Pmax
i . If at some point Pi reaches a Pmax

i

value such that pi = 1, this will result in tj = 0 for j ̸= i
and Fi > −(N − 1)ti, which yields Ei < 0, and therefore
Pi will decrease. Similarly, if at any time Pi reaches 0, then
ti = 0 and Fi ≤ 0, which yields Ei > 0, and therefore Pi

will increase.
Considering that 0 ≤ Pi(Θ

′) ≤ Pmax
i , the above equation

can be expressed as

Θ′∑
Θ=0

(∑
j ̸=i

(tj(Θ)− ti(Θ))− Fi(Θ)

)
= Bi (59)

where Bi is a bounded value: Bi = (Pmax
i −P initial

i +(Ki−
Kp)Ei(Θ

′))/Ki.
Let us consider the case in which there is a selfish station

that changes its configuration over time and receives a channel
time tk(Θ). Equation (59) can be written as∑
Θ

tk(Θ) =
∑
Θ

(
(N − 1)ti(Θ)−

∑
j ̸=i,k

tj(Θ) + Fi(Θ)
)
+Bi.

(60)
Let us now consider a given interval Θ. From (30), we have

Fj(Θ) ≤ 1

N − 1

(
Nt∗ −

∑
i

ti(Θ)
)
. (61)

Summing the above expression over all j ̸= k, we have∑
i ti(Θ) +

∑
j ̸=k Fj(Θ) ≤ Nt∗. As this satisfied for all Θ,∑

Θ

(∑
i

ti(Θ) +
∑
j ̸=k

Fj(Θ)
)
≤

∑
Θ

Nt∗. (62)

Furthermore, by summing (60) over all j ̸= k,

(N−1)
∑
Θ

tk(Θ) =
∑
j ̸=k

∑
Θ

(tj(Θ) + Fj(Θ))+
∑
j ̸=k

Bj . (63)

Adding the above two equations yields N
∑

Θ tk(Θ) ≤
N

∑
Θ t∗ +

∑
j ̸=k Bj . If we consider a long period of time,

the constant term
∑

j ̸=k Bj can be neglected, resulting in∑
Θ tk(Θ) ≤

∑
Θ t∗. This means that the selfish station cannot

receive more channel time using a selfish strategy than by
playing DOC. Following the argument of Section III-B, this
implies that it cannot obtain more throughput than it would
by playing DOC, i.e., rk ≤ r∗k, which proves the theorem.

The above theorem leads to Corollary 2.
Corollary 2: A state in which all stations play DOC (All-

DOC) is a Nash equilibrium of the game.
Proof: According to Theorem 5, if all stations but one

play DOC, the best response of this station is to play DOC as
well since it cannot benefit from playing a different strategy.
Thus, All-DOC is a Nash equilibrium.

The above shows that if all stations start playing with no
previous history, none of them can benefit by deviating from
DOC. In addition to this, in repeated games it is also important
to ensure that, if at some point the game has a given history,
a selfish station cannot exploit knowledge of this history by
playing a different strategy from DOC. The following theorem
confirms that All-DOC is a Nash equilibrium of any subgame
(where a subgame is defined as the game resulting from

starting to play with a certain history). Therefore, a selfish
station cannot benefit by deviating from DOC for any previous
history of the game.

Theorem 6: All-DOC is a subgame perfect Nash equilib-
rium of the game.

Proof: Since the proof of Theorem 5 is not dependent
on past history and can therefore be applied to any subgame,
All-DOC is a Nash equilibrium of any subgame.

Note that, even though the above analysis assumes a fixed
number of stations in the wireless network, it also holds for
the case when the number of stations changes over time, as
long as these changes occur over sufficiently long periods such
that the constant term

∑
j ̸=k Bj is not significant.

B. Multiple selfish stations

The above results show the effectiveness of DOC against a
single selfish station. In the following, we focus on the case
of multiple selfish stations.

The following theorem shows that, by following a different
strategy from DOC, multiple stations cannot gain any aggre-
gate channel time.

Theorem 7: Let us consider a scenario with m selfish
stations. If all other stations play DOC, the selfish stations
cannot gain any aggregate channel time.

Proof: Without loss of generality, let us consider that
stations i = {1, . . . ,m} are selfish. Applying a reasoning
similar to Theorem 5 leads to

∑m
i=1

∑
Θ ti(Θ) ≤ m

∑
Θ t∗.

As the left-hand side of this inequality is the aggregate channel
time obtained by the selfish stations, and the right-hand side
is the aggregate channel time that they would obtain if they
played DOC, the theorem is proven.

According to the above theorem, it is possible for a selfish
station to obtain some gain, but this will be at the expense
of another selfish station that receives less channel time.
Corollary 3 follows from this.

Corollary 3: Let us consider a scenario with m selfish
stations. If all other stations play DOC and a selfish station k
receives a throughput larger than r∗k, then there exists another
selfish station l that receives a throughput smaller than r∗l .

Proof: If there is some station k ∈ {1, . . . ,m} for which
rk > r∗k, this station must necessarily receive more channel
time than it would if all stations played DOC. Since (according
to Theorem 7) the selfish stations cannot gain any aggregate
channel time, there must then exist some other station l ∈
{1, . . . ,m} that receives less channel time. For this station, it
holds that rl < r∗l , which proves the corollary.

Based on the above, we argue that DOC is effective against
multiple selfish stations, since two or more selfish stations
cannot simultaneously benefit and therefore do not have any
incentive to play a coordinated strategy different from DOC.

VI. PERFORMANCE EVALUATION

In this section we evaluate DOC by means of simulation
to show that (i) in the absence of selfish stations, DOC
provides optimal performance while remaining stable and
reacting quickly to changes, and (ii) selfish stations cannot
benefit by following a strategy different from DOC. Unless
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otherwise stated, we assume that different observations of
the channel conditions are independent. We also assume that
the available transmission rate for a given SNR is given by
the Shannon channel capacity: R(h) = Wlog2(1 + ρ|h|2)
bits/s, where W is the channel bandwidth, ρ is the normalized
average SNR and h is the random gain of Rayleigh fading.
We implemented the DOC algorithm in OMNET++. In the
simulations, we set W = 107, T /τ = 10 and the interval of
the controller Ttotal = 105τ . For all results, 95% confidence
intervals are below 0.5%.

A. Validation of the optimal configuration

In order to assess the accuracy of the analysis of Section II,
we compare the performance of the configuration computed
in that section (‘optimal configuration’) against the result of
performing an exhaustive search over all possible configu-
rations of {p, R̄} and selecting the best one (‘exhaustive
search’). We perform the following two experiments. First,
we consider a wireless network with N stations, N/2 of
them with a normalized SNR equal to ρ1 and the other
N/2 with a normalized SNR equal to ρ2. Fig. 5 shows the
total throughput obtained by both approaches for different
numbers of stations (N = {2, 4, . . . , 20}) and levels of
heterogeneity (ρ1 = 1, ρ2 = {1, 5, 20, 100}). We observe
that both approaches perform very closely, with a difference
well below 0.5% in all cases. Next, we consider a wireless
network with N stations, N = {2, 4, . . . , 20}, where the ρi
of each station is randomly chosen in the range (ρ1, ρ2), for
ρ1 = 1 and ρ2 = {1, 5, 20, 100}. The results (not shown in a
graph) confirm that also here the difference between the two
approaches is well below 0.5% in all cases. We conclude from
these two experiments that the analysis is very accurate.

The key approximation of the analysis is to assume that
ps is equal to (1 − 1/N)N−1, which corresponds to the
value of the optimal success probability with symmetric access
probabilities [12]. By analyzing the access probabilities in the
above experiments, we observe that all stations use similar
access probabilities regardless of their channel conditions,
which makes this approximation particularly accurate. For
instance, even for the extreme case of N = 2 and ρ2 = 100,
the difference between the access probabilities of the two
stations is only around 18%. This is a consequence of (11),
whereby the ratio of the access probabilities of two stations
depends on their Ti values; since the thresholds R̄i are set
so that all stations have a similar probability of using a
transmission opportunity, this implies that all Ti values are
similar, and as a result, the access probabilities are also similar.

B. Throughput evaluation

For the throughput evaluation, we compare the performance
of DOC to the following approaches: (i) the static optimal
configuration obtained in Section II (‘optimal configuration’),
(ii) the configuration proposed in [3] (‘DOS’), and (iii)
an approach that does not perform opportunistic schedul-
ing but always transmits after successful contention (‘non-
opportunistic’). We consider a scenario with N = 10 stations,
half of them with a normalized SNR of ρ1 = 1 and the other
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half with a normalized SNR ρ2 that varies from 1 to 10.
Fig. 6 shows the proportional fairness metric,

∑
i log(ri), as

a function of ρ2. We observe that DOC performs at the same
level as the benchmark given by the optimal configuration,
while the other two approaches (DOS and non-opportunistic)
provide a substantially lower performance.

For the above scenario with ρ2 = 4, Fig. 7 depicts the
individual throughput allocation of two stations (where r1 is
the throughput of a station with ρ1 and r2 that of a station with
ρ2). DOC is effective in driving the system to the optimal
point of operation and provides the same throughput as the
optimal configuration. In contrast, DOS exhibits a high degree
of unfairness as it provides a much higher throughput to the
station with high SNR. The non-opportunistic approach pro-
vides a reasonable degree of fairness but has lower throughput
due to the lack of opportunistic scheduling. In conclusion, the
proposed DOC algorithm provides a good tradeoff between
overall throughput and fairness.

C. Selfish station with fixed configuration

We verify that a station cannot obtain more throughput with
a selfish configuration than by playing DOC in a scenario with
N = 10 stations, half of them with ρ1 = 1 and the other half
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(including the selfish station) with ρ2 = 4. The selfish station
uses a fixed configuration and all other stations implement
DOC. Fig. 8 shows the throughput of the selfish station for
different configurations {pk, R̄k} of the selfish station. This is
compared to the throughput that the station would obtain if
it played DOC, given by the horizontal line. We observe that
none of the selfish configurations provides greater throughput
than DOC.

Fig. 9 analyzes the impact of fixed selfish configurations
for a range of different N and ρ2 values. It shows the largest
throughput that a selfish station can receive with a fixed config-
uration, which is obtained by performing an exhaustive search
over the {pk, R̄k} space. This throughput is compared to that
which station would receive if it played DOC. Again, we
observe that the station never benefits from playing selfishly,
which validates the design of the DOC algorithm.

D. Selfish station with variable configuration

According to Theorem 5, a selfish station cannot benefit
from changing its configuration over time. To verify this,
we evaluate the throughput obtained by a selfish station with
different adaptive strategies. These strategies are inspired by
the schemes used in [15] for a similar purpose. The underlying
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principle of all of them is that the cheating station uses a selfish
configuration to gain more throughput and, when it realizes
that it is not obtaining more throughput, it assumes that it
has been detected as selfish and switches back to the honest
configuration to avoid being punished.

In particular, we consider the following strategies. The
‘adaptive pk strategy’ fixes the R̄k configuration of the selfish
station to its optimal value, R̄k = R̄∗

k, and modifies the pk
configuration as follows: the station uses a selfish configura-
tion of pk = 1 as long as it obtains some gain, i.e. rk > r∗k.
When rk drops below r∗k, the station switches to the honest
configuration, pk = p∗k, and stays with this configuration as
long as rk remains below 0.95r∗k. It switches back to pk = 1
when rk exceeds 0.95r∗k. The ‘adaptive R̄k strategy’ fixes the
pk configuration to the optimal value, pk = p∗k, and modifies
the R̄k configuration following a strategy similar to the one
above: the station uses a selfish configuration of R̄k = 0 (i.e.,
it uses all transmission opportunities) as long as it obtains
some gain and switches to the honest configuration when it
stops benefiting. Finally, the ‘adaptive pk and R̄k strategy’
follows a similar behavior to the previous ones but adapts the
configuration of both pk and R̄k.

Fig. 10 compares the throughput obtained with each of the
above strategies to that obtained with DOC for different values
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of N . As expected, when all other stations play DOC, a given
station maximizes its payoff by playing DOC as well, as this
results in a larger throughput for the station than any of the
other strategies. This confirms the result of Theorem 5.

E. Multiple selfish stations

Corollary 3 states that all of the selfish stations cannot
simultaneously benefit by deviating from DOC: if one or more
of the selfish stations experience throughput gains, there must
be other selfish stations that suffer some loss. To validate this
result, we consider a network with N = 10 stations (two
selfish), half of them (including one of the selfish stations) with
ρ1 = 1 and the other half (including the other selfish station)
with ρ2 = 4. We perform an exhaustive search over a wide
range of {pi, R̄i} configurations of the two selfish stations. The
results of this experiment show that there is no configuration
that simultaneously improves the throughput of the two selfish
stations, which confirms the result of Corollary 3.

F. Parameter setting of the PI controller

The main objective in the configuration of the Kp and
Ki parameters proposed in Section IV is to achieve a good
tradeoff between stability and reaction time.

To validate that our system guarantees stable behavior, we
analyze the evolution of the throughput received by a station
over time in a wireless network with N = 10 stations. Fig. 11
shows the throughput for the chosen setting (labeled “Kp,Ki”)
and for a configuration of these parameters 10 times larger
(labeled “Kp∗10,Ki∗10”). We observe that with the proposed
setting, the throughput only suffers minor deviations around
its average value. In contrast, for a larger setting, it exhibits
highly oscillatory, unstable behavior.

To investigate the speed with which the system reacts
against selfish stations, we consider the following scenario.
In a wireless network with N = 10 stations, initially all
stations play DOC. After 50 intervals, one station becomes
selfish and changes its access probability to pk = 1. Fig. 12
shows the evolution of the throughput of the selfish station
over time. We observe from the figure that with our setting
(labeled “Kp,Ki”), the system reacts quickly, and after a few
tens of intervals the selfish station no longer benefits from its
behavior. In contrast, for a parameter setting 10 times smaller
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Fig. 12. Speed of reaction provided by the parameters of the PI controller.

(labeled “Kp/10,Ki/10”) the reaction is very slow and it
takes almost 2000 intervals for the station to stop benefiting
from its misbehavior.8

The results show that with a larger setting of {Kp,Ki}
the system suffers from instability while with a smaller one it
reacts too slowly. Hence, the proposed setting provides a good
tradeoff between stability and reaction time.

G. Impact of channel coherence time

Our channel model is based on the assumption that different
observations of the channel conditions are independent. In
order to understand the impact of this assumption, we repeat
the experiment of Fig. 7 using Jakes’ channel model [20] to
obtain the different channel observations. The results, for a
Doppler frequency of fD = 2π/100τ , are given in Fig. 13.
We observe that the throughput obtained is slightly smaller
than that of Fig. 7. This is due to the fact that when the
channel is bad, a station does not transmit after a successful
contention and therefore it takes (on average) a shorter time
until the next successful contention of this station. As a result,
a station accesses the channel more often when it is bad than
when it is good, which introduces a bias that slightly reduces
the throughput. Overall, the results are sufficiently similar to
those of Fig. 7 to conclude that our assumption on the channel
model only has a minor impact on the resulting performance.

We further investigate whether, in the above scenario, a
station with ρ2 = 4 could obtain more throughput by using a
selfish configuration. While the station obtains 1.752 Mbps
with DOC, it can obtain up to 1.757 Mbps with a selfish
configuration. Note that this increase is not due to the DOC
design, as no other configuration provides the selfish station
with more channel time, but rather due to the fact that the
transmission rate threshold of [3] is not truly optimal under
Jakes’ channel model. In any case, the throughput gain of the
selfish station is negligible.

8We note that, while the analysis of Section IV guarantees stability when
all stations run DOC, our system is also stable when some of the stations are
selfish. This is shown by the experiment of Fig. 12 where, after one of the
stations turns selfish, the others increase their access probability to a value that
ensures the selfish station does not have any gain. The system then remains
stable at this point of operation.
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H. Stations joining and leaving the network

To assess the effectiveness of DOC with stations joining and
leaving the network, we perform the following experiment. We
consider a wireless network with 5 stations, one of which is a
selfish station. After 1000 intervals, 5 additional stations join
the wireless network, stay for I intervals and then leave. The
initial 5 stations stay for another 1000 intervals. The selfish
station plays with a configuration {p1, R̄1} when there are
5 stations in the network and a configuration {p2, R̄2} when
there are 10 stations. We obtain these configurations by per-
forming an exhaustive search over all possible configurations
and selecting the {p1, R̄1} and {p2, R̄2} values that provide
the selfish station with the largest average throughput. Fig. 14
shows the average throughput obtained by the station with this
selfish strategy compared to the throughput it would obtain if
it played DOC. The results confirm that the selfish station
cannot obtain any gain by deviating from DOC.

VII. CONCLUSIONS

Recently proposed Distributed Opportunistic Scheduling
(DOS) techniques provide throughput gains in wireless net-
works that do not have a centralized scheduler. One of the
problems of these techniques, however, is that they are vul-
nerable to malicious users who may configure their parameters
to obtain a greater share of the wireless resources. In this paper
we address this problem by proposing a novel algorithm that

prevents such throughput gains from selfish behavior. With
our approach, upon detecting a selfish user, stations react by
using a more aggressive parameter configuration that indirectly
punishes the selfish station. Such an adaptive algorithm has to
carefully adjust the reaction against a selfish station in order to
prevent the system from becoming unstable. A key aspect of
the paper is that we use tools from control theory combined
with game theory to design our algorithm: by conducting a
control theoretic analysis, we show that when all stations run
DOC the system converges to the desired configuration, and
by conducting game theoretic analysis, we show that selfish
stations cannot benefit from playing a different strategy.
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