
ar
X

iv
:1

70
6.

08
31

2v
2

 [
cs

.N
I]

 3
0

Ju
n

20
17

µNap: Practical micro-sleeps for 802.11 WLANs

Arturo Azcorraa,b, Iñaki Ucara,∗, Francesco Gringolic, Albert Banchsa,b, Pablo Serranoa

aUniversidad Carlos III de Madrid, 28911 Leganés, Spain
bIMDEA Networks Institute, 28918 Leganés, Spain

cUniversità degli Studi di Brescia, 25123 Brescia, Italy

Abstract

In this paper, we revisit the idea of putting interfaces to sleep during packet overhearing (i.e., when there are ongoing
transmissions addressed to other stations) from a practical standpoint. To this aim, we perform a robust experimental
characterisation of the timing and consumption behaviour of a commercial 802.11 card. We design µNap, a local
standard-compliant energy-saving mechanism that leverages micro-sleep opportunities inherent to the CSMA operation
of 802.11 WLANs. This mechanism is backwards compatible and incrementally deployable, and takes into account the
timing limitations of existing hardware, as well as practical CSMA-related issues (e.g., capture effect). According to
the performance assessment carried out through trace-based simulation, the use of our scheme would result in a 57%
reduction in the time spent in overhearing, thus leading to an energy saving of 15.8% of the activity time.

Keywords: energy efficiency, energy measurement, CSMA wireless networks

1. Introduction

IEEE 802.11 is the standard de facto for broadband
Internet access. The recent 802.11ac amendment opens
up new opportunities by bringing Gigabit to wireless local
area networks (WLANs). Since the seminal work [1], en-
ergy efficiency stands as a major issue due to the intrinsic
CSMA mechanism, which forces the network card to stay
active performing idle listening.

The 802.11 standard developers are fully aware of the
energy issues that WiFi poses on battery-powered devices
and have designed mechanisms to reduce energy consump-
tion. One of such mechanisms is the Power Save (PS)
mode, which is widely deployed among commercial wire-
less cards, although unevenly supported in software drivers.
With this mechanism, a station (STA) may enter a doze
state during long periods of time, subject to prior notifi-
cation, if it has nothing to transmit. Meanwhile, packets
addressed to this dozing STA are buffered and signalled in
the Traffic Indication Map (TIM) attached to each beacon
frame.

The PS mechanism dramatically reduces the power
consumption of a wireless card. However, the counter-
part is that, since the card is put to sleep for hundreds of
milliseconds, the user experiences a serious performance
degradation because of the delays incurred. The automatic

✩ c©2017. This manuscript version is made available under the
CC-BY-NC-ND 4.0 license. DOI: 10.1016/j.comcom.2017.06.008

∗Corresponding author
Email addresses: azcorra@it.uc3m.es (Arturo Azcorra),

inaki.ucar@uc3m.es (Iñaki Ucar), francesco.gringoli@unibs.it
(Francesco Gringoli), banchs@it.uc3m.es (Albert Banchs),
pablo@it.uc3m.es (Pablo Serrano)

power save delivery (APSD) introduced by the 802.11e
amendment ([2] gives a nice overview) is based on this
mechanism, and aims to improve the downlink delivery by
taking advantage of QoS mechanisms, but has not been
widely adopted.

More recently, the 802.11ac amendment improves the
PS capabilities with the VHT TXOP power save mecha-
nism. Basically, an 11ac STA can doze during a TXOP
(transmission opportunity) in which it is not involved.
This capability is announced within the new VHT (Very
High Throughput) framing format, so that the AP knows
that it cannot send traffic to those STAs until the TXOP’s
natural end, even if it is interrupted earlier. Still, the po-
tential dozing is in the range of milliseconds and may lead
to channel underuse if these TXOPs are not fully exploited.

Considering shorter timescales, packet overhearing (i.e.,
listening to the wireless while there is an ongoing trans-
mission addressed to other station) has been identified as
a potential source of energy wastage [3]. Despite this, we
have performed an extensive measurement campaign and
have not found any attempt from manufacturers1 to im-
plement solutions to lessen its impact.

In this work, we revisit this idea of packet overhearing
as a trigger for sleep opportunities, and we take it one
step further to the range of microseconds. To this end,
we experimentally explore the timing limitations of 802.11
cards and, building on this knowledge, we design µNap,

1Using our setup described in Section 3, we have tested cards
from different manufacturers with the latest available firmwares
and drivers: Broadcom BCM43224, Realtek RTL8191SEvB, Atheros
AR9280, Intel Wireless-AC 7260 and Qualcomm Atheros QCA9880,
which is a very recent state-of-the-art 11ac card.

Preprint submitted to Computer Communications July 3, 2017

http://arxiv.org/abs/1706.08312v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://doi.org/10.1016/j.comcom.2017.06.008

a local standard-compliant energy-saving mechanism for
802.11 WLANs. With µNap, a STA is capable of saving
energy during packet overhearing autonomously, with full
independence from the 802.11 capabilities supported or
other power saving mechanisms in use, which makes it
backwards compatible and incrementally deployable.

In summary, the main contributions of this paper are
the following:

• A robust experimental characterisation of the timing
and consumption behaviour of a COTS (commercial
off-the-shelf) wireless card.

• Design of µNap, a local standard-compliant energy-
saving mechanism that takes into account these tim-
ing limitations, as well as practical CSMA-related
issues (e.g., capture effect, hidden nodes) not con-
sidered in prior work.

• Performance evaluation of µNap based on our mea-
surements and real wireless traces, and performance
degradation analysis due to channel errors.

• Discussion of the impact and applicability of our
mechanism. We draw attention to the need for stan-
dardising the hardware capabilities in terms of en-
ergy in 802.11.

The remainder of this paper is organised as follows.
Section 2 reviews related work. Section 3 experimentally
explores the timing limitations of 802.11 COTS devices.
Section 4 analyses micro-sleep opportunities in CSMA as
well as several practical issues of 802.11 networks, and pro-
poses µNap. Section 5 presents the performance evalua-
tion and Section 6 summarises the conclusions of this pa-
per.

2. Related work

It has been empirically proved that, in any network,
the so-called power-law distribution, also known as Pareto
distribution, holds for the traffic generated by its nodes.
In other words, typically a few heavy hitters-generate most
of the traffic while the majority of the nodes are only re-
sponsible for a small fraction, and this is true regardless of
the network load. This means that the majority of nodes
within any WLAN would spend most of the time in idle
state.

There are two main strategies to save energy in this
idle time: the first one targets idle listening (the wire-
less channel is empty), and the second one targets packet
overhearing (there are other nodes communicating). To
support these savings, COTS devices have two main op-
erational states as a function of the reference clock used:
the active state and the sleep state. The more a card stays
in sleep state, the less power it consumes.

Since its conception, 802.11 has attempted to minimise
idle listening with the introduction of the PS mode, and

some previous work followed this path. For instance, Liu
and Zhong [13] proposed µPM to exploit short idle inter-
vals (<100 ms) without buffering or cooperation. µPM
predicts the arrival time of the next frame and puts the
interface in PS mode while no arrivals are expected. This
mechanism demonstrated poor granularity (tens of ms) on
existing hardware and leads to performance degradation
due to frame loss. Therefore, it is only suitable for low-
traffic scenarios.

Others propose a PS-like operation. Jang et al. [14]
described Snooze, an access point (AP)-directed micro-
sleep scheduling and antenna configuration management
method for 11n WLANs. As a consequence of its cen-
tralised design, the granularity of the so-called micro-sleeps
in this approach is poor (few milliseconds), which poses
doubts on its performance under heavy loads.

Zhang and Shin [4] addressed the issue from a differ-
ent standpoint with their Energy-Minimizing Idle Listen-
ing (E-MiLi). E-MiLi adaptively downclocks the card dur-
ing idle periods, and reverts to full rate when an incom-
ing frame is detected. To achieve this purpose, they need
to change the physical layer (PHY) all the way down to
enable downclocked detection, which severely limits the
potential gains. For instance, the E-MiLi downclocking
factor of 16 would yield a high power consumption in a
modern card compared to its sleep state (see Appendix
A.2).

On the other hand, all indicators show that we should
expect an exponential grow in the number of wireless de-
vices connected. Thus, there is a rough consensus about
that densification will become one of the main aspects of
next-generation wireless networks, which brings us back
to the problem of packet overhearing. In this way, the
recent 11ac amendment adds the ability to save energy
during TXOPs, but this mechanism is restricted to QoS
traffic, and the potential sleeps are coarse, in the range
of milliseconds. Any sub-millisecond approach must take
into account the timing parameters of the hardware. In
fact, some early studies realise the importance of this is-
sue when WiFi technology began to take off commercially
[15, 16, 17].

Baiamonte and Chiasserini [18] were the first to chase
fine-grained micro-sleep opportunities during packet over-
hearing. They define the Energy-efficient Distributed Ac-
cess (EDA) scheme, which uses the 802.11 virtual carrier-
sensing mechanism for power-saving purposes. Basically,
a STA dozes when the Network Allocation Vector (NAV)
or the backoff counter are non-zero. Unfortunately, this
work lacks an empirical characterisation of the timing con-
straints needed to design a practical mechanism. More-
over, dozing during the backoff window is not 802.11-fair:
in 802.11, STAs must sense the channel every single time
slot during the contention period and, if another STA
seizes the channel first, the backoff timer must be stopped
in order to receive the incoming frame and set the NAV to
the proper value. The EDA scheme allows STAs to doze
during the contention period and, therefore, breaks the

2

P_idle

P_sleep

Power

Time

t_o t_on

Δt_o Δt_on Δt_ready

normal

operation

Δt_sleep

Figure 1: Generic sleep breakdown.

CSMA operation.
Balaji et al. [19] revisited the problem of packet over-

hearing with a scheme called Sleep during Neighbor-Addressed
Frame (SNAF). With SNAF, a wireless card checks the
destination MAC address and switches to sleep state dur-
ing the payload duration if it was addressed to other host.
They assume, without any experimental validation though,
an instantaneous switch-off and that the time required to
wake up is equivalent to a Short Interframe Space (SIFS).
In order to prevent the risk resulting from errors in the
frame header that would lead to an incorrect NAV counter,
the authors propose to introduce a new framing format
with a new FCS devoted to the MAC header only. This
solution lacks compatibility and introduces more overhead
based on no evidence.

Building on the same idea, Sudarshan et al. [20] pro-
posed Übersleep. This time, the authors do not consider
it necessary to add any extra FCS, as they claim (without
any specific basis) that such errors are very unlikely.

More recently, Palacios-Trujillo et al. modified DCF
[21] and PCF [22] to exploit per-packet sleeps. They also
applied these ideas to network coding [23] and to a polling-
based version of 11ac’s TXOP PS mode [24]. Unfortu-
nately, all these papers rely on these early studies men-
tioned before [15, 16, 17], which analysed old wireless cards
unable to perform sub-millisecond transitions between states.

3. State transition times on 802.11 cards

From the hardware point of view, the standard PS
mechanism requires supporting two states of operation:
the awake state and the sleep state. The latter is imple-
mented using a secondary low-frequency clock. Indeed, it
is well-known that the power consumption of digital de-
vices is proportional to the clock rate [4]. In fact, other
types of devices, such as microcontroller-based devices or
modern general-purpose CPUs, implement sleep states in
the same way.

For any microcontroller-based device with at least an
idle state and a sleep state, one would expect the following
behaviour for an ideal sleep. The device was in idle state,
consuming Pidle, when, at an instant toff , the sleep state is
triggered and the consumption falls to Psleep. A secondary

+_

DAQAdapter

Linux PC

ath
AP

Figure 2: Measurement setup for energy performance characterisa-
tion.

low-power clock decrements a timer of duration ∆tsleep =
ton− toff , and then the expiration of this timer triggers the
wake-up at ton. The switching between states would be
instantaneous and the energy saving would be

Esave = (Pidle − Psleep) ·∆tsleep (1)

This estimate could be considered valid for a time scale
in the range of tens of milliseconds at least, but this is
no longer true for micro-sleeps. Instead, Fig. 1 presents
a conceptual breakdown of a generic micro-sleep. After
the sleep state is triggered at toff , it takes ∆toff before
the power consumption actually reaches Psleep. Similarly,
after the wake-up is triggered at ton, it takes some time,
∆ton, to reach Pidle. Finally, the circuitry might need some
additional time ∆tready to stabilise and operate normally.
Thus, the most general expression for the energy saved in
a micro-sleep is the following:

E′

save = Esave − Ewaste (2)

= (Pidle − Psleep) · (∆tsleep −∆tready)

−

∫
∆toff∪∆ton

(P − Psleep) · dt

where we have considered a general waveform P (t) for the
transients ∆toff and ∆ton. Ewaste represents an energy toll
per sleep when compared to the ideal case.

Our next objective is to quantify these limiting param-
eters, which can be defined as follows:

∆toff is the time required to switch from idle power and
to sleep power consumption.

∆ton is the time required to switch from sleep power to
idle power consumption.

∆tready is the time required for the electronics to stabilise
and become ready to transmit/receive.

The sum of this set of parameters defines the minimum
sleep time, ∆tsleep,min, for a given device:

∆tsleep,min = ∆toff +∆ton +∆tready (3)

Performing this experimental characterisation requires
the ability to timely trigger the sleep mode on demand.

3

img/timing.eps
img/testbed.eps

Most COTS cards are not suitable for this task, because
they implement all the low-level operations in an internal
proprietary binary firmware. After an extensive study, we
found that cards based on the open-source driver ath9k are
well suited for our needs, as they do not load a firmware to
operate, and the driver has access to very low level func-
tionality (e.g., supporting triggering the sleep mode by
just writing into a register). Leveraging on these proper-
ties, we conducted our experimental characterisation using
an Atheros AR9280 Half-height Mini PCI Express card.

This card is attached to a PC through a flexible x1
PCI Express to Mini PCI Express adapter from Amfeltec,
as the right part of Fig. 2 depicts. This adapter connects
the PCI bus’ data channels to the host and provides an
ATX port so that the wireless card can be supplied by an
external power source. The same PC holds a NI PCI-6289,
a high-accuracy multifunction data acquisition (DAQ) de-
vice, optimised for 18-bit input accuracy. Its timing reso-
lution is 50 ns with an accuracy of 50 ppm of sample rate.
In this way, the operations sent to the wireless card and
the energy measurements can be correlated using the same
timebase. A small command-line tool was developed2 to
perform measurements on the DAQ card using the open-
source Comedi3 drivers and libraries.

The power supply is a Keithley 2304A DC Power Sup-
ply, which is optimised for testing battery-operated wire-
less communication devices. It powers the wireless card
through a measurement circuit that extracts the voltage
and converts the current with a high-precision sensing re-
sistor and amplifier. Considering that the DAQ card has
a certain settling time, it can be modelled as a small ca-
pacitor which acts as a low-pass filter. Thus, two buffers
(voltage followers) are placed before the DAQ card to de-
crease the output impedance of the measurement circuit
[5].

The card under test is associated to an AP in 11a
mode to avoid any interfering traffic from neighbouring
networks. This AP is placed very close to the node to
obtain the best possible signal quality, as we are simply
interested in not losing the connectivity for this experi-
ment. With this setup, the idea is to trigger the sleep
state, then bring the interface back to idle and finally trig-
ger the transmission of a buffered packet as fast as possi-
ble, in order to find the timing constraints imposed by the
hardware in the power signature. From an initial stable
power level, with the interface associated and in idle mode,
we would expect a falling edge to a lower power level cor-
responding to the sleep state. Then the power level would
raise again to the idle level and, finally, a big power peak
would mark the transmission of the packet. By correlating
the timestamps of our commands and the timestamps of
the measured power signature, we are able to measure the
limiting parameters ∆toff ,∆ton,∆tready.

2https://github.com/Enchufa2/daq-acquire
3http://comedi.org/

The methodology to reproduce these steps required
hacking the ath9k driver to timely trigger write operations
in the proper card registers, and to induce a transmission
of a pre-buffered packet directly in the device without go-
ing through the entire network stack. The code for re-
producing this experiment is available on GitHub4, and
comprises the following steps:

0. Initially, the card is in idle state, connected to the
AP.

1. A RAW socket (Linux AF PACKET socket) is cre-
ated and a socket buffer is prepared with a fake
packet.

2. toff is triggered by writing a register in the card,
which has proved to be almost instantaneous in ker-
nel space.

3. A micro-delay of 60 µs is introduced in order to give
the card time to react.

4. ton is triggered with another register write.

5. Another timer sets a programmable delay.

6. The fake frame is sent using a low-level interface,
i.e., calling the function ndo start xmit() from the
net device operations directly. By doing this, we
try to spend very little time in kernel.

The power signature recorded as a result of this exper-
iment is shown in Fig. 3a. As we can see, the card spends
∆toff = 50 µs consuming Pidle and then it switches off to
Psleep in only 10 µs. Then, ton is triggered. Similarly, the
card spends ∆ton = 50 µs consuming Psleep and it wakes
up almost instantaneously. Note that the transmission of
the packet is triggered right after the ton event and the
frame spends very little time at the kernel (the time spent
in kernel corresponds to the width of the rectangle labelled
as start xmit in the graph). Nonetheless, the card sends
the packet 200 µs after returning to idle, even though the
frame was ready for transmission much earlier.

To understand the reasons for the delay in the frame
transmission observed above, we performed an experiment
in which frame transmissions were triggered at different
points in time by introducing different delays between the
ton and start xmit events. Fig. 3b shows that the card
starts transmitting always in the same instant whenever
the kernel triggers the transmission within the first 250
µs right after the ton event (lines 0 and 200). Otherwise,
the card starts transmitting almost instantaneously (line
350). This experiments demonstrate that the device needs
∆tready = 200 µs to get ready to transmit/receive after
returning to idle.

To sum up, our experiments show that, if we want to
bring this card to sleep during a certain time ∆tsleep, we
should take into account that it requires a minimum sleep
time ∆tsleep,min = 300 µs. Therefore, ∆tsleep ≥ ∆tsleep,min

must be satisfied, and we must program the ton interrupt

4https://github.com/Enchufa2/crap/tree/master/ath9k/downup

4

https://github.com/Enchufa2/daq-acquire
http://comedi.org/
https://github.com/Enchufa2/crap/tree/master/ath9k/downup

t_off

50us

∆t_off

t_on

50us

∆t_on

200us

∆t_ready

start_xmit

0

2

4

0 200 400 600

t [us]

P
 [

W
]

Delay between 'on' and 'start_xmit'

0

(a)

t_off

50us

∆t_off

t_on

50us

∆t_on

200us

∆t_ready

start_xmit start_xmit start_xmit

0

2

4

0 200 400 600

t [us]

P
 [

W
]

Delay between 'on' and 'start_xmit'

0

200

350

(b)

Figure 3: Atheros AR9280 timing characterisation.

to be triggered ∆ton + ∆tready = 250 µs before the end
of the sleep. Note also that the card wastes a fixed time
∆twaste consuming Pidle:

∆twaste = ∆toff +∆tready (4)

which is equal to 250 µs also. Thus, the total time in
sleep state is ∆tsleep − ∆twaste, and the energy toll from
Equation (2) can be simplified as follows:

Ewaste ≈ (Pidle − Psleep) ·∆twaste (5)

4. µNap design

The key idea of µNap is to put the interface to sleep
during packet overhearing while meeting the constraint
∆tsleep,min identified in the previous section. Addition-
ally, the algorithm should be local in order to be incre-
mentally deployable, standard-compliant, and should take
into account real-world practical issues. For this purpose,
Section 4.1 analyses available micro-sleep opportunities
in 802.11 and determines under which circumstances the
NAV mechanism can be used to extend a micro-sleep while
ensuring that no frames are lost within such time. Sec-
tion 4.2 explores well-known practical issues of WLAN
networks that had not been addressed by previous energy-
saving schemes. Finally, Section 4.3 presents µNap.

4.1. Micro-sleep opportunities in 802.11

Due to the CSMA mechanism, 802.11 STAs receive ev-
ery single frame from their SSID or from others in the
same channel (even some frames from overlapping chan-
nels). Upon receiving a frame, a STA checks the Frame
Check Sequence (FCS) for errors and then, and only after
having received the entire frame, it discards the frame if
it is not the recipient. In 802.11 terminology, this is called
packet overhearing. Since packet overhearing consumes the

power corresponding to a full packet reception that is not
intended for the station, it represents a source of ineffi-
ciency. Thus, we could avoid this unnecessary power con-
sumption by triggering micro-sleeps that bring the wireless
card to a low-energy state.

Indeed, the Physical Layer Convergence Procedure (PLCP)
carries the necessary information (rate and length) to know
the duration of the PLCP Service Data Unit (PSDU),
which consists of a MAC frame or an aggregate of frames.
And the first 10 bytes of a MAC frame indicate the in-
tended receiver, so a frame could be discarded very early,
and the station could be brought to sleep if the hard-
ware allows for such a short sleeping time. Therefore, the
most naive micro-sleep mechanism could determine, given
the constraint ∆tsleep,min, whether the interface could be
switched off in a frame-by-frame basis. And additionally,
this behaviour can be further improved by leveraging the
802.11 virtual carrier-sensing mechanism.

Virtual carrier-sensing allows STAs not only to seize
the channel for a single transmission, but also to signal
a longer exchange with another STA. For instance, this
exchange can include the acknowledgement sent by the re-
ceiver, or multiple frames from a station in a single trans-
mission opportunity (TXOP). So MAC frames carry a du-
ration value that updates the Network Allocation Vector
(NAV), which is a counter indicating how much time the
channel will be busy due to the exchange of frames trig-
gered by the current frame. And this duration field is,
for our benefit, enclosed in the first 10 bytes of the MAC
header too. Therefore, the NAV could be exploited to ob-
tain substantial gains in terms of energy.

In order to unveil potential sleeping opportunities within
the different states of operation in 802.11, first of all we
review the setting of the NAV. 802.11 comprises two fam-
ilies of channel access methods. Within the legacy meth-
ods, the Distributed Coordination Function (DCF) is the
basic mechanism with which all STAs contend employ-

5

img/sleep-tx-1.eps
img/sleep-tx-2.eps

ing CMSA/CA with binary exponential backoff. In this
scheme, the duration value provides single protection: the
setting of the NAV value is such that protects up to the
end of one frame (data, management) plus any additional
overhead (control frames). For instance, this could be the
ACK following a data frame or the CTS + data + ACK
following an RTS.

When the Point Coordination Function (PCF) is used,
time between beacons is rigidly divided into contention
and contention-free periods (CP and CFP, respectively).
The AP starts the CFP by setting the duration value in the
beacon to its maximum value (which is 32 768; Table 8-3 of
the IEEE Std 802.11-2012 [6] depicts the duration/ID field
encoding). Then, it coordinates the communication by
sending CF-Poll frames to each STA. As a consequence, a
STA cannot use the NAV to sleep during the CFP, because
it must remain CF-pollable, but it still can doze during
each individual packet transmission. In the CP, DCF is
used.

802.11e introduces traffic categories (TC), the concept
of TXOP, and a new family of access methods called Hy-
brid Coordination Function (HCF), which includes the En-
hanced Distributed Channel Access (EDCA) and the HCF
Controlled Channel Access (HCCA). These two methods
are the QoS-aware versions of DCF and PCF respectively.

Under EDCA, there are two classes of duration val-
ues: single protection, as in DCF, and multiple protec-
tion, where the NAV protects up to the end of a sequence
of frames within the same TXOP. By setting the appro-
priate TC, any STA may start a TXOP, which is zero for
background and best-effort traffic, and of several millisec-
onds for video and audio traffic as defined in the standard
(Table 8-105 of the IEEE Std 802.11-2012 [6]). A non-zero
TXOP may be used for dozing, as 11ac does, but these
are long sleeps and the AP needs to support this feature,
because a TXOP may be truncated at any moment with
a CF-End frame, and it must keep buffering any frame di-
rected to any 11ac dozing STA until the NAV set at the
start of the TXOP has expired.

HCCA works similarly to PCF, but under HCCA, the
CFP can be started at almost any time. In the CFP, when
the AP sends a CF-poll to a STA, it sets the NAV of other
STAs for an amount equal to the TXOP. Nevertheless, the
AP may reclaim the TXOP if it ends too early (e.g., the
STA has nothing to transmit) by resetting the NAV of
other STAs with another CF-Poll. Again, the NAV can-
not be locally exploited to perform energy saving during a
CFP.

Finally, there is another special case in which the NAV
cannot be exploited either. 802.11g was designed to bring
the advantages of 11a to the 2.4 GHz band. In order
to interoperate with older 11b deployments, it introduces
CTS-to-self frames (also used by more recent amendments
such as 11n and 11ac). These are standard CTS frames,
transmitted at a legacy rate and not preceded by an RTS,
that are sent by a certain STA to itself to seize the chan-
nel before sending a data frame. In this case, the other

STAs cannot know which will be the destination of the
next frame. Therefore, they should not use the duration
field of a CTS for dozing.

4.2. Practical issues

4.2.1. Impact of capture effect

It is well-known that a high-power transmission can to-
tally blind another one with a lower SNR. Theoretically,
two STAs seizing the channel at the same time yields a
collision. However, in practice, if the power ratio is suf-
ficiently high, a wireless card is able to decode the high-
power frame without error, thus ignoring the other trans-
mission. This is called capture effect, and although not
described by the standard, it must be taken into account
as it is present in real deployments.

According to [7], there are two types of capture effect
depending on the order of the frames: if the high-power
frame comes first, it is called first capture effect; otherwise,
it is called second capture effect. The first one is equivalent
to receiving a frame and some noise after it, and then it
has no impact in our analysis. In the second capture effect,
the receiving STA stops decoding the PLCP of the low-
power frame and switches to another with higher power. If
the latter arrives before a power-saving mechanism makes
the decision to go to sleep, the mechanism introduces no
misbehaviour.

However, [7] suggests that a high-power transmission
could blind a low-power one at any time, even when the
actual data transmission has begun. This is called Mes-

sage in Message (MIM) in the literature [8, 9], and it could
negatively impact the performance of an interface imple-
menting an energy-efficiency mechanism based on packet
overhearing. In the following, we will provide new exper-
imental evidence supporting that this issue still holds in
modern wireless cards.

We evaluated the properties of the MIM effect with
an experimental setup consisting of a card under test,
a brand new 802.11ac three-stream Qualcomm Atheros
QCA988x card, and three additional helper nodes. These
are equipped with Broadcom KBFG4318 802.11g cards,
whose behaviour can be changed with the open-source
firmware OpenFWWF [25]. We disable the carrier sensing
and back-off mechanisms so that we can decide the depar-
ture time of every transmitted frame with 1 µs granularity
with respect to the internal 1MHz clock.

Fig. 4 depicts the measurement setup, which consists
of a node equipped with our Atheros card under test (ath),
a synchronization (Sync) node, a high energy (HE) node
and a low energy (LE) node. These two HE and LE nodes
were manually carried around at different distances with
respect to the ath node until we reached the desired power
levels.

The Sync node transmits 80-byte long beacon-like frames
periodically at 48 Mbps, one beacon every 8192 µs: the
time among consecutive beacons is divided in 8 schedules
of 1024 µs. Inside each schedule, time is additionally di-
vided into 64 micro-slots of 16 µs. We then program the

6

Sync

LE

schedule

athHE

t

Figure 4: Measurement setup for the MIM effect.

firmware of the HE and LE nodes to use the beacon-like
frames for keeping their clocks synchronised and to trans-
mit a single frame (138-µs long) per schedule starting at
a specific micro-slot. This allows us to always start the
transmission of the low energy frame from the LE node
before the high energy frame from the HE node, and to
configure the exact delay ∆t as a multiple of the micro-
slot duration.

For instance, we set up a ∆t = 32 µs by configuring LE
node to transmit at slot 15, HE node at slot 17. By mov-
ing LE node away from the ath node while the HE node
is always close, we are able to control the relative power
difference ∆P received by the ath node between frames
coming from the LE and HE nodes. With the configured
timings, we are able to replicate the reception experiment
at the ath node approximately 976 times per second, thus
collecting meaningful statistics in seconds.

We obtained the results shown in Table 1. When the
energy gap is small (≤ 5 dB), the MIM effect never enters
into play as we can see from the first part of Table 1. If
the two frames are transmitted at the same time, then the
QCA card receives the majority of the HE frames (92%)
despite some of them are broken (17%); almost no LE
frames are received. By increasing the delay to 16 µs, the
QCA card stops working: the short delay means that the
HE frame collide with the LE one at the PLCP level. The
energy gap does not allow the QCA correlator to restart
decoding a new PLCP and, in fact, only a few frames are
sporadically received. Further increasing the delay allows
the QCA card to correctly receive the PLCP preamble of
the LE frame, but then the PDU decoding is affected by
errors (e.g., delay set to 48 µs) because of collision. Finally,
if the delay is high enough so that both frames fit into a
schedule, the QCA card receives everything correctly (≥
144 µs).

When the energy gap exceeds a threshold (e.g., more
than 35 dB), then the behaviour of the QCA card changes
radically as we can see from the second part of Table 1:
first, with no delay, all high energy frames are received (ex-
pected given that they overkill the others); second, when
both frame types fit in the schedule, all of them are re-
ceived, which confirms that the link between LE node
and the QCA is still very good. But, unlike the previous
case, HE frames are received regardless of the delay, which

Table 1: MIM effect.

∆P [dB] ∆t [µs]
LE frames HE frames

% rx % err % rx % err

≤ 5

0 0.04 50.00 92.00 17.67

16 0.40 0.00 2.15 0.00

32 99.32 99.96 0.24 0.00

≥ 48 99.10 99.75 0.34 0.00

≥ 144 98.94 0.00 97.32 0.00

≥ 35

0 0.18 0.00 99.37 0.00

16 0.37 11.11 91.87 0.00

32 0.39 78.95 89.89 0.00

48 1.54 68.00 95.58 0.00

64 3.22 98.73 89.83 0.00

128 60.35 99.96 39.24 0.00

≥ 144 95.33 0.00 99.64 0.00

means that the correlator restarts decoding the PLCP of
the second frame because of the higher energy, enough for
distinguishing it from the first frame that simply turns into
a negligible noise.

Thus, our experiments confirm that the MIM effect
actually affects modern wireless cards, and therefore it
should be taken into account in any micro-sleep strategy.
Let us consider, for instance, a common infrastructure-
based scenario in which certain STA receives low-power
frames from a distant network in the same channel. If the
AP does not see them, we are facing the hidden node prob-
lem. It is clear that none of these frames will be addressed
to our STA, but, if it goes to sleep during these trans-
missions, it may lose potential high-power frames from its
BSSID. Therefore, if we performmicro-sleeps under hidden
node conditions, in some cases we may lose frames that we
would receive otherwise thanks to the capture effect. The
same situation may happen within the local BSSID (the
low-power frames belong to the same network), but this is
far more rare, as such a hidden node will become discon-
nected sooner or later.

In order to circumvent these issues, a STA should only
exploit micro-sleep opportunities arising from its own net-
work. To discard packets originating from other networks,
the algorithm looks at the BSSID in the receiver address
within frames addressed to an AP. If the frame was sent
by an AP, it only needs to read 6 additional bytes (in the
worst case), which are included in the transmitter address.
Even so, these additional bytes do not necessarily involve
consuming more time, depending on the modulation. For
instance, for OFDM 11ag rates, this leads to a time in-
crease of 8 µs at 6 and 9 Mbps, 4 µs at 12, 18 and 36
Mbps, and no time increase at 24, 48 and 54 Mbps.

4.2.2. Impact of errors in the MAC header

Taking decisions without checking the FCS (placed at
the end of the frame) for errors or adding any protection
mechanism may lead to performance degradation due to
frame loss. This problem was firstly identified by [19] and

7

img/testbed-francesco.eps

[20] which, based on purely qualitative criteria, reached
opposite conclusions. The first work advocates for the need
for a new CRC to protect the header bits while the latter
dismisses this need. This section is devoted to analyse
quantitatively the impact of errors.

At a first stage, we need to identify, field by field, which
cases are capable of harming the performance of our algo-
rithm due to frame loss. The duration/ID field (2 bytes)
and the MAC addresses (6 bytes each) are an integral part
of our algorithm. According to its encoding, the dura-
tion/ID field will be interpreted as an actual duration if

and only if the bit 15 is equal to 0. Given that the bit 15
is the most significant one, this condition is equivalent to
the value being smaller than 32 768. Therefore, we can
distinguish the following cases in terms of the possible er-
rors:

• An error changes the bit 15 from 0 to 1. The field
will not be interpreted as a duration and hence we
will not go to sleep. We will be missing an opportu-
nity to save energy, but there will be no frame loss
and, therefore, the network performance will not be
affected.

• An error changes the bit 15 from 1 to 0. The field will
be wrongly interpreted as a duration. The resulting
sleep will be up to 33 ms longer than required, with
the potential frame loss associated.

• With the bit 15 equal to 0, an error affects the previ-

ous bits. The resulting sleep will be shorter or longer
that the real one. In the first case, we will be miss-
ing an opportunity to save energy; in the second case,
there is again a potential frame loss.

Regarding the receiver address field, there exist the
following potential issues:

• A multicast address changes but remains multicast.
The frame will be received and discarded, i.e., the
behaviour will be the same as with no error. Hence,
it does not affect.

• A unicast address changes to multicast. The frame
will be received and discarded after detecting the
error. If the unicast frame was addressed to this host,
it does not affect. If it was addressed to another host,
we will be missing an opportunity to save energy.

• A multicast address changes to unicast. If the unicast
frame is addressed to this host, it does not affect. If
it is addressed to another host, we will save energy
with a frame which would be otherwise received and
discarded.

• Another host’s unicast address changes to your own.
This case is very unlikely. The frame will be received
and discarded, so we will be missing an opportunity
to save energy.

• Your own unicast address changes to another’s. We
will save energy with a frame otherwise received and
discarded.

As for the transmission address field, this is checked
as an additional protection against the undesirable effects
of the already discussed intra-frame capture effect. If the
local BSSID in a packet changes to another BSSID, we
will be missing an opportunity to save energy. It is ex-
tremely unlikely that an error in this field could lead to
frame loss: a frame from a foreign node (belonging to an-
other BSSID and hidden to our AP) should contain an
error that matches the local BSSID in the precise moment
in which our AP tries to send us a frame (note that this
frame might be received because of the MIM effect ex-
plained previously).

Henceforth, we draw the following conclusions from the
above analysis:

• Errors at the MAC addresses do not produce frame

loss, because under no circumstances they imply frame
loss. The only impact is that there will be several
new opportunities to save energy and several others
will be wasted.

• Errors at the duration/ID field, however, may pro-

duce frame loss due to frame loss in periods of time
up to 33 ms. Also several energy-saving opportuni-
ties may be missed without yielding any frame loss.

• An error burst affecting both the duration/ID field
and the receiver address may potentially change the
latter in a way that the frame would be received
(multicast bit set to 1) and discarded, and thus pre-
venting the frame loss.

From the above, we have that the only case that may
yield performance degradation in terms of frame loss is
when we have errors in the duration/ID field. In the fol-
lowing, we are going to analytically study and quantify
the probability of frame loss in this case. For our analysis,
we first consider statistically independent single-bit errors.
Each bit is considered the outcome of a Bernoulli trial with
a success probability equal to the bit error probability pb.
Thus, the number of bit errors, X , in certain field is given
by a Binomial distribution X ∼ B(N, pb), where N is the
length of that field.

With these assumptions, we can compute the proba-
bility of having more than one erroneous bit, Pr(X ≥ 2),
which is three-four orders of magnitude smaller than pb
with realistic pb values. Therefore, we assume that we
never have more than one bit error in the frame header,
so the probability of receiving an erroneous duration value
with a single-bit error, pe,b, is the following:

pe,b ≈ 1− (1− pb)
15 (6)

However, not all the errors imply a duration value
greater than the original one, but only those which convert

8

Table 2: Most frequent duration values.

Duration % peg,b/pb Cause

44 62.17 0.88 SIFS + ACK at 24 Mbps

0 25.23 1.00 Broadcast, multicast... packets

60 6.54 0.73 SIFS + ACK at 6 Mbps

48 5.82 0.87 SIFS + ACK at 12 Mbps

a zero into a one. Let us call Hw(i) the Hamming weight,
i.e., the number of ones in the binary representation of the
integer i. The probability of an erroneous duration value
greater than the original, peg,b, is the following:

peg,b(i) = pe,b ·
15−Hw(i)

15
(7)

which represents a fraction of the probability pe,b and de-
pends on the original duration i (before the error).

In order to understand the implications of the above
analysis into real networks, we have analysed the data set
SIGCOMM’08 [11] and gathered which duration values are
the most common. In the light of the results depicted in
Table 2, it seems reasonable to approximate peg,b/pe,b ≈ 1,
because it is very likely that the resulting duration will be
greater than the original.

Finally, we can approximate pb by the BER and, based
on the above data and considerations, the frame loss prob-
ability, ploss, due to an excessive sleep interval using a
single-bit error model is the following:

ploss = peg,b ≈ pe,b ≈ 1− (1− BER)15 (8)

The above analysis assumes that errors occur indepen-
dently. However, it is well known that in reality errors
typically occur in bursts. In order to understand the im-
pact of error bursts in our scheme, we analyse a scenario
with independent error bursts of length X bits, where X
is a random variable. To this end, we use the Neyman-A
contagious model [26], which has been successfully applied
in telecommunications to describe burst error distributions
[27, 28, 29]. This model assumes that both the bursts and
the burst length are Poisson-distributed. Although assum-
ing independency between errors in the same burst may
not be accurate, it has been shown that the Neyman-A
model performs well for short intervals [30], which is our
case.

The probability of having k errors in an interval of N
bits, given the Neyman-A model, is the following:

pN (k) =
λk
b

k!
e−λB

∞∑
i=0

ik

i!
λi
Be

−iλb (9)

where

λb is the average number of bits in a burst.

λB = Npb/λb is the average number of bursts.

1e+00

1e-01

1e-02

1e-03

1e-04

1e-05

1e-06

1e+00 1e-01 1e-02 1e-03 1e-04 1e-05 1e-06

BER

p
lo

s
s

model

burst

single-bit

λb

1

5

10

Figure 5: Frame loss probability given a BER level.

This formula can be transformed into a recursive one
with finite sums [26]:

pN(k) =
λBλbe

−λb

k

k−1∑
j=0

λj
b

j!
pN (k − 1− j)

pN (0) = e−λB(1−e−λ
b) (10)

Following the same reasoning as for the single-bit case,
we can assume one burst at a time which will convert the
duration value into a higher one. Then, the frame loss
probability is the following:

ploss =

15∑
k=1

p15(k) (11)

with parameters λb and pb ≈ BER.
Fig. 5 evaluates both error models as a function of

BER. As expected, the single-bit error model is an upper
bound for the error burst model and represents a worst-
case scenario. At most, the frame loss probability is one
order of magnitude higher than BER. Therefore, we con-
clude that the frame loss is negligible for reasonable BERs
and, consequently, the limited benefit of an additional
CRC does not compensate the issues.

4.3. Algorithm design

In the following, we present µNap, which builds upon
the insights provided in previous sections and tries to save
energy during the channel transmissions in which the STA
is not involved. However, not all transmissions addressed
to other stations are eligible for dozing, as the practical
issues derived from the capture effect may incur in perfor-
mance degradation. Therefore, the algorithm must check
both the receiver as well as the transmitter address in the
MAC header in order to determine whether the incoming
frame is addressed to another station and it comes from
within the same network.

If these conditions are met, a basic micro-sleep will
last the duration of the rest of the incoming frame plus an

9

img/ploss.eps

RTS

CTS

Fragment 1 Fragment 2

ACK ACK

NAV 0 NAV 1

Sleep Sleep

DIFS

Sending STA

Receiving STA

Other STA

Dozing STA

SIFS SIFS SIFS SIFS SIFS

SIFS

Figure 6: RTS/CTS-based fragmented transmission example and
µNap’s behaviour.

inter-frame space (SIFS). Unfortunately, the long times re-
quired to bring an interface back and forth from sleep, as
discovered in Section 3, shows that this basic micro-sleep
may not be long enough to be exploitable. Thus, the al-
gorithm should take advantage of the NAV field whenever
possible. Our previous analysis shows that this duration
information stored in the NAV is not exploitable in every
circumstance: the interface can leverage this additional
time during CPs and it must avoid any NAV set by a CTS
packet.

Finally, after a micro-sleep, two possible situations arise:

• The card wakes up at the end of a frame exchange.
For instance, after a data + ACK exchange. In this
case, all STAs should wait for a DIFS interval before
contending again.

• The card wakes up in the middle of a frame exchange.
For instance, see Fig. 6, where an RTS/CTS-based
fragmented transmission is depicted.

In the latter example, an RTS sets the NAV to the
end of a fragment, and our algorithm triggers the sleep.
This first fragment sets the NAV to the end of the second
fragment, but it is not seen by the dozing STA. When the
latter wakes up, it sees a SIFS period of silence and then
the second fragment, which sets its NAV again and may
trigger another sleep. This implies that the STA can doze
for an additional SIFS, as Fig. 6 shows, and wait in idle
state until a DIFS is completed before trying to contend
again.

Based on the above, Algorithm 1 describes the main
loop of a wireless card’s microcontroller that would im-
plement our mechanism. When the first 16 bytes of the
incoming frame are received, all the information needed to
take the decision is available: the duration value (∆tNAV),
the receiver address (RA) and the transmitter address (TA).
The ability to stop a frame’s reception at any point has
been demonstrated to be feasible [10]. Note that MAC ad-
dresses can be efficiently compared in a streamed way, so
that the first differing byte (if the first byte of the RA has
the multicast bit set to zero, i.e., RA is unicast) triggers
our sleep procedure (Set Sleep in Algorithm 1). In addi-
tion, the main loop should keep up to date a global variable
(C) indicating whether the contention is currently allowed
(CP) or not (CFP). This is straightforward, as every CFP
starts and finishes with a beacon frame.

Algorithm 1 µNap implementation: main loop modifica-
tion for energy saving during packet overhearing.

1: ... ⊲ Initialisation
2: global C ← true ⊲ Contention flag
3: loop ⊲ Main loop
4: ...
5: while bytes remaining do ⊲ Receiving loop
6: Read

7: if RA = BSSID OR (TA = BSSID AND
RA is other unicast MAC) then

8: Set Sleep(∆tDATA,∆tNAV)
9: end if

10: end while

11: Check FCS ⊲ Frame received
12: if is Beacon AND ∆tNAV > 0 then ⊲ CFP starts
13: C ← false

14: else if is CF End then ⊲ CFP ends
15: C ← true

16: end if

17: ...
18: end loop

19: procedure Set Sleep(∆tDATA,∆tNAV)
20: ∆tsleep ← ∆tDATA +∆tSIFS
21: if C AND is not CTS AND ∆tNAV ≤ 32767 then

22: ∆tsleep ← ∆tsleep +∆tNAV

23: end if

24: if ∆tsleep ≥ ∆tsleep,min then

25: Sleep(∆tsleep)
26: Wait(∆tDIFS −∆tSIFS)
27: go to Main loop
28: end if

29: go to Receiving loop
30: end procedure

The Set Sleep procedure takes as input the remain-
ing time until the end of the incoming frame (∆tDATA)
and the duration value (∆tNAV). The latter is used only
if it is a valid duration value and a CP is active. Then,
the card may doze during ∆tsleep (if this period is greater
than ∆tsleep,min), wait for a DIFS to complete and return
to the main loop.

Finally, it is worth noting that this algorithm is deter-
ministic, as it is based on a set of conditions to trigger the
sleep procedure. It works locally with the information al-
ready available in the protocol headers, without incurring
in any additional control overhead and without impacting
the normal operation of 802.11. Specifically, our analyt-
ical study of the impact of errors in the first 16 bytes of
the MAC header shows that the probability of performance
degradation is comparable to the BER under normal chan-
nel conditions. Therefore, the overall performance in terms
of throughput and delay is completely equivalent to nor-
mal 802.11.

10

img/fragments.eps

5. Performance evaluation

This section is devoted to evaluate the performance
of µNap. First, Section 5.1, through trace-driven simula-
tion, shows that µNap significantly reduces the overhear-
ing time and the energy consumption of a real network.
Secondly, Section 5.2 analyses the impact of the timing
constraints imposed by the hardware, which are specially
bad in the case of the AR9280, and discusses the applica-
bility of µNap in terms of those parameters and the evo-
lution trends in the 802.11 standard.

5.1. Evaluation with real traces

In the following, we conduct an evaluation to assess
how much energy might be saved in a real network if all
STAs implement µNap using the AR9280, the wireless card
characterised in Section 3. The reasons for this are twofold.
On the one hand, the timing properties of this interface are
particularly bad if we think of typical frame durations in
802.11, which means that many micro-sleep opportunities
will be lost due to hardware constraints. On the other
hand, it does not support newer standards that could po-
tentially lead to longer micro-sleep opportunities through
mechanisms such as frame aggregation. Therefore, an eval-
uation based on an 11a/g network and the AR9280 chip
represents a worst case scenario for our algorithm.

For this purpose, we used 802.11a wireless traces with
about 44 million packets, divided in 43 files, from the
data set SIGCOMM’08 [11]. The methodology followed
to parse each trace file is as follows. Firstly, we discover
all the STAs and APs present. Each STA is mapped into
its BSSID and a bit array is developed in order to hold the
status at each point in time (online or offline). It is hard to
say when a certain STA is offline from a capture, because
they almost always disappear without sending a disassoci-
ation frame. Thus, we use the default rule in hostapd, the
daemon that implements the AP functionality in Linux: a
STA is considered online if it transmitted a frame within
the last 5 min.

Secondly, we measure the amount of time that each
STA spends (without our algorithm) in the following states:
transmission, reception, overhearing and idle. We consider
that online STAs are always awake; i.e., even if a STA
announces that it is going into PS mode, we ignore this
announcement. We measure also the amount of time that
each STA would spend (with our algorithm) in transmis-
sion, reception, overhearing, sleep and idle. Transmission
and reception times match the previous case, as expected.
As part of idle time, we account separately the wasted time
in each micro-sleep as a consequence of hardware limita-
tions (the fixed toll ∆twaste). After this processing, there
are a lot of duplicate unique identifiers (MAC addresses),
i.e., STAs appearing in more than one trace file. Those en-
tries are summarised by aggregating the time within each
state.

At this point, let us define the activity time as the sum
of transmission, reception, overhearing, sleep and wasted

common algorithm w/o algorithm

0.0

0.2

0.4

0.6

0.8

tx rx ov sl wa ov id

State

F
ra

c
ti
o
n
 o

f
A

c
ti
v
it
y

Figure 7: Normalised activity aggregation of all STAs.

waste (idle)

sleep

overhearing

overhearing

idle

reception

transmission0

2000

4000

common algorithm w/o algorithm

C
o
n
s
u
m

p
ti
o
n
 [
m

A
h
]

Figure 8: Energy consumption aggregation of all STAs.

time. We do not account for idle time since our goal is to
understand how much power we can save in the periods
of activity, which are the only ones that consume power
in wireless transmissions (the scope of this paper). Us-
ing the definition above, we found that the majority of
STAs reveals very little activity (they are connected for a
few seconds and disappear). Therefore, we took the up-
per decile in terms of activity, thus obtaining the 42 more
active STAs.

The activity aggregation of all STAs is normalised and
represented in Fig. 7. Transmission (tx) and reception
(rx) times are labelled as common, because STAs spend
the same time transmitting and receiving both with and
without our algorithm. It is clear that our mechanism
effectively reduces the total overhearing (ov) time from a
median of 70% to a 30% approximately (a 57% reduction).
The card spends consistently less time in overhearing be-
cause this overhearing time difference, along with some idle
(id) time from inter-frame spaces, turns into micro-sleeps,
that is, sleep (sl) and wasted (wa) time.

This activity aggregation enables us to calculate the
total energy consumption using the power values from

11

img/eval-boxplot.eps
img/eval-energy.eps

algorithm

saving

waste (idle)

sleep

overhearing

reception

transmission

0

100

200

300

400

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

STA

C
o
n
s
u
m

p
ti
o
n
 [
m

A
h
]

F
ra

c
ti
o
n
 o

f
A

c
ti
v
it
y

Figure 9: Energy consumption (up) and normalised activity (bot-
tom) for each STA.

the thorough characterisation presented in Appendix A.1.
Fig. 8 depicts the energy consumption in units of mAh
(assuming a typical 3.7-V battery). The energy savings
overcome 1200 mAh even with the timing limitations of
the AR9280 card, which (1) prevents the card from going
to sleep when the overhearing time is not sufficiently long,
and (2) wastes a long fixed time in idle during each suc-
cessful micro-sleep. This reduction amounts to a 21.4%
of the energy spent in overhearing and a 15.8% of the to-
tal energy during the activity time, when the transmission
and reception contributions are also considered.

Fig. 9 provides a breakdown of the data by STA. The
lower graph shows the activity breakdown per STA for our
algorithm (transmission bars, in white, are very small).
Overhearing time is reduced to a more or less constant
fraction for all STAs (i.e., with the algorithm, the over-
hearing bars represent more or less a 30% of the total
activity for all STAs), while less participative STAs (left
part of the graph) spend more time sleeping. The upper
graph shows the energy consumption per STA with our al-
gorithm along with the energy-saving in dark gray, which
is in the order of tens of mAh per STA.

0.00

0.25

0.50

0.75

1.00

500 1000 1500 2000

Sleep duration ∆tsleep [µs]

S
le

e
p
 e

ffi
c
ie

n
c
y
 E

' s
a

v
e

E
s

a
v

e

∆twaste [µs]

50

150

250

Figure 10: Sleep efficiency behaviour as ∆twaste decreases.

0

25

50

75

100

10 20 30 40 50

802.11a rate [Mbps]

A
p
p
lic

a
b
ili

ty
 [
%

 o
f
fr

a
m

e
 s

iz
e
s
]

∆tsleep,min [µs]

100

200

300

Figure 11: Algorithm applicability for common transmissions (≤
1500 bytes + ACK) in 802.11a DCF mode.

5.2. Impact of timing constraints

The performance gains of µNap depend on the be-
haviour of the circuitry. Its capabilities, in terms of tim-
ing, determine the maximum savings that can be achieved.
Particularly, each micro-sleep has an efficiency (in com-
parison to an ideal scheme in which the card stays in sleep
state over the entire duration of the micro-sleep) given by

E′

save

Esave

=
Esave − Ewaste

Esave

≈ 1−
∆twaste

∆tsleep
(12)

which results from the combination of Equations (1), (2)
and (5).

Fig. 10 represents this sleep efficiency for the AR9280
card (∆twaste = 250) along with other values. It is clear
that an improvement of ∆twaste is fundamental to boost
performance in short sleeps.

Similarly, the constraint ∆tsleep,min limits the appli-
cability of µNap, especially in those cases where the NAV
cannot be used to extend the micro-sleep. For instance, let
us consider the more common case in 11a/b/g networks:
the transmission of a frame (up to 1500 bytes long) plus

12

img/eval-sta.eps
img/savings.eps
img/applicability.eps

the corresponding ACK. Then,

∆tsleep,min ≤ ∆tDATA +∆tSIFS +∆tACK +∆tSIFS (13)

and expanding the right side of the inequality,

∆tsleep,min ≤
8(14 + lmin + 4)

λDATA

+∆tSIFS

+∆tPLCP +
8(14 + 2)

λACK

+∆tSIFS (14)

Here, we can find lmin, which is the minimum amount
of data (in bytes, and apart from the MAC header and the
FCS) that a frame must contain in order to last ∆tsleep,min.
Based on this lmin, Fig. 11 defines the applicability in
802.11a DCF in terms of frame sizes (≤ 1500 bytes) that
last ∆tsleep,min at least. Again, an improvement in ∆twaste

would boost not only the energy saved per sleep, but also
the general applicability defined in this way.

The applicability of µNap may also be affected by the
evolution of the standard. Particularly, 802.11n intro-
duced, and 802.11ac followed, a series of changes enabling
high and very high throughput respectively, up to Giga-
bit in the latter case. This improvement is largely based
on MIMO and channel binding: multiple spatial and fre-
quency streams. Nevertheless, a single 20-MHz spatial
stream is more or less equivalent to 11ag. Some enhance-
ments (shorter guard interval and coding enhancements)
may boost the throughput of a single stream from 54 to
72 Mbps under optimum conditions. Yet it is also the case
that the PLCP is much longer to accommodate the com-
plexity of the new modulation coding schemes (MCSs).
This overhead not only extends each transmission, but
also encourages the use of frame aggregation. Thus, the
increasing bandwidth, in current amendments or future
ones, does not necessarily imply a shorter airtime in prac-
tice, and our algorithm is still valid.

Reducing PHY’s timing requirements is essential to
boost energy savings, but its feasibility should be further
investigated. Nonetheless, there are some clues that sug-
gest that there is plenty of room for improvement. In the
first place, ∆toff and ∆ton should depend on the inter-
nal firmware implementation (i.e., the complexity of the
saved/restored state). Secondly, Fig. 3a indicates that a
transmission is far more aggressive, in terms of a sudden
power rise, than a return from sleep. From this stand-
point, ∆tready = 200 µs would be a pessimistic estimate
of the time required by the circuitry to stabilise. Last,
but not least, the 802.3 standard goes beyond 802.11 and,
albeit to a limited extent, it defines some timing parame-
ters of the PHYs (e.g., ∆tw phy would be equivalent to our
∆ton+∆tready). These timing parameters are in the range
of tens of µs in the worst case (see Table 78-4 of the IEEE
Std 802.3-2008 [12]).

Due to these reasons, WiFi card manufacturers should
push for a better power consumption behaviour, which
is necessary to boost performance with the power-saving

mechanism presented in this paper. Furthermore, it is nec-
essary for the standardisation committees and the manu-
facturers to collaborate to agree power consumption be-
haviour guidelines for the hardware (similarly to what has
been done with 802.3). Indeed, strict timing parameters
would allow researchers and developers to design more ad-
vanced power-saving schemes.

6. Conclusions

Based on a thorough characterisation of the timing con-
straints and energy consumption of 802.11 interfaces, we
have exhaustively analysed the micro-sleep opportunities
that are available in current WLANs. We have unveiled
the practical challenges of these opportunities, previously
unnoticed in the literature, and, building on this knowl-
edge, we have proposed µNap an energy-saving scheme
that is orthogonal to the existing standard PS mechanisms.
Unlike previous attempts, our scheme takes into account
the non-zero time and energy required to move back and
forth between the active and sleep states, and decides when
to put the interface to sleep in order to make the most of
these opportunities while avoiding frame losses.

We have demonstrated the feasibility of our approach
using a robust methodology and high-precision instrumen-
tation, showing that, despite the limitations of COTS hard-
ware, the use of our scheme would result in a 57% reduc-
tion in the time spent in overhearing, thus leading to an
energy saving of 15.8% of the activity time according to
our trace-based simulation. Finally, based on these re-
sults, we have made the case for the strict specification
of energy-related parameters of 802.11 hardware, which
would enable the design of platform-agnostic energy-saving
strategies.

Appendix A. Energy consumption characterisation

Appendix A.1. State consumption parametrisation

In order to gain insight into the energy savings of µNap,
we performed a complete state parametrisation (power
consumption in transmission, reception, overhearing, idle
and sleep) of the AR9280 card (the active state in the
traces used for the evaluation, Section 5.1) using the same
scenario as in Section 3 (see Fig. 2). As in Section 3, all
measurements (except for the sleep state) were taken with
the wireless card associated to the AP in 11a mode to avoid
any interfering traffic, and it was placed very close to the
node to obtain the best possible signal quality. The recep-
tion of beacons is accounted in the baseline consumption
(idle).

The card under test performed transmissions/receptions
to/from the AP at a constant rate and with fixed packet
length. In order to avoid artifacts from the reception/transission
of ACKs, UDP was used and the NoACK policy was en-
abled. Packet overhearing was tested by generating traffic
of the same characteristics from a secondary STA placed

13

sleep

idle

rx & overhearing

tx

1

2

3

0.00 0.25 0.50 0.75 1.00

Airtime

P
 [
W

]

state

overh

rx

tx

Figure A.12: Atheros AR9280 power consumption in 11a mode.

in the same close range (∼cm). Under these conditions,
several values of airtime percentage were swept. For each
experiment, current and voltage signals were sampled at
100 kHz and the mean power consumption was measured
with a basic precision of 1 mW over intervals of 3 s.

Regarding the sleep state, the driver ath9k internally
defines three states of operation: awake, network sleep and
full sleep. A closer analysis reveals that the card is awake,
or in active state, when it is operational (i.e., transmitting,
receiving or in idle state, whether as part of an SSID or
in monitor mode), and it is in full sleep state when it
is not operational at all (i.e., interface down or up but
not connected to any SSID). The network sleep state is
used by the 802.11 PS mechanism, but essentially works
in the same way as full sleep, that is, it turns off the main
reference clock and switches to a secondary 32 kHz one.
Therefore, we saw that full sleep and network sleep are the
same state in terms of energy: they consume exactly the
same power. The only difference is that network sleep sets
up a tasklet to wake the interface periodically (to receive
TIMs), as required by the PS mode.

Fig. A.12 shows our results for transmission, recep-
tion and overhearing. Idle and sleep consumptions were
measured independently, are depicted with gray horizon-
tal lines for reference. As expected, power consumptions in
transmission/reception/overhearing state are proportional
to airtime, thus the power consumption of such operations
can be easily estimated by extrapolating the regression line
to the 100% of airtime (gray vertical line).

These mean values are shown in Table A.3. First of
all, reception and overhearing consumptions are the same
within the error, and they are close to idle consumption.
Transmission power is more than two times larger than
reception. Finally, the sleep state saves almost the 70% of
the energy compared to idle/reception.

Table A.3: Atheros AR9280 power consumption

State Mode Channel MHz Power [W]

Transmission 11a 44 20 3.10(2)

Reception 11a 44 20 1.373(1)

Overhearing 11a 44 20 1.371(1)

Idle 11a 44 20 1.292(2)

Sleep - - - 0.424(2)

Idle 11n 11 20 1.137(4)

Idle 11n 11 40 1.360(4)

Appendix A.2. Downclocking consumption characterisa-

tion

As the AR9280’s documentation states, its reference
clock runs at 44 MHz for 20 MHz channels and at 88 MHz
for 40 MHz channels in the 2.4 GHz band, and at 40 MHz
for 20 MHz channels and at 80 MHz for 40 MHz channels
in the 5 GHz band. Thus, as Table A.3 shows, we mea-
sured two more results to gain additional insight into the
behaviour of the main reference clock, which is known to
be linear [4].

Using an 11n-capable AP, we measured the idle power
in the 2.4 GHz band with two channel widths, 20 and 40
MHz. Note that the idle power in 11a mode (5 GHz band),
with a 40 MHz clock, is higher than the idle power with a
44 MHz clock. This is because both bands are not directly
comparable, as the 5 GHz one requires more amplification
(the effect of the RF amplifier is out of the scope of this
paper).

With these two points, we can assume a higher error
(of about 10 mW) and try to estimate a maximum and a
minimum slope for the power consumed by the main clock
as a function of the frequency f . The resulting averaged
regression formula is the following:

P (f) = 0.91(3) + 0.0051(5)f (A.1)

This result, although coarse, enables us to estimate
how a downclocking approach should perform in COTS
devices. It shows that the main consumption of the clock
goes to the baseline power (the power needed to simply
turn it on), and that the increment per MHz is low: 5.1(5)
mW/MHz. As a consequence, power-saving mechanisms
based on idle downclocking, such as [4], will not save too
much energy compared to the sleep state of COTS de-
vices. For instance, the x16 downclock of [4] applied to
this Atheros card throws an idle power consumption of
1.10(2) W in 11a mode, i.e., about a 15% of saving ac-
cording to Table A.3, which is low compared to the 70%
of its sleep state. This questions the effectiveness of com-
plex schemes based on downclocking compared to simpler
ones based on the already existing sleep state.

14

img/param.eps

References

[1] L. Feeney, M. Nilsson, Investigating the energy consumption
of a wireless network interface in an ad hoc networking en-
vironment, in: Proceedings IEEE INFOCOM 2001. Confer-
ence on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Soci-
ety (Cat. No.01CH37213), Vol. 3, IEEE, 2001, pp. 1548–1557.
doi:10.1109/INFCOM.2001.916651.

[2] X. Perez-Costa, D. Camps-Mur, IEEE 802.11E QoS and power
saving features overview and analysis of combined performance
[Accepted from Open Call, IEEE Wireless Communications
17 (4) (2010) 88–96. doi:10.1109/MWC.2010.5547926.

[3] P. Basu, J. Redi, Effect of overhearing transmissions on energy
efficiency in dense sensor networks, in: Proceedings of the 3rd
International Symposium on Information Processing in Sensor
Networks, IPSN ’04, ACM, New York, NY, USA, 2004, pp.
196–204. doi:10.1145/984622.984652.

[4] X. Zhang, K. G. Shin, E-MiLi: Energy-Minimizing Idle Listen-
ing in Wireless Networks, IEEE Transactions on Mobile Com-
puting 11 (9) (2012) 1441–1454. doi:10.1109/TMC.2012.112.

[5] Using a Unity Gain Buffer (Voltage Follower) with a DAQ De-
vice, White paper, National Instruments (Jan. 2014).
URL http://www.ni.com/white-paper/4494/en/

[6] IEEE Standard for Information technology–
Telecommunications and information exchange between
systems Local and metropolitan area networks–Specific re-
quirements Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, IEEE
Std 802.11-2012 (Revision of IEEE Std 802.11-2007) (2012)
1–2793doi:10.1109/IEEESTD.2012.6178212.

[7] J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, Y. Choi, An
experimental study on the capture effect in 802.11a networks, in:
Proceedings of the the second ACM international workshop on
Wireless network testbeds, experimental evaluation and charac-
terization - WinTECH ’07, ACM Press, New York, New York,
USA, 2007, p. 19. doi:10.1145/1287767.1287772.

[8] N. Santhapuri, R. R. Choudhury, J. Manweiler, S. Nelakuduti,
S. Sen, K. Munagala, Message in message mim: A case for
reordering transmissions in wireless networks, in: In HotNets,
2008.

[9] W. Wang, W. K. Leong, B. Leong, Potential pitfalls of the mes-
sage in message mechanism in modern 802.11 networks, in: Pro-
ceedings of the 9th ACM International Workshop on Wireless
Network Testbeds, Experimental Evaluation and Characteriza-
tion, WiNTECH ’14, ACM, New York, NY, USA, 2014, pp.
41–48. doi:10.1145/2643230.2643231.

[10] D. S. Berger, F. Gringoli, N. Facchi, I. Martinovic, J. Schmitt,
Gaining insight on friendly jamming in a real-world ieee 802.11
network, in: Proceedings of the 2014 ACM Conference on
Security and Privacy in Wireless & Mobile Networks,
WiSec ’14, ACM, New York, NY, USA, 2014, pp. 105–116.
doi:10.1145/2627393.2627403.

[11] CRAWDAD data set umd/sigcomm2008 (v. 2009-03-02), Down-
loaded from http://crawdad.org/umd/sigcomm2008/ (Mar.
2009).

[12] IEEE Standard for Ethernet - Section 6, IEEE Std
802.3-2012 (Revision to IEEE Std 802.3-2008) (2012) 1–
0doi:10.1109/IEEESTD.2012.6419740.

[13] J. Liu, L. Zhong, Micro power management of active 802.11
interfaces, in: Proceeding of the 6th international confer-
ence on Mobile systems, applications, and services - MobiSys
’08, ACM Press, New York, New York, USA, 2008, p. 146.
doi:10.1145/1378600.1378617.

[14] K.-Y. Jang, S. Hao, A. Sheth, R. Govindan, Snooze: energy
management in 802.11n WLANs, in: Proceedings of the Seventh
COnference on emerging Networking EXperiments and Tech-
nologies on - CoNEXT ’11, ACM Press, New York, New York,
USA, 2011, pp. 1–12. doi:10.1145/2079296.2079308.

[15] A. Kamerman, L. Monteban, WaveLAN-II: A high-performance
wireless LAN for the unlicensed band, Bell Labs Technical Jour-
nal 2 (3) (1997) 118–133. doi:10.1002/bltj.2069.

[16] P. J. Havinga, G. J. Smit, Energy-efficient tdma medium ac-
cess control protocol scheduling, in: Asian International Mobile
Computing Conference, AMOC, 2000, pp. 1–10.

[17] E.-S. Jung, N. H. Vaidya, An energy efficient mac protocol for
wireless lans, in: INFOCOM 2002. Twenty-First Annual Joint
Conference of the IEEE Computer and Communications So-
cieties. Proceedings. IEEE, Vol. 3, 2002, pp. 1756–1764 vol.3.
doi:10.1109/INFCOM.2002.1019429.

[18] V. Baiamonte, C.-F. Chiasserini, Saving Energy during Channel
Contention in 802.11 WLANs, Mobile Networks and Applica-
tions 11 (2) (2006) 287–296. doi:10.1007/s11036-006-4480-x.

[19] B. Balaji, B. R. Tamma, B. S. Manoj, A Novel Power
Saving Strategy for Greening IEEE 802.11 Based Wire-
less Networks, in: 2010 IEEE Global Telecommunica-
tions Conference GLOBECOM 2010, IEEE, 2010, pp. 1–5.
doi:10.1109/GLOCOM.2010.5684071.

[20] R. Prasad, A. Kumar, R. Bhatia, B. R. Tamma, Uber-
sleep: An innovative mechanism to save energy in
IEEE 802.11 based WLANs, in: 2014 IEEE Interna-
tional Conference on Electronics, Computing and Commu-
nication Technologies (CONECCT), IEEE, 2014, pp. 1–6.
doi:10.1109/CONECCT.2014.6740349.

[21] R. Palacios, F. Granelli, D. Kliazovich, L. Alonso, J. Alonso-
Zarate, An energy efficient distributed coordination func-
tion using bidirectional transmissions and sleep periods
for ieee 802.11 wlans, in: 2013 IEEE Global Commu-
nications Conference (GLOBECOM), 2013, pp. 1619–1625.
doi:10.1109/GLOCOM.2013.6831305.

[22] R. Palacios, F. Granelli, D. Gajic, C. Liß, D. Klia-
zovich, An energy-efficient point coordination function us-
ing bidirectional transmissions of fixed duration for infras-
tructure ieee 802.11 wlans, in: 2013 IEEE International
Conference on Communications (ICC), 2013, pp. 2443–2448.
doi:10.1109/ICC.2013.6654898.

[23] R. Palacios-Trujillo, J. Alonso-Zarate, F. Granelli, F. H. P.
Fitzek, N. L. S. da Fonseca, Network coding and duty
cycling in ieee 802.11 wireless networks with bidirectional
transmissions and sleeping periods, in: 2015 IEEE Global
Communications Conference (GLOBECOM), 2015, pp. 1–7.
doi:10.1109/GLOCOM.2015.7417689.

[24] R. Palacios, G. M. Mekonnen, J. Alonso-Zarate, D. Kliazovich,
F. Granelli, Analysis of an energy-efficient mac protocol based
on polling for ieee 802.11 wlans, in: 2015 IEEE International
Conference on Communications (ICC), 2015, pp. 5941–5947.
doi:10.1109/ICC.2015.7249269.

[25] OpenFWWF - Open FirmWare for WiFi networks, Website:
http://www.ing.unibs.it/ openfwwf/ (2015).

[26] J. Neyman, On a new class of ’contagious’ distributions, appli-
cable in entomology and bacteriology, The Annals of Mathe-
matical Statistics 10 (1) (1939) 35–57.

[27] ITU-R, Allowable error performance for a satellite hypothetical
reference digital path in the fixed-satellite service operating be-
low 15 GHz when forming part of an international connection in
an integrated services digital network, S-series: Fixed-satellite
service, International Telecommunication Union, iTU-R Rec-
ommendation S.614 (feb 2005).

[28] D. Becam, P. Brigant, R. Cohen, J. Szpirglas, Validité du
modèle de neyman pour les processus d’erreurs sur des li-
aisons numériques à 2 et 140 mbit/s, in: Annales des
télécommunications, Vol. 40, Springer, 1985, pp. 17–25.

[29] D. R. Irvin, Monitoring the performance of commercial t1-rate
transmission service, IBM journal of research and development
35 (5.6) (1991) 805–814.

[30] B. Cornaglia, M. Spini, Letter: New statistical model for burst
error distribution, European transactions on telecommunica-
tions 7 (3) (1996) 267–272.

15

http://dx.doi.org/10.1109/INFCOM.2001.916651
http://dx.doi.org/10.1109/MWC.2010.5547926
http://dx.doi.org/10.1145/984622.984652
http://dx.doi.org/10.1109/TMC.2012.112
http://www.ni.com/white-paper/4494/en/
http://www.ni.com/white-paper/4494/en/
http://dx.doi.org/10.1109/IEEESTD.2012.6178212
http://dx.doi.org/10.1145/1287767.1287772
http://dx.doi.org/10.1145/2643230.2643231
http://dx.doi.org/10.1145/2627393.2627403
http://dx.doi.org/10.1109/IEEESTD.2012.6419740
http://dx.doi.org/10.1145/1378600.1378617
http://dx.doi.org/10.1145/2079296.2079308
http://dx.doi.org/10.1002/bltj.2069
http://dx.doi.org/10.1109/INFCOM.2002.1019429
http://dx.doi.org/10.1007/s11036-006-4480-x
http://dx.doi.org/10.1109/GLOCOM.2010.5684071
http://dx.doi.org/10.1109/CONECCT.2014.6740349
http://dx.doi.org/10.1109/GLOCOM.2013.6831305
http://dx.doi.org/10.1109/ICC.2013.6654898
http://dx.doi.org/10.1109/GLOCOM.2015.7417689
http://dx.doi.org/10.1109/ICC.2015.7249269

	1 Introduction
	2 Related work
	3 State transition times on 802.11 cards
	4 Nap design
	4.1 Micro-sleep opportunities in 802.11
	4.2 Practical issues
	4.2.1 Impact of capture effect
	4.2.2 Impact of errors in the MAC header

	4.3 Algorithm design

	5 Performance evaluation
	5.1 Evaluation with real traces
	5.2 Impact of timing constraints

	6 Conclusions
	Appendix A Energy consumption characterisation
	Appendix A.1 State consumption parametrisation
	Appendix A.2 Downclocking consumption characterisation

