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Abstract—In the past years, researchers have been advocating
for flexible 802.11 devices that dynamically adapt to the varying
network conditions, looking for efficient alternatives to the 802.11
standard MAC. In this work we demonstrate that this flexibility
is readily available at the MAC level, and its operation can
be tuned by re-programming the firmware inside the wireless
chipsets that are built on relatively generic hardware modules. We
show this by implementing the new amendment IEEE 802.11aa in
legacy equipments by simply coding the frame exchange schemes
at the firmware level. Nevertheless, we claim that the lack of
flexibility in the way these modules interact results in a bottleneck
that severely degrades performance. In our work, we prove this
inefficiency of the 802.11 hardware architecture that hinders high
throughput features, as in our case study of 802.11aa reliable
multicast. To solve this problem, we provide new directions for
the revision of the current hardware architecture and propose a
new vision for the future design of wireless chipsets.

Keywords-Standard; 802.11; WLAN; 802.11aa; Multicast; Im-
plementation; NIC; Commodity hardware

I. INTRODUCTION

According to recent works [1]–[4], the monolithic model for
network interfaces successfully adopted in the wired domain
(i.e., the one-standard-many-manufacturers paradigm), will not
fulfill the future requirements of the unlicensed wireless uni-
verse. Spectrum resources are, in fact, finite, and accommodat-
ing in the same set of frequencies many wireless technologies,
each with its own channel access algorithm, and new devices
running increasingly bandwidth-hungry applications, results a
very tough task. While in the wired case the current switching
technology supports almost infinite-bandwidth and sharply-
isolated communication channels, this is not the case in the
wireless domain: indeed, the operating conditions of current
wireless networks (like the number of overlapping data-link
segments, or the presence of competing technologies) cannot
be predicted by any standard. For these reasons, researchers are
advocating for a greater degree of flexibility in the architecture
of wireless interfaces.

In the last decade, however, manufacturers kept following
the historical design model, releasing new Wi-Fi1 radio fea-
tures as they were amended, or only drafted.2 No attempts have

1Note that we use the terms Wi-Fi and IEEE 802.11 interchangeably.
2As in the case of 802.11 HT-PHY, many pre-N wireless chipsets were

shipped with laptops that we still use today, like the Atheros AR9285 or
AR5B93 and the Broadcom 43224 and 43225.

been made to introduce chipset openness or flexibility, apart
from tuning standard-specified parameters, e.g., the values
of the Contention Windows (CW).3 On the contrary, the
few attempts to improve the MAC resulted in incompatible
features, like e.g. the Atheros Turbo mode.

Given the above, claiming that Wi-Fi Network Interface
Cards (NICs) are already somehow flexible could result shock-
ing. Nonetheless, as Wi-Fi NICs have to support the relatively
complex operations required by the CSMA/CA channel access,
they tend to embed more flexible and reconfigurable logic
than their wired counterparts, which focus on increasing the
dequeuing speed by removing communication bottlenecks with
the main host [5], [6]. In fact, the prevalent channel access of
802.11 (the Distributed Coordination Function (DCF)) or its
variants are run in the firmware of these chipsets, to support
actions like: managing each frame type in a specific way,
adjusting the data-rate on the fly or handling virtual internal
collisions. However, no details on this flexibility have been
reported: firmwares are closed-source, and the few research
groups that have used non-standard functionality are typically
provided with custom vendors’ firmwares [7], [8], which
illustrates how manufactures do not disclose this information.

To the best of our knowledge, the sole exception to the
above “secrecy” is the academic OpenFWWF project,4 which
released the first open-source firmware compatible with a few
ERP-OFDM-PHY NICs from Broadcom. The firmware can
be used to implement, e.g., MAC enhancements [9], [10] or
reactive jamming [11], demonstrating the actual NIC flexibil-
ity. Recently, we added to the firmware a set of mechanisms
from the novel 802.11aa amendment [12], which enhances the
robustness of multimedia traffic by means of different MAC
solutions. Our implementation further illustrates the ability of
existing NICs to support types of frame exchanges introduced
by new standard documents. Consequently, in this work we
show that the true limitation for deploying (these) new features
in existing NICs is not the lack of flexibility at the layer
two, but a bottleneck imposed by the Direct Memory Access
(DMA) subsystem when transferring frames from the host
CPU to the NIC.

3See Intel: http://www.intel.com/support/wireless/wlan/sb/CS-034398.htm;
and Atheros: http://wireless.kernel.org/en/users/Drivers/Atheros.

4http://www.ing.unibs.it/openfwwf/



More specifically, differently from previous works [1], [2],
[13], [14], in this paper we show that having a large flexibility
at layer two is a necessary but not sufficient condition to
make a NIC ready for future protocol implementations. We
claim that the entire chain between the main host running
the Operating System (OS) and the NIC must be redesigned,
to support not only “channel access algorithms” but also
complex “data elaboration algorithms” including, among oth-
ers, policing outgoing frames, forwarding received frames
(independently of the host kernel) and so on.

The rest of the paper is organized as follows. We first
provide a Related Work section on how the 802.11 world has
approached flexibility so far. Then, we give in Section III an
overview of the main MAC changes introduced by subsequent
802.11 amendments focusing on the time constraints. We show
how current chipsets support the evolved mechanisms without
major alterations at the MAC CPU level (although we focus on
a specific Broadcom chipset, most of our conclusions apply
to other manufacturers – Atheros, Intel or Ralink – as they
share the same architecture). We then describe in Section IV
the implementation of the set of MAC mechanisms recently
standardized in 802.11aa amendment known as Group Ad-
dressed Transmission Services (GATS) [15]. Building upon the
knowledge from this implementation, we give some insights
on the lessons learned and identify the main factors that limit
the performance of current platforms (Section V). Leveraging
on these results, we propose and discuss in Section VI an
evolved architectural paradigm that allows for a higher degree
of flexibility and enhance the performance of the standards
that will likely come. Finally, Section VII closes the paper
with some final remarks.

II. RELATED WORK

The seminal work of [16] was among the first to underline
how commercial NICs could be turned into flexible research
platforms, by replacing the stock firmware with a different
one offering custom transmission/reception paths. However,
even if this work revealed the flexibility of the PRISM 11b
chipset at the MAC layer with its MAC CPU, it did not
disclose how to modify the firmware, which remained closed-
source. Since then, and with the end of the PRISM project,5

many works selected Atheros-based NICs as the next research
platform of choice, thanks to the active collaboration of the
manufacturer, excellent open-source drivers (e.g.: Mad-Wifi)
and a lot of documentation. Apart from works targeting spe-
cific features, [17] and [18] provided software frameworks for
the easy customization of some functionalities of the Atheros
AR5212 chipset, such as disabling packet acknowledgment,
fast channel switching and modifying the number of retries
for failed frames.

None of the above supported ad-hoc frame exchanges with
the required timing, e.g., receiving a frame and forging the
corresponding reply within a few microseconds. Because of

5The maintenance of the PRISM project ended up in 2007.

this, a number of projects designed 802.11-compliant im-
plementations from scratch, many of them building around
an FPGA: e.g., SMiLE [19], used to test novel localization
schemes; or Sora [13] and WARP [20], the former being a very
powerful Software Defined Radio (SDR) device that connects
to the computer that handles frame-symbol transformation
through a mini-PCI interface, and the latter being a standalone
device that executes upper and lower MAC functions in two
different soft-cores. A platform really similar to a real Wi-Fi
NIC, i.e., with a MAC CPU synthesised on a FPGA executing
the MAC firmware and a mini-PCI interface for connecting
to the main host, was introduced in [21]: unfortunately, the
project did not evolve further from the 802.11b stage.

Differently than all previous approaches, the architecture
proposed in the European project FLAVIA6 decoupled the
logic that drives an access protocol from the hardware imple-
mentation. Authors demonstrated this vision with the Wireless
MAC Processor on top of inexpensive consumer NICs from
Broadcom, showing the possibility to re-program the MAC
behaviour in real-time with a graphical oriented programming
language [3], [14].

To the best of our knowledge, no previous work has iden-
tified the need to bring flexibility also at the frame interface
between the host and the wireless NIC. This could look rather
surprising, given that this sort of flexibility was introduced in
the last few years to enable a faster bottleneck-free communi-
cation between the host and some wired interfaces like with
the Receive-Side Scaling technique used by Intel on 10Gb
Ethernet NIC [5], [6].

III. THE OPERATION OF EXISTING 802.11 PLATFORMS

Here we describe how despite the MAC enhancements in-
troduced by subsequent 802.11 amendments, the operation of
802.11 has not radically changed over the years. We conjecture
one of the key reasons for this is backwards compatibility,
to ensure that legacy and novel devices can coexist in the
same WLAN. But with the introduction of the recent 802.11aa
standard the situation is notably different, which challenges the
use of existing 802.11 architectures as we detail in Section IV.

A. The evolution of the 802.11 MAC over the amendments

The widely used (and now, legacy) DCF involves a
CSMA/CA access scheme that retransmits MAC Protocol Data
Units (MPDUs) through a stop-and-wait mechanism. More
specifically,7 when an MPDU is ready for transmission, the
hardware sets a Backoff Counter (BC) to a uniformly dis-
tributed value limited by the Contention Window to CW − 1.
Then, it waits for the channel to be idle for a Distributed Inter
Frame Space time (DIFS), to start decrementing the BC
at every time slot, eventually transmitting the MPDU when
BC reaches zero. If the destination successfully acknowledges
the MPDU by sending an ACK frame after a Short IFS

6FP7 ICT FLAVIA project,“FLexible Architecture for Virtualizable future
wireless Internet Access” http://www.ict-flavia.eu

7For space reasons and to improve readability we omit some particularities
of the operation of the MAC protocol
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Fig. 1: Comparison of legacy and GCR Block ACK multicast transmission in an 802.11aa WLAN.

(SIFS), then the CW is reset to the minimum CWmin,
otherwise it is doubled (until a maximum CWmax is reached).
Interoperability between NICs from different vendors requires
full respect of time constants such as DIFS, SIFS and slot time
durations, which depend on the particular PHY specification.

The 802.11e amendment introduces more complexity with
the Enhanced Distributed Channel Access (EDCA) mecha-
nism. EDCA provides concurrent channel access via four in-
dependent queues of different access priorities, each one with
a specific BC and transmission parameters DIFS, CWmin

and CWmax, which can be considered as four instantiations of
the DCF procedure. In addition, 802.11e introduces the Trans-
mission Opportunity (TXOP ) parameter (also per-queue),
which supports that two stations can exchange a number
of Data-ACK pairs with just a SIFS time between each
frame, for up to TXOP units of time. Along the same lines,
the amendment also introduces an optional unicast channel
access policy, namely, the Block Acknowledgment (BA) for
reducing the channel access time overheads. With BA, instead
of continuous Data-ACK exchanges, a transmitter sends a burst
of data frames, separated by a SIFS interval, addressed to the
same destination. Then, the transmitter polls the receiver with
a BA Request (BAREQ) to trigger the transmission of the BA
Reply (BAREP) frame, which contains the indication of the
success/failure frames embedded into a bitmap. The 802.11n
amendment does not only make this functionality mandatory
for High Throughput NICs (HT-PHY), but it also introduces
the HT-ACK feature for the acknowledgment of Aggregated
MPDU (A-MPDU):8 the destination, upon receiving the A-
MPDU, may transmit the BA right after a SIFS, and no
BAREQ is required from the sender.

Finally, the recent 802.11aa amendment presents some fresh
novelties to the multicast delivery service, which has not
undergone any change since its very first definition in 1997.
A novel set of mechanisms, called Group Addressed Trans-
mission Service (GATS), provides different trade-offs between
reliability and complexity for video streaming [22], building
on legacy access primitives. We overview GATS in the next
subsection and describe current hardware implementations in
Section III-C.

B. The 802.11aa Group Addressed Transmission Service

A key novelty of 802.11aa is the specification of the Group
Addressed Transmission Service (GATS). With the default
multicast scheme, which we illustrate in Fig. 1a (legacy), video

8This mechanism enables the transmission of many MPDUs with a single
physical layer preamble and without spacing in-between
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Fig. 2: NIC high level architecture: transmission path.

frames are transmitted only once, using a rate from the Basic
Rate Set (BRS)9, and never acknowledged. Because rates from
the BRS are normally low, the performance anomaly [23]
reduces the overall throughput of the whole WLAN, while
the lack of feedback harms reliability. With GATS, frames are
addressed to a group of stations listening to the same (non-
multicast) address, namely, the groupcast concealment address,
using one of the following mechanisms: (i) Directed Multicast
(DMS); (ii) GroupCast with Retries (GCR) Unsolicited Retry
(UR), and (iii) GCR Block Acknowledgment (BA). We focus
on the latter, as the first two mechanisms do not expose the
problem we address in this paper. Interested reader is referred
to [12] for further details.

BA mechanism extends the standard Block Acknowledg-
ment operation to support multiple destinations. The access
point (AP) sends up to GCR-buffer-size consecutive frames in
a burst, and then polls each intended destination subscribed
to the groupcast address to receive their acknowledgments.
Based on the feedback, the transmitter drops the frames
successfully received by all stations, and retransmits the others.
The operation of BA is illustrated in Fig. 1b.

C. Current hardware designs

Wi-Fi NICs are typically based on the hardware architecture
depicted in Fig. 2, which details the transmission path (the
process on the reception path is basically the reciprocal case).
In contrast to old-styled Programmed Input/Output (PIO) de-
signs, modern approaches use Direct Memory Access (DMA)
for transferring data between the memory of the main host
running the OS and the NIC circuitry. A kernel thread first
writes frames into a consecutive set of memory pages, which

9BRS for 802.11g = 6, 12 and 24 (Mb/s)



are arranged in a circular ring of DMA slots, postponing
the operation if there are no free slots; then it programs the
DMA controller on the NIC to start retrieving and transmitting
frames.

On the NIC side, the MAC CPU focuses on re/transmission
operations, with the host communication being offloaded by
the DMA subsystem that caches the first few frames from
every queue in the NIC internal memory. When the BC of a
queue reaches zero, the MAC CPU schedules the transmission
of the Head-of-Line frame and when the frame is acknowl-
edged or exceeds the maximum retransmission attempts, the
MAC CPU reports a frame done to the kernel via an inter-
ruption request (IRQ). Then, the corresponding DMA micro-
controller (DMA µC) starts fetching the next frame, and the
kernel reclaims the DMA slot in the ring for the new frames
that may arrive from upper layers.

Two are the main benefits of this DMA-based approach:
(i) there are always frames available to the NIC, unlike the
PIO case; and (ii) the main host CPU is relieved while the NIC
transmits frames. Both the host CPU and the NIC CPU focus
on their very specific tasks and frames can be transmitted at
the maximum throughput allowed by the standard timings.

In nuce, this scheme emulates a simple FIFO queue for
pushing frames to the NIC, and therefore it results adequate
as long as there is a strict order in handling the frames: when
the Head-of-Line (HOL) frame is served the NIC may access
a new one.10 However, for the case of Block Acknowledgment
the operation is slightly different: not all the frames in a
burst or an A-MPDU need to be retransmitted, as they might
experience different channel conditions. Unfortunately, once
the burst is handled, none of the frames are available at the
NIC for retransmission, thereby this calls for the collaboration
of the host kernel. After processing the BAREP, the kernel re-
sends to the NIC the requested frames, possibly interleaved
with new ones.11 However, for 802.11aa this will slow down
the video streaming rate or mix old frames, likely to have
expired, with new ones. We describe in the following how
we overcome this issue in our 802.11aa implementation,
underlining how this version of BA (in contrast to the 802.11n)
is hard to deploy with the current DMA-based operation.

IV. IMPLEMENTING BLOCK ACKNOWLEDGEMENTS OVER
CURRENT ARCHITECTURES

Here we provide a very short description of our implemen-
tation of the GCR BA over a commercial off-the-shelf (COTS)
platform [12]. We develop our implementation over Alix 2d2
boxes, which are equipped with a 500 MHz x86-like CPU that
is able to process more frames per second than the maximum
rate supported by the standard (54 Mb/s), and an 802.11 b/g
card based on the Broadcom chipset BCM94318MPG. We
install Linux on the machines, and perform our modifications

10For the case of the multiple queues supported in EDCA, it can be extended
with multiple DMA controllers, each programmed to present different memory
blocks to the NIC.

11Note that this operation holds for current 802.11n chipsets, e.g., Broad-
com 43224 and 43225 ones.
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Fig. 3: Basic Operation of GCR BA from the transmitter side.

over the default b43 driver (and mac80211 stack) and the
OpenFWWF firmware installed in these wireless chipsets.

A. Implementing GCR BA

The GCR BA mechanism requires to send burst of M
frames, collect and keep delivery information, and retransmit
the required frames. To this end, the transmitter kernel waits
for M frames from upper layers or a timeout expires. Then it
initiates the DMA operation: as the NIC memory (16-KByte
size) is not big enough to store a burst of arbitrary length for
retransmitting lost frames, we use the four additional DMA
queues available in the NIC for feeding it with copies of the
same burst for handling retransmission.

At the end of each burst, the firmware forges the transmis-
sion of the BAREQ. The AP polls each station of the groupcast
in a round-robin fashion: if no BAREP is received within a
timeout the AP retransmits the BAREQ, up to seven times. The
firmware then flushes the frames received by all destinations
from the queues, and retransmit the other frames. When all the
GCR frames of a burst are correctly received, or their lifetime
expires, the firmware flushes all the queues and start over.
In this way, the operations of GCR BA from the transmitter
side for each burst can be decomposed in the three phases
illustrated in Fig. 3: removing unused frames of the previous
burst from the retransmission queues; transmitting the burst of
M frames; sending and processing the BAREQ and BAREP
pairs; selectively retransmitting lost frame by flushing those
already received. The last two operations may be repeated
multiple times.

At the receiver side, it is required that all stations in the
groupcast transmit the BAREP upon the reception of the
BAREQ. Each receiver stores the sequence number of the first
frame in the burst and maps correctly received frames into a
bitmap. This information is then copied into the BAREP. The
management of duplicated received frames is performed by
the mac80211 kernel module.12

B. Performance impairments

As said above, the detailed validation and assessment of
our implementation is available in our previous work [12].
Here our interest is to quantify how efficient is our implemen-
tation, i.e., the difference between experimental results and
the maximum achievable performance. To this aim, we use a
backlogged desktop machine as AP and measure the maximum

12Our implementation, as well as a detailed technical report, are available
at http://www.ing.unibs.it/∼openfwwf/GATS.php.



TABLE I: Efficiency of the implementation.

M
Theoretical Experimental

η
Ri (Mb/s) Re (Mb/s)

8 30.81 24.25 78.7%
16 36.31 27.08 74.6%
32 39.86 28.61 71.8%

achievable bandwidth using GCR BA, with a packet length
of L = 1400 B, to a group of 10 stations. Given that the
2.4 GHz band is quite populated in our testbed, we perform
experiments during night on channel 14 where activity from
external sources is negligible: for this reason links are very
good and even if we fix data-rate to 54 Mb/s, with power set
to 20 dBm we have practically no losses.

We define the efficiency as η = Re/Ri, with Re being the
experimental throughput (average of five 30-s experiments),
and Ri the maximum theoretical one. This is computed as:

Ri =
M × L

TGCR BA Exchange
(1)

where M is the size of the burst, L is the payload in bytes and
TGCR BA Exchange is the total time for the exchange illustrated
in Fig. 3, assuming that the time to flush the queues and fetch
new data is zero. We report the obtained values of Re, Ri and
η in Table I, for different values of the burst length M (the
higher the M the larger the throughput, as the relative amount
of time spent in the BAREQ-BAREP pairs is smaller).

According to the results, it is clear that there is a notable
efficiency loss, with all η values being below 80%. Further-
more, the higher the M the lower the η, which suggests that
the reason for this performance impairment is that the chipset
is not very efficient when handling long batches of frames. To
understand this, we modify the firmware to produce verbose
log files, identifying that the flushing and fetching operations
take relatively long periods of time. The reason for this is
that these operations require the DMA system to operate with
frames, which does not result very efficient in a number of
circumstances, as we analyze next.

V. ANATOMY OF THE BOTTLENECK

To understand if the DMA operations are the main reason
for the identified inefficiency, we set up the same scenario as
in the previous experiments. However, in this case we tweaked
the firmware in the AP to assume that all BAREPs report a
successful reception of frames, which corresponds to the most
demanding case in terms of DMA operations. Indeed, under
this assumption, after the reception of the last BAREP the AP
has to empty all the retransmission queues and prepare for the
next transmission burst, while in case some of the BAREP
reported unsuccessful reception, the AP has to periodically
switch between retransmission and flushing.

We also tweaked the firmware to measure the time tf when
the first flush operation is made (right after the arrival of the
last BAREP), and the time tb when the first frame of the next
burst is available. These times are measured inside the NIC,
thus avoiding the latency that appears when measuring inside
the kernel due to the communication bus. We perform the
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Fig. 4: Ideal and experimental throughput (MCS = 54 Mb/s)
of 802.11aa GCR BA for different burst sizes and different
packet lengths.

experiment for three different burst sizes, M = {8, 16, 32},
and packet lengths ranging from 100 B to 1400 B in steps of
100 B. For each of these configurations, we perform five 30 s
experiments, collecting approximately 37500 time delays (i.e.,
tb− tf ). Then, in order to take into account the time required
by flushing and fetching operations, we compute Ri adding
the median of the time delays13 to the denominator of (1). We
reported the obtained values in Fig. 4 as “Experimental”, while
the values without this extra time are labeled as “Theoretical”.

According to the results, it is evident that the flushing and
fetching of new data leads to substantial performance impair-
ments, which become more drastic with larger values of M or
L. Also, we note that the values for L = 1400 B correspond
to the ones reported in Table I, which validates to some extent
our implementation of GCR BA, as the performance drop (for
this value of L) can be attributed exclusively to the DMA
operations, thus excluding any implementation issue.

We next analyzed in more detail the impact of M and L on
the time to perform the flush and fetch operations. To this aim,
we wrote an ad-hoc firmware that basically switches between
two states: a waiting state, in which it does nothing while the
application in user-space fills the DMA queue, and a flushing
state, in which it records a timestamp, flushes the first M
packets from the queue, and records another timestamp, so the
difference between timestamps corresponds to the “flushing
time”. We plot the resulting flushing times for representative
values of M and L in Fig. 5.

The figure illustrates that flushing times do not depend on
the packet length until a certain threshold value Lth, and
then grow linearly with L. This threshold depends on the
burst size: the higher the M , the lower the Lth. Taking into
account that each packet piggybacks a firmware header of

13We use the median of the collected samples as this removes “spurious”
values due to clock wrap arounds.
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110 B, for all M cases with M × (Lth + 110) ≈ 3072 B, we
have that the flushing times are constant (and very similar)
for those configurations in which the packet bursts fits in
the internal memory of the NIC. Actually, according to our
measurements when L < Lth the flushing time amounts to
a couple of us per packet, which is approximately the time
required to execute the drop loop code. When L > Lth, new
packets must be fetched from the main system memory, thus
resulting in a linear growth of the flushing time with the
quantity of transferred data. Given that the transfer rate we
measured under these conditions (i.e., 44 Mb/s) is well below
the theoretical capabilities advertised for mini-PCI devices
(266 Mb/s), we conclude that the slow transfer rate not
only depends on the overhead of the PCI signaling, but also
on the DMA interface of the NIC which is not optimized.
Still, it should be noted that the measured transfer rate of
44 Mb/s is well above the maximum achievable throughput
with 802.11a/g, which is around 30 Mb/s.

VI. EVOLVED ARCHITECTURE FOR 802.11 PLATFORMS

Based on our experience reported in Section V, we argue
that apart from improving the mechanisms for transferring data
between the NIC and the host system, the development of
future wireless NICs should be (even more) inspired by current
computer architectures. In this approach, software developers
write both user programs and the OS, which interfaces to
the hardware through a set of specific drivers released by
manufacturers. This maps into NIC internals to an architecture
where MAC algorithms are developed by protocol imple-
menters using APIs created by manufacturers for accessing
the NIC hardware. We next describe in detail our technical
vision and its advantages.

A. Technical description

We present in Fig. 6 the evolved NIC architecture, thereby
we build on Figure 2, and focus again on the transmission
path. First, we introduce a Real Time OS executed by the NIC
CPU that isolates the MAC threads from the mechanisms that
exchange data with the host, and from the low level transmis-
sion primitives implemented by proprietary PHY drivers.
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Fig. 6: Visionary architectures for 802.11 NICs.

At the radio, we still discard the SDR approach even if
ultimate choice for targeting PHY flexibility: it either requires
a really powerful internal CPU14 or fails to provide decent
MAC support if the host CPU is involved because of latencies.
Also the FPGA solution is unfeasible: apart from energy
issues, OFDM compliant PHY requires a “fat” FPGA with
too many gates which makes it too expensive for consumer
electronics. For these reasons passband-PHY circuitry should
still be wired to inexpensive and energy efficient designs. This
limits the flexibility of the radio, but manufacturers could
easily strive PHYs to avoid strictly fixed MCS: e.g., they
can allow reconfiguration of number of OFDM sub-carriers,
ratio of the convolutional en/decoder for bit error protection,
mapping between user-bits and symbols, and other parameters
like the frequency and transmission power.

With regards to the MAC CPU, given that passband oper-
ations are offloaded by the hardwired PHY and considering
the long MAC timings, even a slow clock of 44 MHz like
in current chipsets15 is enough to schedule frame transmission
within sub-microsecond granularity. To this end the integration
of an energy efficient ARM architecture, currently spreading
as co-processors for many tasks (e.g., H.264 encoders), could
be even more convenient than acquiring a third party design.

As for the communication mechanism between the host and
the NIC, which we demonstrated in Section IV to be the
real bottleneck for the new GCR BA procedure, and showed
to be the major concern for the actual implementation of
many recent proposals, we propose three solutions. The first
two build on improvements of the DMA system: here the
main problem is the looping over a ring of slots using a
producer/consumer paradigm, with the MAC CPU allowed to
only release a slot after usage.

The MAC program could instead report to the host that the
slot is either released or kept: only in the first case, the slot
will be replaced with a new frame. Then, the MAC program
loops again over kept frames, directly programming the DMA
controller for locating specific slots (Fig. 6 left). A second
solution is to enable complete memory sharing between host
and MAC CPU, as in inexpensive video chipsets, by means of
a data structure (double linked list). The first list, populated

14With USRP and GnuRadio, decoding 11g frames at highest MCS pushes
full load on a modern x86 CPU

15Atheros chipsets are clocked at 44 MHz, Broadcom at 88 MHz



by the host with new frames, is drained by the MAC CPU that
moves released frames into the second list, and the host CPU
will recycle these frames (Fig. 6 right). This option requires
simpler mechanisms at both host and NIC CPUs for atomic
read and assignment, which are already present on inexpensive
ARM architectures. These two solutions permit manufacturers
to keep low NIC memory and costs. A third solution, not
reported in the figure for simplicity, consists of increasing the
internal memory, so that the DMA system is only used for
copying frames for later internal use by the NIC.

B. Advantages
Similarly to what happened in the computer world, aban-

doning the monolithic approach in favor of our more struc-
tured proposal, which integrates the operation of components
provided by different players, would lead to a number of
advantages. First, hardware manufacturers can focus on what
really differentiates NICs, i.e.: the enhancement of key radio
components, such as, the front-end to recover the clock and
decode signals in noisy environments; the design of energy-
efficient techniques, and the introduction of new mechanisms
for de/encoding spatially multiplexed signal streams. Second,
protocol implementers shall not have to deal with hardware
specific details, hidden by primitives for transmitting and re-
ceiving frames, scheduling timers or configuring PHY specific
parameters. Instead, they could focus on the actual protocol
implementation, that would benefit from continuous software
upgrades lined up with the latest version of a standard.
Third, developers of the Real time OS specialize in improving
algorithms for the allocation of the NIC internal resources
to either MAC programs or driver threads; or on enhancing
data communication mechanisms with the host by tuning the
management of the shared memory. Fourth, developers of the
Host OS do not have to implement different drivers, as they
would solely interface with a generic device, leading to easier
porting of the NIC itself to many OS. Finally, consumers
will benefit from a better network experience, with resource-
efficient devices that are constantly updated with new OS and
protocol releases.

VII. CONCLUSIONS

In this paper, we have illustrated that existing 802.11
interfaces are based on generic hardware architectures, which
are flexible enough to implement new mechanisms intro-
duced by recent standards, but present certain bottlenecks that
preclude an efficient operation. Building on our experiences
from implementing the 802.11aa GATS mechanisms, we have
proposed an evolved hardware architecture for these interfaces,
inspired by the evolution of computer architectures, which
would support timely updates of the platforms while providing
the adequate motivations for all involved players. As a future
work we aim to implement these proposals as a proof-of-
concept in the WARP platform.
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