
1

VoIPiggy: Analysis and Implementation of a
Mechanism to Boost Capacity in IEEE 802.11

WLANs Carrying VoIP Traffic
Pablo Salvador, Student, IEEE, Vincenzo Mancuso, Member, IEEE, Pablo Serrano, Member, IEEE,

Francesco Gringoli, Member, IEEE and Albert Banchs, Senior Member, IEEE

Abstract—Handling voice traffic in existing WLANs is extremely inefficient, due to the large overhead of the protocol operation

as well as the time spent in contention. In this paper, we propose a simple scheme (VoIPiggy) to improve the efficiency of

WLANs with voice traffic. The key idea of the mechanism is to piggyback voice frames onto the MAC layer acknowledgments,

which reduces both the frame overhead and the time wasted in contention. To quantify the gains of our proposal, we first

study its performance by means of a capacity and delay analysis of a WLAN operating under the VoIPiggy mechanism. Then,

we present an implementation of the mechanism using commercial off-the-shelf devices, which involves programming at the

driver and firmware levels. The performance of the proposed scheme is evaluated in a large-scale testbed consisting on 30

devices. Our extensive measurements, which comprise different network conditions in terms of number of active nodes, traffic

load and transmission rates, confirm that the experimental results match the analytical ones, and show a dramatic performance

improvement for both “voice only” and “voice and data” scenarios.

Index Terms—WLAN, 802.11, experimental analysis, VoIP, performance, piggybacking, VoIPiggy, MAC enhancement.

F

1 INTRODUCTION

IEEE 802.11 [2] is one of the most commonly used
wireless technologies nowadays. It is being com-

moditized for voice communications, with the pro-
liferation of smartphones running voice applications
like, e.g., Skype or Google Hangouts. Given the short
length of voice frames, the operation of the legacy
IEEE 802.11 Distributed Coordination Function (DCF)
is extremely inefficient, and the voice quality is highly
vulnerable to data traffic. This inefficiency is not
alleviated by introducing higher data rates, since these
do not change the protocol overhead and hence do
not significantly reduce the fraction of time wasted
due to the 802.11 backoff mechanism. While voice
quality vulnerability can be reduced by means of the
prioritization introduced by the Enhanced Distributed
Channel Access (EDCA) mechanism [3], this incurs a
substantial level of contention overhead and does not
solve the problem of vulnerability to legacy traffic [4].
As a result, the performance of data traffic has to be
reduced to sustain enough quality for voice traffic.

• P. Salvador, V. Mancuso and A. Banchs are with Institute IMDEA
Networks, 28912 Leganés, Spain, and with Univ. Carlos III de
Madrid, 28911 Leganés, Spain.
E-mail:{josepablo.salvador,vincenzo.mancuso,albert.banchs}@imdea.org

• P. Serrano is with Univ. Carlos III de Madrid, 28911 Leganés, Spain.
E-mail: pablo@it.uc3m.es

• F. Gringoli is with Univ. of Brescia, Brescia, Italy.
E-mail: francesco.gringoli@ing.unibs.it

This paper is an extended version of our work “VoIPiggy: Implementa-
tion and evaluation of a mechanism to boost voice capacity in 802.11
WLANs” [1], presented at IEEE INFOCOM 2012 Mini-Conference.

Motivated by the low efficiency of the standard
operation with voice traffic, in this paper we pro-
pose a simple yet effective mechanism to reduce the
overhead of the MAC operation, which also results in
a reduction of the time spent in contending for the
wireless medium. Our proposal, called VoIPiggy, pig-
gybacks voice frames onto MAC acknowledgments
(ACKs). By embedding a significant part of voice
frames into MAC ACKs, this approach reduces the
MAC overhead and the average number of nodes
contending for channel access, improving the overall
system performance. As a result, VoIPiggy increases
the number of voice and data flows that can be
served as well as the delay performance of voice
traffic. By implementing VoIPiggy in commercial off-
the-shelf devices (COTS) and validating its operation
against the legacy 802.11 operation, we show that
it achieves dramatic performance improvements. The
main contributions of this paper are:

• We propose a novel mechanism, VoIPiggy, which
dramatically improves the overall performance of
WLANs when voice traffic is present.

• We present a theoretical analysis of a WLAN
operating under the VoIPiggy scheme for the
throughput of the WLAN, its capacity region (i.e.,
the number of voice and data flows that can be
supported) and the delay of voice traffic.

• We describe the implementation of our scheme on
COTS devices, which introduces modifications at
the driver and firmware levels.

2

• We present an extensive performance evaluation
of our scheme in a large testbed of 30 nodes.
These experiments confirm the accuracy of the
analytical model, and show that VoIPiggy practi-
cally doubles the capacity of the WLAN.

The rest of the paper is organized as follows. In
Section 2 we summarize the existing work in the
area. The VoIPiggy mechanism is introduced and de-
scribed in Section 3, and its performance is analyzed
in Section 4. Section 5 describes the implementation of
the proposed scheme and its functional modules. Sec-
tion 6 presents our testbed and reports the extensive
experimental evaluation conducted for the proposed
algorithm in a wide set of network conditions. Finally,
Section 7 closes the paper with some final remarks.

2 RELATED WORK

The impact of protocol overhead on VoIP has been
extensively researched in the literature. The authors
of [5] and [6] have investigated the number of VoIP
calls that can be supported in a WLAN with differ-
ent 802.11 versions and different audio codecs. The
degradation of voice performance in presence of low-
priority data traffic has been analytically tackled in
[4]. Other papers also discuss the importance of the
MAC parameter settings on the voice performance,
e.g., [7] and [8]. The scheme we propose achieves
a much higher performance improvement than any
proposal in the above papers.
The literature also provides simulation results and

experimental studies based on COTS devices to mea-
sure the capacity of WLANs when voice traffic is
present. For instance, the authors of [7] show that
appropriate MAC tuning can improve capacity by
20% to 40%. Experiments reported in [9] confirm
that commercial devices need non-trivial prioritiza-
tion mechanisms in order to guarantee the quality
of voice. Experiments in [6] show how voice conver-
sations impair dramatically the performance of UDP
data traffic since they reduce the available bandwidth.
All the above papers rely on the default MAC protocol
operation; in contrast, in this paper we implement a
new mechanism at the driver and firmware level.
The VoIPiggy mechanism can be related to the

reverse direction (RD) mechanism of 802.11n [10], in
which an RD initiator (holding a TXOP) grants channel
access to an RD responder during the TXOP. The RD
mechanism has been evaluated using simulations, for
the case of voice and data traffic in [11], and for
the case of online gaming applications in [12]. In
contrast to these works, in this paper we evaluate
the performance of the proposed mechanism based
on analytical and experimental results.
Besides, VoIPiggy has some similarities with the

HCCA mechanism, in which the AP polls station for
data. However, the use of HCCA has some shortcom-
ings: (i) it introduces significant complexity, including,

e.g., the scheduling configuration [13], (ii) it uses very
small transmission rates for the data piggybacked on
the CF-Poll frame, which results in the “CF-Poll pig-
gyback problem” identified in [14], (iii) if the down-
link voice frames are sent in the contention-free period
(CFP), additional downlink delay is incurred while
waiting for this period [15], and (iv) if they are sent
in the contention-period (CP), the ACK for the uplink
frame cannot be piggybacked, which leads to the use
of three frames per exchange. In contrast, VoIPiggy
achieves a substantially more efficient operation using
a very simple scheme.1 It is also worthwhile noting
that HCCA has not been widely deployed, while here
we present a working implementation of VoIPiggy.
In [16], authors present a novel framework for the

rapid prototyping of new MAC schemes and show
the use of piggybacking for TCP acknowledgments
as an example; their approach differs substantially for
ours, is based on a different implementation and is
evaluated in a scenario with only two stations. Other
former works have proposed the use of piggybacking
to improve WLAN performance [17], [18], yet their
evaluation is performed exclusively via simulations.
The proposal that mostly relates to our work is

Softspeak [19], which consists in aggregating voice
frames at the AP, and a TDMA-like operation for voice
stations based on coarse-grained time slots of 1 ms.
These coarse slots not only limit the scalability of
the proposal, but also require dealing with, e.g., slot
allocation and time synchronization between nodes.
Furthermore, the performance evaluation is carried
out in a small scenario consisting of 10 nodes, and
lacks analytical support.
A preliminary description of VoIPiggy was recently

presented [1]. This article extends [1] very substan-
tially, by introducing an analytical model for its per-
formance (capacity region and voice delay), and a
much more thorough experimental evaluation.

3 THE VOIPIGGY MECHANISM

In this section, we discuss the VoIPiggy mechanism.
We first present the motivation behind the scheme.
Then, we describe the mechanism as well as the mod-
ifications that it introduces to the standard operation
of access points (APs) and stations (STAs).

3.1 Motivation

The standard operation of 802.11 introduces a large
overhead for voice traffic, given the small size of its
frames and its bi-directional nature. To quantify this
overhead, let us consider a scenario consisting of one
AP and one STA, and the exchange of two voice
frames between them, one per direction. Neglecting

1. For instance, a typical exchange at 48 Mbps (data frames) and
12 Mbps (control frames) for a 160-byte voice frame lasts 166 µs
with VoIPiggy, while with HCCA in CP, it results in 227 µs.

3

!"

$%&'(

)*+,

!"#! !-.

,*+,)*+,

!"#! # $%&'(

!"#! !-.

,/!

,*+,

!"#$%#&%'()*+#$,('-./012/!(%3

4567/,,8'()*+#$,(

!"

)*+,

!"#! !-.0

,*+,

$%&'(

,/!

$%&'(

!"#!

!"#!

Fig. 1: Frame exchange for the standard case (top) and
our VoIPiggy mechanism (bottom).

TABLE 1: Efficiency of the standard for the case of the
short-length frame exchange of Fig. 1

Mode
R Rc Tstd Tmin η

2Tack

Tstd(Mbps) (Mbps) (µs) (µs)

802.11b

1 1 3084 1408 46% 20%
2 2 1964 704 36% 26%

5.5 2 1323 256 19% 39%
11 2 1139 128 11% 45%

802.11g

6 6 553 235 42% 20%
9 6 441 156 35% 25%
12 6 385 117 30% 28%
54 24 226 26 12% 36%

the impact of the backoff operation, the frame ex-
change follows the operation illustrated in the upper
part of Fig. 1. According to this, the total time required
to perform this exchange following the standard op-
eration is given by:

Tstd = 2

(

DIFS+2Tp+
H+lv
R

+SIFS+
ACK

Rc

)

, (1)

where DIFS and SIFS are constant times defined
by the standard, Tp represents the duration of the
preamble, lv is the length of the voice frame, including
the IP and UDP headers,H is the layer-2 header, ACK
is the length of the acknowledgment, and R and Rc

are the transmission rates for data and control traffic,
respectively.
The minimum time required to perform the ex-

change is given by the time devoted to exchange
voice data without any overhead, i.e., Tmin = 2lv/R.
Based on this, we can define the efficiency of the
standard exchange as η = Tmin/Tstd. In Table 1, we
provide some values of this (in)efficiency for different
combinations of the modulation and coding scheme
(MCS) of data and control frames, for 802.11b and
802.11g, assuming a frame length of lv = 88 bytes,
which results from adding the corresponding IP and
UDP headers to a voice frame of 60 bytes.
The values obtained show that, for these typical

MCSs, efficiency becomes worse as transmission rates
increase, and reaches values as high as 46%. Note that
we have considered the best conditions (i.e., only two
stations, no backoff operation) and therefore this is the
best possible case for the efficiency, which will be even
smaller under more realistic conditions. Motivated by
this poor figures, we next present the modifications
introduced by VoIPiggy to improve performance.

3.2 Description

We identify the following sources of inefficiency in
the standard exchange depicted in Fig. 1: (i) after
the reception of the voice frame from the AP in the
“downlink” direction, the STA has to send two con-
secutive frames in the “uplink” direction (i.e., to the
AP), namely an acknowledgment frame and a voice
frame, separated by a DIFS, each of which involves
a substantial overhead; (ii) furthermore, the second of
these two frames is transmitted after contending for
channel access, which adds an extra overhead; and
(iii) the AP finally sends an acknowledgment frame
back to the STA to confirm the correct reception of
the second voice frame, which again involves an ad-
ditional overhead. In order to eliminate these sources
of inefficiency, our mechanism relies on the following
key ideas:

• The first key idea of our proposal is to send the
voice frame in the uplink direction after a SIFS
following the transmission of the voice frame
in the downlink direction. In this way, we take
advantage of the fact that the medium is already
“cleared” for transmission after the first voice
frame, and hence save the overhead due to a new
contention.

• The second idea is to merge the two consecutive
frames in the “uplink” direction (the acknowl-
edgment and the voice frames) into one single
transmission by using the second voice frame
to carry the ACK information in the opposite
direction. This saves the channel time devoted to
the transmission of the ACKwhich, given that the
length of a voice frame is relatively similar to that
of an ACK frame, improves very substantially the
efficiency with low implementation costs.

• The third idea is to omit the last ACK frame.
This is based on the argument that the probability
that a frame suffers from a failure in the uplink
direction is much smaller than in downlink, as
the uplink frame is sent after a SIFS, and hence is
protected from collisions, which is the most com-
mon source for failures in 802.11. To ensure that
uplink frames are not lost even in the unusual
case that they suffer failures, we have designed
the mechanism described in Section 3.3, which
retransmits failed uplink transmissions without
requiring to acknowledge these frames.

Based on the above ideas, we propose to modify the
operation of the protocol for the case of voice traffic as
illustrated in the bottom part of Fig. 1. Our proposal,
as we formally specify in Section 3.3, introduces two
small changes to the standard operation of the STA
and the AP: (i) assuming that there is a pending
voice frame in the output queue of the STA (this
is further discussed in Section 3.4), a SIFS time
after the reception of a voice frame from the AP,
the standard ACK reply is replaced by a different

4

frame, which includes both the control information
corresponding to the ACK and the voice frame from
the STA; (ii) upon the reception of this new frame
from the STA, the AP proceeds as if a standard ACK
was received (thus clearing the output queue) and it
processes the voice data carried by the frame, but does
not acknowledge the reception of the voice frame.
As Fig. 1 illustrates, these modifications save ap-

proximately the time spent in the transmission of the
two ACK frames (2Tack, where Tack = SIFS + Tp +
ACK/Rc). According to the values in the last column
of Table 1, this results in savings between 20% and
45% over the standard exchange Tstd (depending on
the MCS used). Furthermore, an additional improve-
ment is that, by means of this scheme, the channel
contention is largely reduced as voice stations are
“polled” by the AP, thus yielding additional efficiency
improvements as detailed in the performance evalua-
tion of Section 6.2

Note that the VoIPiggy design relies on the as-
sumption that voice applications do not implement
silence suppression. We argue that this is not a lim-
iting assumption in realistic scenarios, since the most
widely used voice applications nowadays, such as e.g.
Skype or Google Hangouts,3 do not implement silence
suppression [20]. As reported in [21], this results in
better voice quality and maintains UDP bindings at
the NAT, among other advantages. In Section 6.5, we
evaluate Skype and Google Hangouts and confirm ex-
perimentally that they do not use silence suppression.

3.3 Required Modifications

Next, we formalize the operation of our proposal
by describing the modifications introduced in the
standard operation of the AP and the stations.
Changes to the AP. Given that the mechanism is

triggered by the voice frame transmitted by the AP,
we give the highest priority to the delivery of this type
of traffic by setting the contention window configura-
tion for the voice queue to CWV O

min = CWV O
max = 2,

which is the minimum allowed by the standard. This
configuration has been chosen to ensure that the strin-
gent delay requirements of voice traffic are satisfied.4

Another modification is the processing of the new
piggybacked frames upon receiving them. To this aim,
the AP has to identify the piggybacked frame. If the
frame is received and the piggybacked data can be
decoded, we proceed as if it were an ACK, removing
the voice frame from the NIC queue and informing

2. The improvement on channel contention results from the fact
that voice stations do not contend for the channel but piggyback
their packets to ACK frames. Note that if we had designed VoIPiggy
to piggyback the packets of the AP rather those of the stations, voice
stations would contend for the channel and hence we would not
see such improvement in channel contention.
3. Google Hangouts: http://www.google.com/+/learnmore/hangouts/

4. Even though we are prioritizing voice traffic, VoIPiggy does
not only improve the performance of voice but also of data traffic,
as shown by the results of Section 6.

the upper layers, without triggering the transmission
of an ACK. If the AP either does not receive the uplink
frame carrying the ACK or cannot decode the voice
data piggybacked to the frame, then it acts as it had
not received the ACK and retransmits the downlink
frame (following the standard backoff procedure to
retransmit frames).
Changes to the STA. To take advantage of the sav-

ings introduced by the VoIPiggy exchange, the station
needs to have a voice frame in the output queue,
ready to be piggybacked. To this aim, we enforce that,
when a station has a voice frame to transmit, it does
not transmit it immediately but waits for a frame in
the downlink direction. In order to avoid waiting too
much time, which would harm voice performance, we
limit the maximum waiting time by δ. The value of δ
adapts to the voice codec used in order to minimize
the delay suffered by outgoing frames, as we describe
next. Upon the reception of a voice frame from the AP,
the station has to forge a frame of type Data+ACK and
transmit it after a SIFS. In case of an uplink trans-
mission failure, following the AP operation described
above, the AP retransmits the downlink frame; the
STA identifies such a retransmission as it has the Retry
flag in the header set, and replies by retransmitting
the failed frame (piggybacked to an ACK).
With the above modifications, the operation of

VoIPiggy resembles that of a polling scheme: the voice
frames sent by the AP play the role of poll frames, to
which the stations respond (when polled) by sending
the voice frames in the opposite direction (to the AP).
This similarity has already been mentioned in Section
2, where we report the main differences between
VoIPiggy and a polling scheme such as HCCA. In the
rest of the paper, we refer to this way of operating as
polling-like operation.
We illustrate the changes introduced by VoIPiggy

over the standard IEEE 802.11 state machine in Fig. 2.
Modifications to standard operation of 802.11 are
represented by means of shadowed circles and dashed
or dotted lines, depending on whether they affect
the AP (dashed lines) or the station (dotted lines).
A detailed description of the implementation of the
above modifications in our platform, performed at the
driver and firmware levels, is provided in Section 5.

3.4 Setting of δ

In the following, we design the algorithm to compute
δ. This parameter determines the maximum time a
station holds a voice frame while waiting for a frame
in the downlink direction. Following the explanation
provided above, we want δ to be, on the one hand,
large enough to make sure that we piggyback as many
frames as possible and, on the other hand, as small
as possible while meeting this condition, to avoid
introducing unnecessary delays.
Ideally, in voice traffic the inter-arrival time be-

tween two consecutive frames is fixed, equal to a

http://www.google.com/+/learnmore/hangouts/

5

Idle

Backoff

Send Frame

Wait ACK

Frame at HOL

Manage RX Data

Frame

TX ACK

Send Frame to

Host

RX_Event

Update TX

Parameters

Forge ACK +

Voice

RX_ACK+Voice

Defer / TX

ACK_Timeout and

Update Contention

Parameters

RX_ACK

ACK_Required

/_Timeout

RX_Event

AP

STA

Manage Voice

Frame

Fig. 2: Changes introduced in the standard IEEE
802.11 MAC state machine by VoIPiggy. Dashed and
dotted lines represent new state transitions, while
shadowed circles represent new states.

constant term T (typically, T = 20ms). In this ideal
case, it would be sufficient to set δ = T to make
sure that the above objective is met since, with this
setting, even in the very worst case that a voice frame is
generated right after receiving a frame from the AP, it
will be held long enough to wait until the next frame
of the AP. However, in reality the spacing between
frames from the AP may not be perfectly regular
as there may be some deviations caused by, e.g.,
the backoff process. To account for these deviations,
we follow a similar approach to the “Algorithm 4”
proposed in [22].
Let ti be the time we receive the ith frame from

the AP, and Ti be the estimation of the average inter-
arrival time up to this frame. The computation of Ti

is performed as:

Ti = (1− α)Ti−1 + α(ti − ti−1), (2)

where α is a fixed constant (following [22], we set
α = 0.125). Furthermore, we also estimate the average
deviation of the inter-arrival time from the estimated
average as follows:

vi = (1 − α)vi−1 + α|ti − ti−1 − Ti| (3)

Once we have calculated the above estimates, we
set δi (the value of δ at the ith frame) as:

δi = Ti +Kvi (4)

where K is a positive constant (following [22], we
set K = 4). The purpose of the Kvi term is to set δ
large enough to absorb the deviations suffered by the
inter-arrival times. Note that, in case these deviations
are negligible, then the term vi will be very small
and we will have δi ≈ T , which corresponds to the
ideal case mentioned above. The effectiveness of the
above algorithm for the setting of δ is experimentally
evaluated in Section 6.

Fig. 3: Scenario: WLAN with nv voice stations and nd

data stations.

4 PERFORMANCE ANALYSIS

We next analyze the performance of the VoIPiggy
mechanism presented in the previous section in terms
of throughput performance, capacity region and delay
of voice traffic.

4.1 Throughput performance

We consider a WLAN scenario with one AP and nv

VoIP associated clients, all of them with the VoIPiggy
functionality enabled. Each VoIP client is connected
to a remote client located outside the WLAN. We
assume that the VoIP application generates packets
of fixed size lv . In the same WLAN, we consider the
presence of another set of nd independent stations,
each generating data frames of fixed length ld.
As a result of our scheme to configure the parameter

δ, we can assume safely that all frames from the
nv clients are piggybacked. Therefore, voice traffic is
served by the AP in a polling-like way, with only one
station (the AP) contending for the channel. Thus, we
can model the voice activity in the WLAN as a single
“virtual station” (see Fig. 3). We denote with τv the
probability that this virtual station transmits in a slot
time [23]. Similarly, we denote with τd the probability
that a data station transmits in a slot time.
Let ps,v and ps,d be the probabilities that a success-

ful transmission occurs in a slot time for a VoIP station
and a data station, respectively, and let Tv and Td be
the corresponding slot lengths in these cases, which
can be computed as:

Tv = DIFS + SIFS + 2Tp +
H +ACK ′ + 2lv

R
, (5)

Td = DIFS + 2Tp +
H + ld

R
+ SIFS +

ACK

RC

, (6)

where ACK ′ is the length of the modified ac-
knowledgment header for piggybacked voice packets.
Throughout the article we will assume that the pa-
rameters {frame lengths, MCS} are such that Td > Tv,
which is the typical case, although the model could be
easily extended to account for different settings of the
parameters (following, e.g., our previous work [24]).
Similarly, we denote with pc,d and pc,dv the prob-

abilities of having a collision involving data stations
only and voice and data stations, respectively (note

6

that under our assumptions voice stations do not
collide with each other), and with Tc,v and Tc,dv the
corresponding duration of these collisions. Finally, let
pe be the probability of having an empty slot (the
duration of such a slot time is a constant specified
by the standard, Te). With this notation, the average
duration of a slot time can be expressed as:

Tslot = peTe+pc,dTc,d+pc,dvTc,dv+ps,vTv+ps,dTd. (7)

With the above, the throughput of a voice and a
data station in the WLAN (denoted as Rv and Rd,
respectively) can be computed as:

Rv =
1

nv

ps,v lv
Tslot

, Rd =
1

nd

ps,d ld
Tslot

. (8)

Assuming that all data stations and the virtual
one are independent, the probabilities above can be
computed as follows:

pe = (1 − τv)(1 − τd)
nd , (9)

pc,dv = τv (1− (1− τd)
nd) , (10)

pc,d = (1−τv)
(

1−(1−τd)
nd−ndτd(1−τd)

nd−1
)

, (11)

ps,v = τv(1− τd)
nd , (12)

ps,d = ndτd(1− τd)
nd−1(1− τv). (13)

Finally, to compute the slot time durations, we
use Td and Tv as defined in (6) and (5), and we
consider that the collision duration is determined by
the longest frame exchange, which leads to:

Tc,dv = max(Tv, Td) = Tc,d = Td. (14)

With the above, we can compute the throughput
obtained by each traffic type (voice and data) for a
given scenario of nv and nd stations if the probabilities
τd and τv are known. The remaining challenge is hence
to determine the value of these probabilities, which
we refer to as the point of operation. We next address
this challenge.

4.2 Point of operation

Here, we compute the pair (τd, τv) given the trans-
mission parameters of the WLAN, the input variables
nv, nd, lv, ld and the traffic generation rates of a voice
flow (rv) and a data flow (rd).
Our analysis follows the technique described in

[24]. We define saturation rate as the rate that a station
would obtain if it always had a packet ready for
transmission (i.e., if it were constantly backlogged).
Based on this definition, we can classify stations as
saturated (when the traffic generation rate is above
the saturation rate) or non-saturated (when the traffic
generation rate is below the saturation rate). We first
describe how to compute the transmission probabili-
ties depending on whether the traffic type is saturated
or not, and then address the general case.
Saturated stations. We first consider the case in

which stations are saturated. Following [23], the trans-
mission probability of a station can be computed

based on its minimum contention window W , and
its conditional collision probability p. For the case of
voice traffic, given their backoff configuration, they
always use the same contention window independent
of the number of retransmissions, i.e., Wv = CWV O

min =
CWV O

max, and thus we obtain the following result:

τv =
2

1 +Wv

. (15)

For the case of data traffic, the conditional collision
probability can be computed as the probability that at
least another station transmits data or voice:

pd = 1− (1− τd)
nd−1 (1− τv) ; (16)

the corresponding transmission probability is [23]:

τd =
2

1 +Wd +Wd pd
∑m−1

i=0
(2 pd)

i
, (17)

where m is the maximum backoff stage and Wd is the
CWmin used for the data traffic type.
The system (15)–(17) can be solved numerically

to obtain the transmission probabilities (τd, τv), and
based on these we can use (8) to compute the voice
and data throughput under saturation conditions.
Non-saturated stations. Under non-saturation, we

assume that all traffic generated is served, and there-
fore the following holds for the case of the AP (i.e.,
voice traffic):

1

nv

τv(1− pv) lv
Tslot

= rv, (18)

where pv is the conditional collision probability for
voice, given by the probability that at least one data
station transmits:

pv = 1− (1− τd)
nd . (19)

Similarly, for the case of a data station, we have:

τd(1− pd) ld
Tslot

= rd, (20)

where pd is computed as in Eq. (16).
Therefore, once nd, nv , rv and rd are known, and

assuming that both types of traffic are not saturated,
τd and τv can be obtained by solving the system of
equations (16), (18)–(20).
General case. We next combine the above analyses

for the all-saturated and non-saturated cases to obtain
the operational point of the WLAN in a generic
scenario in which, depending on the offered load rv
and rd, it could happen that both, none, or only one
traffic type is saturated. In order to compute the point
of operation, we proceed iteratively as follows.

1) We first assume that all stations are saturated
and compute τv and τd by solving the system
(15)–(17).

2) Using the transmission probabilities obtained,
we compute the per-station throughput for each
type of traffic, Rv and Rd, with (8).

7

3) If the obtained throughput is less than or equal
to the traffic generation rate for both data and
voice traffic, the analysis is terminated and the
pair (τv, τd) determines the point of operation of
the WLAN. Otherwise, there are three possible
choices:

a) Neither voice traffic nor data traffic are
saturated (i.e., Rv > rv and Rd > rd). In
this case, the system of equations to solve
is given by (16), and (18)–(20).

b) Voice traffic is not saturated and data traffic
is saturated (i.e., Rv > rv and Rd < rd). In
this case, the system of equations to solve
is given by (16)–(19).

c) Voice traffic is saturated and data traffic is
not saturated (i.e., Rv < rv and Rd > rd). In
this case, the system of equations to solve
is given by (15), (16), and (20).

4) We next solve the corresponding system of equa-
tions to obtain the probabilities τv and τd, com-
puting again the throughputs Rv and Rd. If
these throughputs meet the same conditions as
the ones used to derive the corresponding τv
and τd probabilities, the algorithm terminates.
Otherwise, we go back to step 3.

4.3 Capacity region

Based on the above analysis of the point of opera-
tion, we now address the issue of computing the set
of feasible allocations in a WLAN, i.e., the number
of flows that can be supported without throughput
losses, which we refer to as the “capacity region” of
the WLAN. Our capacity region analysis assumes that
all voice stations use the same codec, and that all
data stations generate the same traffic, although these
assumptions could be easily relaxed at the cost of a
more complex derivation.
Voice-only scenarios. We first consider the simple

case when there is only voice traffic in the WLAN.
As explained above, we can assume that in this case
VoIPiggy enforces a polling-like operation across voice
stations. In these circumstances, all voice traffic can
be served as long as the total arrival rate at the
AP is below the maximum service rate R∗

v, which is
computed from Eqs. (7)–(13) with nv=1 and nd=0:

R∗

v =
τv lv

(1− τv)Te + τv Tv

, (21)

where τv is computed via Eq. (15), i.e., in satura-
tion conditions. Assuming a generation rate of rv ,
the maximum number of conversations in a voice-
only scenario, which we denote as n∗

v, can then be
computed as:

n∗

v =

⌊

R∗
v

rv

⌋

. (22)

Voice and data scenarios. We next consider the
general scenario in which there are voice and data

stations. We say that a given set of (nv, nd) of voice
and data stations is supported by the WLAN if all
the traffic generated by the stations can be sent to the
WLAN, i.e., both traffic types are not saturated and
hence there are no losses. In this case, we say the pair
(nv, nd) lies within the capacity region C(rv, rd) of the
WLAN, i.e.,

(Rv = rv, Rd = rd) ⇔ (nv, nd) ∈ C(rv, rd)

Based on our analytical model, one way to compute
the convex hull of C is by performing a sweep on nv

from 0 to n∗
v, and for each value of nv increase the

number of data stations nd until any of the two traffic
types (voice or data) becomes saturated.5

4.4 Delay performance

The above analysis serves to determine if a set of
voice and data flows is supported by the WLAN;
however, in order to provide QoS guarantees to voice
applications, more sophisticated models involving de-
lay performance are required. To tackle this, we next
analyze the delay performance of voice in a WLAN
under the VoIPiggy mechanism. Our analysis focuses
on the downlink direction, i.e., traffic from the AP to
the STAs, as this is the “bottleneck” of the network
(in the uplink direction, stations hold their frames up
to δ, and hence the delay is bounded by a low value).
Voice-only scenario. We first analyze the delay

performance of a WLAN serving nv flows. Given that
the minimum value for CW is used and there is no
data traffic present, we can assume that service time
for voice frames is almost constant and equal to Tv. In
these conditions, our system is a single server queue
with periodic arrival processes and deterministic ser-
vice times, and can thus be modeled following [25].
With this model, the survivor function F−1(t) for the
queuing delay in this scenario can be computed as:

F−1(t) =
Pnv−1(t, tv, Tv)

tnv−1
v

, x ≥ 0, (23)

where tv is the inter-arrival time of voice traffic, given
by tv = lv/rv, and Pk(t, tv, Tv) is computed as:

Pk(t, tv, Tv) =

k−1
∑

l=0

qk,l(t, Tv)(tv − kTv + t)l, (24)

with the coefficients qk,l(t, Tv) computed recursively
as follows:

q0,l(t, Tv) = 0, (25)

qk,0(t, Tv) =
(

(kTv − t)+
)k

, (26)

qk,l(t, Tv) =
k

l

k−2
∑

j=l−1

(

j

l − 1

)

T j−l+1
v qk−1,j(t, Tv), (27)

5. Although we have considered that data traffic is generated at
a finite rate rd, following a similar procedure we could compute,
e.g., the maximum rate that one data station could get in presence
of nv voice flows.

8

nv voice transmissions, nd data transmissions

Voice Voice Voice VoiceData

Arrival Arrival Arrival Arrival

Deferral

Fig. 4: Channel deferral by the AP in presence of data
traffic.

where y+ = max(0, y). From the above, the cumula-
tive distribution function (CDF) of the queuing delay
can be obtained as F (t) = 1− F−1(t).
The above provides the queuing delay suffered by

a frame; to obtain the total delay, we need to add the
transmission time of a voice frame from the AP to the
STA, which is given by

T ′

v = DIFS + Tp +
H + lv

R
. (28)

Note that, in contrast to Tv, the above transmission
time only accounts for the time elapsed until the voice
frame reaches the AP and hence includes neither the
ACK nor the piggybacked voice frame. The addition
of the queuing delay and transmission time leads to
the following CDF for the total delayD of the delivery
of downlink voice frames, which is a shifted version
of F (t):

FD(t) = F (t− T ′

v), t ≥ T ′

v. (29)

Once we have obtained the CDF for the total delay,
we can obtain its numerical derivative fD(t), and from
this it is straightforward to obtain any performance
figure for the downlink traffic in the voice-only sce-
nario, e.g., average delay, 95-percentile or standard
deviation.
Voice and data scenario. We next focus on the case

when data traffic is also present in the WLAN. In this
case, the impact of data traffic is twofold: not only
voice transmission from the AP might collide with
data transmissions, but also the AP has to perform
channel deferral whenever it senses the medium and
detects that it is busy.
In [26], it has been observed that channel deferral

dominates the performance in 802.11 wireless net-
works, while collisions have a much smaller impact.
With VoIPiggy, the impact of collisions is even smaller,
since there are fewer flows contending for channel
access. Based on this, in our analysis we neglect the
impact of collisions and assume that a voice frame
from the AP is either transmitted immediately, or it
has to wait until an ongoing data transmission has
finalized (i.e., for a residual time), as shown by Fig. 4.
By denoting the probability of deferral by pdef , the
CDF of the total delay can be expressed as:

FD(t) = (1 − pdef)U(t− Tv) + pdefF
R
D (t− Tv), (30)

where U() is the unit step function, and FR
D (t) is the

CDF of the residual time of a data transmission. Given
that these are of fixed length, if we assume that the
residual time follows a uniform distribution, we can

express FR
D (t) as:

FR
D (t) = FU (t, Td + t), (31)

where FU (0, Td) is the CDF of a random variable
uniformly distributed between 0 and Td.
The pending challenge is to compute pdef. Our

key approximation to compute this is to assume that
whenever a voice frame is preceded by a data frame,
it has to wait for the data transmission to end, as
depicted in Fig. 4. Thus, the probability of channel
deferral is equal to the probability that the previous
transmission corresponds to a data frame. Given that
on average in a given period of time T there are nv

voice transmissions and nd data transmissions, if we
consider a tagged voice transmission out of the nv,
this probability can be expressed as:

pdef =
nd

nd + nv − 1
. (32)

which completes the model for the delay performance
in a mixed scenario.

5 IMPLEMENTATION DETAILS

In this section we detail the implementation of the
most relevant features of VoIPiggy, which is based on
Alix 2d2 devices from PC Engine.6 The implemen-
tation of the 802.11 stack for the chosen platform is
composed of three main software/firmware modules:
(i) the mac80211 framework that takes care of the
high-layer operations; (ii) the device Driver, which
is a wrapper between the internal buffers and the
physical device; and (iii) the Firmware of the device,
which implements the internal logic that controls
time-critical operations such as, e.g., packet retrans-
missions, which cannot be performed at neither kernel
nor application level, due to the unpredictable delay
introduced by the buses when crossing the protocol
stack. For the communication between the firmware
and driver, we rely on the block of data that the driver
attaches to the structure that contains each packet
to enable per-packet configurations, and extend it to
pass information to the firmware. In the following,
we describe the required modifications to the device
firmware and to the Linux kernel.

5.1 Firmware Modifications

Some of the functions of the VoIPiggy mechanism, as
they are very time critical, need to be implemented at
the firmware level. To this end we built our system
on OpenFWWF,7 an “Open source FirmWare for WiFi
networks” that supports customization of the device
internal operations and has been used in the past to
introduce extensions to the 802.11 default behavior
[27], [28]. The use of this firmware enables modify-
ing the protocol state machine by reacting to some

6. PC Engines: http://www.pcengines.ch/
7. OpenFWWF: http://www.ing.unibs.it/openfwwf/

http://www.pcengines.ch/
http://www.ing.unibs.it/openfwwf/

9

conditions, and grants access to key internal modules
of the device.
In order to support VoIPiggy at the station side,

we first have to hold outgoing voice frames, which
are marked by the driver as we describe next, up to
a maximum time δ. This is done by loading, upon
the arrival of a voice frame, the time synchronization
register SPR_TSF_WORD0 with the δ value computed
by the driver, and holding the frame until the register
reaches zero or a voice frame arrives. Next, we have
to modify the interrupt request triggered upon the
reception of a frame. More specifically, we implement
a new procedure, VOICE_RX.IRQ, which is triggered
when a voice frame from the AP arrives and the
head-of-line frame is a voice frame. This procedure
forges the VoIPiggy frame, which extends the default
ACK to include the voice frame and the sender MAC
addresses (updating the packet length and PLCP ac-
cordingly). After transmitting the voice frame, we
still hold it in case it has to be retransmitted. This
happens when a voice frame with the retry flag set is
received from the AP. The frame is held until the AP
transmits a new frame (with the retry flag unset) or
the application generates a new voice packet.
At the Access Point, the main modification at the

firmware level is the ability to identify and pro-
cess the voipiggied frames received from the stations.
For simplicity, we do this by comparing the length
of the received frame, which is provided in the
SPR_RXE_FRAMELEN register, against the length of a
legacy ACK. If longer, and the piggybacked data is
correctly decoded, the complete frame is passed to
the driver for its processing, as we describe in the
next section; otherwise, the default ARQ procedure is
triggered.

5.2 Driver Modifications

The less time critical functions were implemented at
the driver level in the kernel, in the C programming
language.
At the station side, when the driver identi-

fies a frame as VoIP,8 it marks it as suitable
for piggybacking. This is done by modifying the
b43_generate_txhdr() function of the driver to
extend the b43_txhdr data structure, in order to in-
clude a bit that we denote as PIGGYBACK_ENABLED.
We also pre-compute in this function some variables
(e.g., PLCP header) to speed-up the forging of the
piggybacked frame in the firmware.
At the AP side, we add a hook in the driver

to process the “long” ACK frames placed in the
skb_buff buffer. This processing consists on first
forging a regular data frame for the voice payload, by

8. There are various alternatives to detect if the frame is VoIP,
such as: by having the application set the DSCP code, by looking
at the Payload Type field from a RTP header, at the frame length, etc.
In this paper, for simplicity we do it by checking if the destination
port matches with a predefined value.

inserting the missing sender and receiver addresses,
the LLC header, etc. Then, the frame is passed to the
mac80211 module (which remains oblivious to the
VoIPiggy operation) via the b43_rx() function.
Finally, to compute the δ parameter, and also for

debugging and monitoring purposes, we extended
the b43_wldev structure that contains various trans-
mission and reception statistics (e.g., total number
of frames, transmission attempts) to include those
related to the operation of VoIPiggy (e.g., inter-arrival
time, number of voipiggied frames).

6 PERFORMANCE EVALUATION

In this section we first describe the testbed used in
our experiments. Then, we evaluate the performance
of VoIPiggy under a large number of different scenar-
ios, in terms of number of stations, data traffic and
MCS used. Throughout our experiments we compare
(whenever possible) the resulting performance against
that obtained with the standard channel access, in
which voice traffic and data traffic are configured with
the recommended CW parameters of the V O and BK
queues of the EDCA standard, respectively (denoted
as “EDCA”).

6.1 Testbed Description

Our testbed consists of 30 Alix 2d2 devices acting
as wireless stations, and one desktop machine acting
as AP. The AP uses a 7 dBi omnidirectional antenna
located in the center of the testbed. The stations are
deployed around this antenna and equipped with
2 dBi omnidirectional antennae. All nodes use a trans-
mission power of 20 dBm. Given that the 2.4 GHz
band is well populated in our testbed, we took great
care in performing the experiments when the traffic
activity was low.
We use mgen9 as traffic generator, to emulate the

behavior of standard voice codecs and data transfers.
This tool supports the computation of one-way delay
figures by inserting timestamps in all packets. As this
requires that nodes are synchronized, we run the PTP
daemon10 over the Ethernet interfaces of the nodes,
achieving 0.1 ms synchronization accuracy. The wired
interface is also used to perform other control and
management plane operations, such as e.g. remote
execution of tests or retrieval of the results for off-
line processing, so that they do not interfere with the
actual measurement data on the wireless medium.
We emulate the traffic generation of voice applica-

tions by running independent instances of the mgen

tool, each transmitting either a 60-byte or a 160-byte
voice frame every tv = 20 ms, thus emulating the
behavior of the G.711 and G726 codecs, respectively.
For the case of UDP data traffic, mgen is configured

9. MGEN: http://cs.itd.nrl.navy.mil/work/mgen/
10. Precision Time Protocol: http://ptpd.sourceforge.net/

http://cs.itd.nrl.navy.mil/work/mgen/
http://ptpd.sourceforge.net/

10

TABLE 2: Maximum number of conversations sup-
ported in a voice-only scenario.
Voice MCS nv experimental nv model
codec (Mbps) EDCA VoIPiggy Gain VoIPiggy Gain

G. 711

2 5 9 80% 9 80%
5.5 10 18 80% 18 80%
11 12 26 116% 26 116%
6 19 29 53% 29 53%
9 24 ≥ 30 - 49 71%
12 26 ≥ 30 - 52 100%
54 ≥ 30 ≥ 30 - 125 -

G. 726

2 8 14 75% 14 75%
5.5 10 26 160% 26 160%
11 12 ≥ 30 - 33 175%
6 23 ≥ 30 - 49 113%
9 26 ≥ 30 - 66 153%
12 ≥ 30 ≥ 30 - 79 -
54 ≥ 30 ≥ 30 - 154 -

to send 1453 byte frames every 23 ms, i.e., an approx-
imate rate of 500 kbps.

6.2 Capacity Region

Voice-only scenarios. We start our performance eval-
uation with a scenario in which only voice traffic
is present. To this aim, we analyze the maximum
number of conversations supported in the WLAN,
for different configurations of the voice codec and
MCS used. More specifically, we increase the number
of stations nv from 1 until n∗

v + 1 is reached, which
is the minimum number of voice stations that leads
to traffic losses. In order to have good statistical
guarantees, for each configuration of nv we repeat
the test, each of them run for 30 s, 5 times and
only increase the number of conversations if none of
the 5 experiments suffers from traffic losses. We also
obtain, following a similar procedure, the maximum
number of voice conversations that can be supported
with the standard EDCA configuration. We present
the obtained results in Table 2, in which we also
provide the value predicted by our analytical model
of Section 4.3, and the resulting improvements in the
maximum number of conversations of VoIPiggy over
EDCA (columns “Gain”). Note that we mark as ≥ 30
those experiments in which the number of supported
conversations reached the maximum number of nodes
in our testbed.
There are two main conclusions that can be drawn

from the table. First, the experimental results show a
perfect match with those from the theoretical model
for all the cases that can be evaluated with the number
of nodes available in the testbed (i.e., n∗

v < 30).
Second, the results show that VoIPiggy significantly
increases the efficiency of WLANs in the presence
of voice traffic. Indeed, as compared to the standard
recommended configuration, the improvements range
between 53% and 175%, which is a dramatic gain at
the relatively small cost of implementation.
The above confirms that, in voice-only scenarios,

VoIPiggy is able to boost the capacity of the network,

 0

 5

 10

 15

 20

 25

 0 2 4

n
v

nd

a) 2 Mbps

EDCA

VoIPiggy

VoIPiggy Model

 0 2 4 6 8
nd

b) 5.5 Mbps

 0 3 6 9 12
nd

c) 11 Mbps

Fig. 5: Capacity region of an 802.11b scenario with
voice and data stations.

which is a consequence of reducing the inefficiency of
the standard protocol when short packets are sent in
both directions (as discussed in Section 3.1). We next
analyze how the efficiency improvements introduced
by VoIPiggy in the delivery of voice also increase the
capacity of WLANs when data traffic is present.
Voice and data scenarios. We next analyze the

case of a mixed scenario with nv bi-directional voice
conversations and nd uplink data flows, in order to
experimentally assess the capacity region C of VoIP-
iggy and to validate our analytical model presented in
Section 4.3. To this aim, we perform a sweep on the
number of voice stations nv (from 0 to n∗

v) and, for
each value of nv, we sweep on the number of data
stations nd, starting from 1 and increasing it while
the throughput demands of voice and data flows are
satisfied. Like in the previous case, we repeat each test
5 times, and only increase the number of stations if
no significant losses were measured.11

We start our measurements for the case of 802.11b,
assuming the G. 711 voice codec and data stations
transmitting at rd = 500 kbps, and the following
values for the MCS={2, 5.5, 11} Mbps. For each con-
figuration of the transmission rate, we experimentally
measure the capacity region for the EDCA configura-
tion and for VoIPiggy, also providing the theoretical
values in this case (‘VoIPiggy Model’). The results are
depicted in Fig. 5. Experiments show that when there
are no voice conversations in the WLAN there is no
increase in the capacity, given that no piggybacking
is taking place. In contrast, the more voice flows
are present, the larger the difference between the
EDCA performance and the one achieved by means of
VoIPiggy; indeed, for the MCS presented in the figure,
the “area” of the capacity region is practically doubled
with the use of VoIPiggy. Finally, it is also worth
remarking the good match between experimental and

11. The capacity region figures are presented for the case when
losses are below 1%. We have repeated the experiments for up to
10% losses, and have obtained very similar results.

11

 0

 10

 20

 30

 40

 50

 0 2 4 6 8

n
v

nd

a) 6 Mbps

EDCA

VoIPiggy

VoIPiggy Model

 0 2 4 6 8 10 12
nd

b) 9 Mbps

 0 3 6 9 12 15
nd

c) 12 Mbps

Fig. 6: Capacity region of an 802.11g scenario with
voice and data stations.

analytical results.
We proceed similarly for the case of 802.11g, with

the 6, 9, and 12 Mbps MCSs. The results are de-
picted in Fig. 6. Given that the MCSs considered
are more efficient when dealing with voice traffic,
the performance improvements are slightly below the
ones presented in the previous case, but they are still
very significant. As the capacity region C is notably
large in this case, we can only confirm the accuracy
of the model when nv +nd ≤ 30, but we also show in
the figure the analytical results for topologies larger
than our testbed, which helps to properly illustrate
the large improvements due to VoIPiggy.
Based on these results, we conclude that VoIP-

iggy is able to almost double the capacity region of
802.11 WLANs, i.e., the number of stations that can
be supported with no throughput loss, as confirmed
both by analytical and experimental results. We next
analyze the delay performance when using VoIPiggy
for scenarios at the boundary of the capacity region.

6.3 Delay Performance

The results of the previous section validate the perfor-
mance improvements of VoIPiggy and the accuracy
of the analytical model for the capacity region. Such
results can be used, e.g., to perform call admission
control (CAC) decisions if the performance metric of
interest is throughput. Conversely, if we are inter-
ested in the quality of the service received by voice
conversations, it is important to characterize delay
performance in addition to throughput. To this end,
we next analyze the CDF of the downlink delay using
VoIPiggy.
Voice-only scenarios. We first consider the case of a

voice-only scenario. We consider a scenario with the
maximum number of conversations supported with
VoIPiggy for different MCSs (i.e., n∗

v), all of them
using the G.711 voice codec, and compute the CDF
of the service delay. Each experiment is run for 60 s,
and we perform 5 repetitions to confirm that results

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10

F
D

(t
)

t [ms]

a) 802.11b

2 Mbps

5.5 Mbps

11 Mbps

Analysis

Experimental

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10

t [ms]

b) 802.11g

6 Mbps

12 Mbps

9 Mbps

Fig. 7: CDF of the delay for voice-only scenarios.

did not vary much across experiments. The results
are depicted in Fig. 7 for the case of 802.11b (left)
and 802.11g (right). We use dotted lines to represent
the experimental results, and solid lines for the nu-
merical figures computed using the analytical model
presented in Section 4.4.

We observe a good match between analytical and
experimental values. Furthermore, results confirm the
good service provided to voice traffic: for the case of
802.11b it only reaches 10 ms for the lowest MCS,
while for the case of 802.11g delay figures are well be-
low this value. Note that, in all considered scenarios,
the experiments are run with the maximum number of
voice conversations supported by the WLAN, which
are the most stringent conditions, and therefore they
provide worst case results for the delay.

Voice and data scenarios.We next consider the case
of the WLAN with voice and data stations. Like in the
previous case, we compute the CDF of the total delay
of voice traffic in the downlink direction. Results are
given in Fig. 8. For each MCS considered in the figure,
we select one specific point in the capacity region C,
which is is the pair (nv, nd) reported in the figure
below the MCS (e.g., for the case of 11 Mbps, the
scenario is nv = 6, nd = 8).

Our results show that, as expected, the activity of
data stations worsens the performance of voice traffic,
even when the number of conversations is smaller
than n∗

v. The results also confirm that channel deferral
because of data transmissions has a significant impact,
while the impact of collisions (responsible for the
rarely occurring long delays, which appear in the
CDF’s tails) is practically negligible. In any case, and
despite of the increased activity in the channel, the
CDFs show that voice traffic still receives a good
service, since delay figures are in the range of a few
ms. There results thus confirm that VoIPiggy is able
to make room for more voice conversations in the
WLAN while maintaining a good service level.

In order to gain further insight into the delay per-
formance of a WLAN with voice and data stations,

12

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10

F
D

(t
)

t [ms]

a) 802.11b

2 Mbps
 (2,2)

5.5 Mbps
 (5,4)

11 Mbps
 (8,6)

Analytical
Experimental

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1

t [ms]

b) 802.11g

6 Mbps
 (7,4)

9 Mbps
 (8,7)

12 Mbps
 (11,10)

Fig. 8: CDF of the voice delay for voice and data
scenarios.

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25

D
e
la

y
 [
m

s
]

a) Data traffic

VoIPiggy
EDCA

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25

D
e
la

y
 [
m

s
]

b) Voice DL

 0
 5

 10
 15
 20

 0 5 10 15 20 25

D
e
la

y
 [
m

s
]

nv

c) Voice UL

Fig. 9: Delay for voice and data traffic.

we consider a scenario with nv voice conversations
and one station sending data to the AP in saturation,
and measure the average delay of the data and voice
traffic (in the uplink and downlink). The results, given
in Fig. 9, show that not only VoIPiggy improves the
delay performance of voice traffic, but it also improves
the delay performance of data traffic. Therefore, even
though VoIPiggy gives higher priority to voice traffic,
as a result of making a more efficient use of the WLAN
resources, it also improves the performance of data
traffic in terms of delay (as shown in this section) and
throughput (as shown in the next one).

6.4 TCP traffic

In the previous scenarios we have assumed, for the
case of the data stations, UDP uplink traffic to the AP.
In this section we analyze the performance of VoIP-
iggy when TCP is used instead of UDP. To this aim,
we set up a WLAN scenario in which nv voice conver-
sations are present and one data station is receiving
TCP traffic from the AP.12 For each scenario, we run
the experiment for 60 s and compute the average

12. We also performed experiments with the data station sending
TCP traffic, obtaining very similar results to the ones reported here.

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30

D
a
ta

 T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

802.11b11 Mbps

5.5 Mbps

2 Mbps

VoIPiggy
EDCA

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30

D
a
ta

 T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

nv

802.11g
12 Mbps

9 Mbps

6 Mbps

VoIPiggy
EDCA

Fig. 10: TCP throughput with nv voice conversations
(the figure only shows those points for which voice
traffic does not suffer losses above 1%).

TCP throughput obtained, repeating the experiment
5 times. We present the obtained results in Fig. 10,
with VoIPiggy (solid line) and EDCA (dashed line),
for an increasing number of conversations, until nv

reaches the maximum number of stations (29, which
is reached with VoIPiggy in the 802.11g case) or voice
losses are above 1% (this only happens with EDCA).
There are several conclusions that can be drawn

from the figure. First, the use of VoIPiggy effectively
protects the performance of voice traffic, as the max-
imum number of voice conversations that can be
supported reaches the values obtained in voice-only
scenarios (n∗

v). In contrast, EDCA only supports a
much smaller number of conversations than in the
previous case, due to the increased aggressiveness of
the data traffic. Second, TCP traffic obtains a larger
throughput with VoIPiggy than with EDCA for all
values of nv , which confirms the previous observation
that VoIPiggy improves not only voice performance
but also data performance. Third, since VoIPiggy gives
higher priority to voice stations, if the number of
voice stations reaches its maximum value, data sta-
tions starve. However, in case we wanted to ensure a
minimum throughput for data traffic, our analysis of
Section 4 could be used to apply admission control
and thus limit the number of voice stations in the
WLAN.

6.5 Validation of the algorithm to compute δ

Finally, we validate the ability of the algorithm pre-
sented in Section 3.4 to estimate the inter-arrival
variability of voice frames, required to hold waiting
frames long enough until a frame from the AP arrives
while avoiding unnecessary delays. To this aim, we
use two Alix devices to set up a WLAN scenario
consisting in one AP and one station, and compare the
performance in terms of percentage of piggybacked
frames for (i) a fixed δ setting, and (ii) the use of our
adaptive algorithm.

13

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

%
 P

ig
g

y
b

a
c
k
e

d
 f

ra
m

e
s

Fixed δ setting [ms]

G.711

G.729a

Fig. 11: Percentage of piggybacked frames for a fixed
configuration of δ.

TABLE 3: Performance of the algorithm to compute δ

Voice codec
% piggybacked

Ti (ms) vi (ms)
avg. ± σ

G.711 99.22 ± 0.90 % 19.8 0.58
G.729a 99.12 ± 0.73 % 39.4 1.10
Skype 99.61 ± 0.17 % 30.3 5.76

We perform our evaluation using mgen to emulate
the behavior of the G.711 and G.729a codecs, which
generates 160 B frames every 20 ms and 40 B frames
every 40 ms, respectively. We first analyze the case
of a static setting of δ, for different values of this
parameter. More specifically, we sweep from 0 to
40 ms, and for each δ value we compute the percent-
age of piggybacked frames during a 60 s experiment,
running 5 repetitions for each one. The results are
depicted in Fig. 11 using one point per repetition
(for ease of visualization we use lines to represent
the average of the experiments). They confirm that,
depending on the codec used, a different value of δ
is required to maximize the number of piggybacked
frames (i.e., δ ≥ 20 ms and δ ≥ 40 ms for G.711 and
G.729a, respectively), and therefore a fixed setting of
δ would require manual tuning.
We next analyze the performance of the algorithm

to dynamically adapt δ, following a similar procedure
as in the previous case (i.e., 5 experiments of 60 s
each). The results, summarized in Table 3, show the
average percentage of piggybacked frames of the 5
experiments and its standard deviation (σ), along with
the average values of the Ti and vi parameters of our
algorithm. The numerical figures confirm the ability
of the algorithm to adapt to the variability of each
frame arrival process, as practically all frames are
piggybacked without using overly large values for δ.
To confirm that our algorithm also works with real

voice applications, we also evaluated its performance
with Skype. The results, given also in Table 3, show
that practically all frames are also piggybacked in
this case, which confirms that VoIPiggy works with
Skype. This also confirms that Skype does not use
silence suppression, as otherwise many of the uplink

frames would not be piggybacked. In addition, we
also confirmed experimentally that Google Hangouts
does not implement silence suppression either.

6.6 Reliability of VoIPiggy

The design of VoIPiggy aims to achieve reliable de-
livery of voice frames both downlink (provided by
the standard operation) and uplink (provided by
the design of VoIPiggy). To evaluate the reliability
of VoIPiggy, we have run several experiments and
measured the the number of frames that had to be
retransmitted as well as the total number of lost
frames. For all experiments, out off (approx.) 1500
frames, about 50 had to be retransmitted (less than
5%), and no one was lost. We conclude that VoIPiggy
is able to reliably deliver frames in both directions.

7 CONCLUSIONS

In this paper, we have designed, implemented and
evaluated VoIPiggy, a mechanism to improve the effi-
ciency of MAC operation when voice traffic is present
in 802.11 WLANs. In contrast to legacy operation,
which incurs a very large overhead and wastes sub-
stantial time in in contention, VoIPiggy extends the
control frames sent from the stations to the AP with
user data, thus practically halving the time required
to transmit voice frames. In this way, not only the
capacity to support voice traffic in the WLAN is
boosted, but also data traffic benefits from the in-
creased efficiency in the delivery of VoIP.
We have described the small set of modifications

required to implement VoIPiggy, which are supported
by existing COTS devices, and provided an analyt-
ical model to predict its performance, in terms of
capacity region and delay. To assess the performance
improvements of VoIPiggy and validate its modeling,
we have deployed a large-scale testbed consisting of
30 devices. Through extensive performance evalua-
tion we have shown that our mechanism dramati-
cally improves performance—which provides a strong
empirical support for the adoption of VoIPiggy—as
well as we demonstrated the good accuracy of our
analytical model.

REFERENCES

[1] P. Salvador, F. Gringoli, V. Mancuso, P. Serrano, A. Mannocci,
and A. Banchs, “VoIPiggy: Implementation and evaluation of
a mechanism to boost voice capacity in 802.11 WLANs,” in
Proceedings of IEEE INFOCOM’12, March 2012, pp. 2931–2935.

[2] IEEE Standard for Information Technology-Telecommunications and
Information Exchange Between Systems-Local and Metropolitan
Area Networks-Specific Requirements - Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations, IEEE Std. 802.11, 2012.

[3] Part 11: Wireless LANMedium Access Control (MAC) and Physical
Layer (PHY) Specifications - Amendment 8: Medium Access Con-
trol (MAC) Quality of Service Enhancements, IEEE Amendment
802.11e, 2005.

14

[4] A. Banchs, P. Serrano, and L. Vollero, “Reducing the Impact of
Legacy Stations on Voice Traffic in 802.11e EDCA WLANs,”
IEEE Communications Letters, vol. 11, no. 4, April 2007.

[5] S. Garg and M. Kappes, “Can I add a VoIP call?” in Proc. of
IEEE ICC’03, Anchorage, Alaska, USA, May 2003.

[6] ——, “An Experimental Study of Throughput for UDP and
VoIP Traffic in IEEE 802.11b Networks,” in Proceedings of
WCNC, New Orleans, LA, USA, March 2003.

[7] P. Serrano, A. Banchs, J. F. Kukielka, G. D’Agostino, and
S. Murphy, “Configuration of IEEE 802.11e EDCA for Voice
and Data traffic: An Experimental Study,” in Proceedings of
ICT-MobileSummit’08, Stockholm, Sweden, Jun 2008.

[8] G. Hanley, S. Murphy, and L. Murphy, “Adapting WLAN
MAC Parameters to Enhance VoIP Call Capacity,” in Proceed-
ings of MSWiM’05, October 2005, pp. 250–254.

[9] F. Anjum, M. Elaoud, D. Famolari, A. Ghosh, R. Vaidyanathan,
A. Dutta, P. Agrawal, T. Kodama, and Y. Katsube, “Voice
Performance in WLAN Networks – An Experimental Study,”
in Proceedings of GLOBECOM’03, December 2003.

[10] IEEE Standard for Information Technology-Telecommunications and
information exchange between systems-Local and metropolitan area
networks-Specific requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) specifications -
Amendment 5: Enhancements for Higher Throughput, IEEE Std.
802.11n, 2009.

[11] M. Ozdemir, D. Gu, A. McDonald, and J. Zhang, “Enhancing
MAC Performance with a Reverse Direction Protocol for High-
Capacity Wireless LANs,” in Proceedings of Vehicular Technology
Conference, 2006. VTC-2006 IEEE 64th, September 2006.

[12] Hsiang-Ho Lin and Chih-Yu Wang and Hung-Yu Wei, “Im-
proving Online Game Performance over IEEE 802.11n Net-
works,” in Proceedings of NetGames’10, November 2010.

[13] M. Rashid, E. Hossain, and V. Bhargava, “HCCA Scheduler
Design for Guaranteed QoS in IEEE 802.11e Based WLANs,”
in Proceedings of IEEE WCNC’07, 2007, pp. 1538–1543.

[14] H.-J. Lee, J.-H. Kim, and S. Cho, “A Novel Piggyback Selection
Scheme in IEEE 802.11e HCCA,” in Proc. of IEEE ICC’07, 2007.

[15] C. Casetti, C. F. Chiasserini, M. Fiore, and M. Garetto, “Notes
on the Inefficiency of 802.11e HCCA,” in Proceedings of IEEE
VTC’05, 2005.

[16] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and
F. Gringoli, “Wireless MAC Processors: Programming MAC
Protocols on Commodity Hardware,” in Proceedings of IEEE
INFOCOM’12, March 2012, pp. 1269–1277.

[17] Lee, Hyun-Jin and Kim, Jae-Hyun and Cho, Sunghyun, “A
Novel Piggyback Selection Scheme in IEEE 802.11e HCCA,”
in Proc. of IEEE ICC’07. IEEE, 2007, pp. 4529–4534.

[18] Y. Xiao, “IEEE 802.11 Performance Enhancement via Con-
catenation and Piggyback Mechanisms,” IEEE Transactions on
Wireless Communications, vol. 4, no. 5, pp. 2182–2192, 2005.

[19] P. Verkaik, Y. Agarwal, R. Gupta, and A. C. Snoeren, “Softs-
peak: Making VoIP Play Well in Existing 802.11 Deployments,”
in Proceedings of NSDI’09, 2009, pp. 409–422.

[20] S. A. Baset and H. G. Schulzrinne, “An Analysis of the Skype
Peer-to-Peer Internet Telephony Protocol,” in Proceedings of
IEEE INFOCOM’06, April 2006.

[21] Y.-C. Chang, K.-T. Chen, C.-C. Wu, and C.-L. Lei, “Inferring
Speech Activity from Encrypted Skype Traffic,” in Proceedings
of IEEE GLOBECOM’08, 2008.

[22] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adap-
tive Playout Mechanisms for Packetized Audio Applications
in Wide-Area Networks,” in Proceedings of IEEE INFOCOM’94,
June 1994, pp. 680–688.

[23] G. Bianchi, “Performance Analysis of the IEEE 802.11 Dis-
tributed Coordination Function,” IEEE Journal on Selected Areas
in Communications, vol. 18, no. 3, pp. 535–547, March 2000.

[24] P. Serrano, A. Banchs, P. Patras, and A. Azcorra, “Optimal
Configuration of 802.11e EDCA for Real-Time and Data Traf-
fic,” IEEE Transactions on Vehicular Technology, vol. 59, no. 5,
pp. 2511–2528, 2010.

[25] A. Eckberg Jr., “The Single Server Queue with Periodic Arrival
Process and Deterministic Service Times,” IEEE Transactions on
Communications, vol. 27, no. 3, pp. 556–562, Mar 1979.

[26] A. Kashyap, U. Paul, and S. R. Das, “Deconstructing Inter-
ference Relations in WiFi Networks,” in Proceedings of IEEE
SECON’10, June 2010.

[27] B. Han, A. Schulman, F. Gringoli, N. Spring, B. Bhattacharjee,
L. Nava, L. Ji, S. Lee, and R. Miller, “Maranello: Practical
Partial Packet Recovery for 802.11,” in Proceedings of NSDI’10,
March 2010, pp. 205–218.

[28] P. Gallo, F. Gringoli, and I. Tinnirello, “On the Flexibility of
the IEEE 802.11 Technology: Challenges and Directions,” in
Proceedings of the Future Network & Mobile Summit’11, Poland,
June 2011.

Pablo Salvador received his B.Sc. in
telecommunication engineering from Univer-
sidad Carlos III de Madrid (UC3M) in 2010,
and his M.Sc. in telematics engineering from
the same university in 2011. He was awarded
as nationwide finalist of the Telematics Asso-
ciation for his B.Sc. project. Pablo is currently
working on his Ph.D. at the Institute IMDEA
Networks. His work focuses on performance
evaluation of wireless networks.

Vincenzo Mancuso obtained his master
degree in Electronics from University of
Palermo, Italy, in 2001, and a PhD in Elec-
tronics, Computer Science and Telecommu-
nications from the same University in 2005.
He has been visiting scholar at the ECE De-
partment of Rice University, Houston, Texas,
and postdoc in the MAESTRO team at INRIA
Sophia Antipolis, France. Since September
2010, he is with Institute IMDEA Networks.

Pablo Serrano received his degree in
telecommunication engineering and his
Ph.D. from Universidad Carlos III de Madrid
(UC3M) in 2002 and 2006, respectively. He
has been with the Telematics Department
of UC3M since 2002, where he currently
holds the position of associate professor.
He serves on the Editorial Board of IEEE
Communications Letters, and has served
on the TPC of a number of international
conferences.

Francesco Gringoli received his Laurea
degree in Telecommunications Engineering
from the University of Padua (Italy) in 1998
and his Ph.D. degree in Information Engi-
neering from the University of Brescia (Italy)
in 2002. Since 2005 he is Assistant Profes-
sor of Telecommunications at the Dept. of
Information Engineering of the University of
Brescia, Italy. He started the OpenFWWF
Project in 2009.

Albert Banchs received his degree in
telecommunications engineering from the
Polytechnic University of Catalonia in 1997,
and his Ph.D. degree from the same univer-
sity in 2002. He has been with the University
Carlos III of Madrid since 2003. Since 2009,
he also has a double affiliation as Deputy
Director of the institute IMDEA Networks.
He has served on the TPC of a number of
conferences and workshops,and has been
TPC chair for European Wireless 2010, IEEE

HotMESH 2010 and IEEE WoWMoM 2012. He is senior member of
IEEE.

	Introduction
	Related Work
	The VoIPiggy mechanism
	Motivation
	Description
	Required Modifications
	Setting of

	Performance Analysis
	Throughput performance
	Point of operation
	Capacity region
	Delay performance

	Implementation Details
	Firmware Modifications
	Driver Modifications

	Performance Evaluation
	Testbed Description
	Capacity Region
	Delay Performance
	TCP traffic
	Validation of the algorithm to compute
	Reliability of VoIPiggy

	Conclusions
	References
	Biographies
	Pablo Salvador
	Vincenzo Mancuso
	Pablo Serrano
	Francesco Gringoli
	Albert Banchs

