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Abstract—5G networks will be characterized by their diversity
in terms of traffic patterns, multi-tenancy and heterogeneous
and stringent traffic requirements. Network softwarization is
a key enabler to cope with such management burden, as it
provides the ability to control all networking functions through
(re)programming, thus providing higher flexibility to meet hetero-
geneous requirements while keeping deployment and operational
costs low. In this article, we aim at experimentally validating
how Software Defined Networking (SDN) concepts can greatly
simplify network operation in future 5G operator networks. This
simplification is achieved by allowing to very easily create and
modify network services and thus customize network operation
based on the operator’s requirements. The main contribution of
this article is to present a prototype of an SDN-based architecture
in a real-life test-bed, where we evaluate the associated imple-
mentation costs and we confirm through experimentation that
novel complex services can be created with relatively low effort.

I. INTRODUCTION

Nowadays network technologies are experiencing a shift
towards softwarization. The key idea is to bring the flexi-
bility and reduced cost of software development to network
deployment. This idea is materialized by the Software Defined
Networking (SDN) paradigm, which moves the intelligence
residing in the network elements to a central controller, which
implements the network functionality through software. In tra-
ditional approaches, the network’s control plane is distributed
throughout all network devices, while SDN logically central-
izes the control plane. This removes the need of complex and
costly changes in equipment or firmware updates in order to
introduce new characteristics in the network, as only a change
in the software running at the controller is required. The main
advantage of this approach is that operators can benefit from an
increased flexibility to manage their networks and implement
new services.

Initial work on SDN focused on wired networks, though
its advantages are even more important for mobile wireless
networks. Indeed, in mobile networks users may change their
location over time, and therefore the flexibility provided by
SDN is not only beneficial for optimizing the traffic distribu-
tion inside the network, but it is also useful to adapt the way
traffic is steered after users’ movement. In particular, some of
the benefits of adopting SDN in mobile networks include the
following:
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• Modification of traffic engineering policies: With SDN, an
operator can easily change the traffic engineering policies
implemented in the network. This can be useful for many
reasons, such as for example: (i) to select a new gateway
for outgoing traffic, (ii) route all traffic through a given
firewall, or (iii) route certain traffic differently.

• Online traffic optimization: SDN does not only allow
to flexibly change the traffic engineering policies but it
also allows to execute them a finer granularity in terms
of (i) the timing involved in taking routing decisions,
and (ii) the traffic flows affected by such decisions. This
allows optimizing the way traffic is distributed, adapting
it as users move to new locations and load changes.

• Creation of novel services: SDN also allows treating
packets differently based on the user or the application.
This can be used to create novel services; for instance, the
gateway providing connectivity to a user can be selected
(among a pool of available ones) based on the location
privacy preferences/requirements of the user. If SDN is
combined with Network Function Virtualization, very
agile services creation can be achieved, as network func-
tions can be dynamically started and logically chained
to compose customized end-to-end network services.
Mobile network services can thus be deployed on the
fly, allowing network operators to gain control over their
network.

Note that the above includes a fairly wide wide range of
services which are enabled by SDN (which we refer to as
‘SDN-based services’). The main goal of this paper is to
provide proofs in a real-life environment of the benefits of
applying SDN concepts to deploy such services in terms of
easiness, flexibility and agility when creating them. To do so,
we quantify the effort involved for such service creation when
using an SDN-based architecture in mid-size test-bed, confirm-
ing one of the key advantages of the proposed framework.

II. NETWORK SERVICES: EXEMPLARY USE CASES

We next describe some representative examples of use
cases/services for mobile networks, covering a wide spectrum:
from functionality-oriented, to more complex and service-
oriented ones. These exemplary use cases will be later used to
evaluate the benefits, in terms of service creation time, of prop-
erly applying SDN concepts to mobile network architectures.
The list of identified use cases is not meant to be exhaustive.
Nevertheless, we believe that these use cases described next
are relevant to the SDN context where enhanced flexibility is
needed [1].



A. Smart and flexible mobility management

Future mobility management solutions will require in-
creased flexibility and shall be capable of adapting to the
particular characteristics of the different traffic flows as well as
to the heterogeneous nature of future Radio Access Networks
(RANs). Indeed, both the IETF and the 3GPP are currently
working on enhanced mobility architectures and mechanisms
providing this additional flexibility, e.g., enabling selective of-
fload of selected traffic to local breakout points when possible
[2], [3]. This is a clear example of the need for mechanisms
enabling powerful and dynamic traffic engineering policies.

Therefore, the mobility solutions should be capable of
(i) choosing the right access technology(ies) used by the
connected terminals, (ii) selecting the gateways and IP ad-
dresses assigned to each flow, based on its characteristics
and requirements, and, (iii) computing the forwarding paths
between the radio access points and the used gateways. To
achieve this goal, mobility mechanisms require an up-to-date
and enriched information regarding the status of the network
(e.g., gateway load). SDN is a key technology for gathering,
combining, and enriching the information regarding the status
of the underlying network.

To that end, [4] leverages SDN to offer connectivity man-
agement as a service (CMaaS) to application developers and
over-the-top service providers to support different types of
user mobility at different price levels. On another end, [5]
introduces an SDN-based mobility management for integrating
heterogeneous network technologies and optimizing the data
transmission costs. Similarly, [6] increases network flexibility
and efficiency by integrating through SDN resource, traffic,
and mobility management methods of mobile network ser-
vices. [7] summarizes the approach developed by the Mobile
Packet Core project within the Open Networking Foundation
(ONF) to integrate an SDN architecture into the mobile packet
core of an operator, assuming the existence of an NFV context
and proposing a unified control architecture considering both
SDN and NFV. Finally, 3GPP considers SDN and cloud-based
architectures since R14 to improve network management [8].

B. Location privacy

Tracking the users’ location has become very common
in recent years as a way to provide customized services.
However, this poses several privacy issues [9] which led
to the proposal of many counter-measures to preserve user
location [10] [11]. Notwithstanding, latest distributed mobility
management proposals,1 which envision a flat network archi-
tecture with multiple distributed gateways, could unveil more
information about the user location than desired. Indeed, such
mechanisms route the traffic of a mobile user through the
geographically-closest gateway for traffic optimization reason.
One of the security issues raised by such solutions is that they
allow tracking the (approximate) location of a mobile user,
by monitoring the source IP address of her packets (which

1Examples of these approaches are the ones being developed by the IETF
Distributed Mobility Management WG: https://datatracker.ietf.org/wg/dmm/

reveals the user’s gateway), or the service consumed in case
it is provided close to the gateway [12]. An obvious way
of preserving users’ location privacy is to always use the
same gateway for a given user, independently of her location;
however, this has a very high cost for the operator as traffic
would be frequently routed through non-optimal paths.

To address the above problem, one could think of a new
privacy service that works as follows: (i) for those users that
want to preserve their privacy, and contract the corresponding
service, a fixed gateway could be used, and (ii) for the other
users, we could simply use the best gateway from a traffic
engineering perspective. Note that this approach is in line with
the recent developments at the IETF, where solutions are being
discussed to allow taking into consideration application/user
needs when selecting the right anchor/IP address [13]. Such a
solution has a number of advantages: (i) it preserves privacy of
those users that require it, (ii) it has a low cost for the operator
in terms of traffic engineering, as efficient routes are used for
most traffic, and (iii) it provides the means to the operator
to receive a revenue from those users willing to contract this
service. This is a good example of a new service provided by
using modified traffic engineering policies.

C. Dynamic Service Composition with Network Function Vir-
tualization

Network Function Virtualization (NFV) is a new trend that
aims at transforming the way telecommunications operators
build, manage and exploit their networks, relying on software
virtualization techniques. NFV involves the implementation
of network functions in software and its execution on non-
specialized and shared hardware. Thus, CAPEX and OPEX are
reduced [14], as maintenance and updating-related tasks are
simplified, and new functions can be introduced via software.
SDN is typically seen as complementary with NFV as: (i) NFV
can support SDN by providing the infrastructure upon which
the SDN software can be run, and (ii) SDN capacity to
create network abstractions can help NFV achieve its goals
by enhancing performance. More recently, both the NFV and
SDN communities have analyzed in more detail how they can
co-exist and mutually benefit [15], [16]. In an NFV context,
SDN is often viewed as a tool to (i) enable a flexible and fast
interconnection of resources at the NFV Infrastructure (NFVI)
level, and (ii) facilitate fast configuration of connectivity
of Virtual Network Functions (VNFs) at service level. We
elaborate a bit more on this next.

A key feature of NFV is that it enables faster innovation by
supporting dynamic, adaptive and quick service deployment.
Since network functions can be run on general purpose hard-
ware hosted on data centers, the operator can dynamically react
to network and user demand changes by launching services as
required and where required. This usually requires the chain-
ing of simpler, independent network functions to compose a
more complex service. In order to chain these (virtual) network
functions, we need to be able to dynamically adjust routing
in order to forward traffic to the location where the corre-
sponding function is being executed. At this end, SDN can



enable a much easier service function chaining/composition
by automatically creating the required forwarding paths. Both
ONF and ETSI NFV have acknowledged this in their latest
architecture framework updates [15], [16].

D. Multi-tenancy

In order to meet the growing demands of users, network
deployments are increasing their density of access points/base
stations. At the same time, the cost of deploying and maintain-
ing these new dense deployments is also increasing, reaching
a point where operators are looking for innovative ways of
reducing their costs. An analysis of how the adoption of NFV
and SDN will impact on the reduction of operators’ costs
is provided in [14], where authors analyze if the intuitive
statement often made about the cost reduction originated
from the flexibility and simplification enabled by SDN/NFV
actually holds. Authors provide a view into the operational
costs of a typical service provider and then discuss how the
NFV/SDN attributes can be expected to influence the business
equation. One of the possible mechanisms identified to reduce
costs is the sharing of the network infrastructure, moving
into a world where network deployments are multi-tenant by
default. In this way, several operators use the resources of a
network simultaneously. This requires of complex interactions
between the operators and network controllers ensuring the
correct utilization, isolation and sharing of resources.

Online traffic optimization mechanisms may be used to
ensure the correct isolation and sharing of network resources,
so enforcing multi-tenancy in next generation networks. These
mechanisms require an up-to-date view of the status of the
network. Such requirement can be fulfilled by SDN which
enables the continual monitoring of the network. Moreover,
SDN allows the abstraction of different virtual network infras-
tructures, which control can be delegated to each tenant. Each
operator sharing the infrastructure can operate and manage
their virtual view of the network. This concept has been
already explored by the Open Network Foundation in [17]. In
this document, initial thoughts on how SDN, and OpenFlow
in particular, can be used to provide recursion of controllers,
enabling the sharing of the infrastructure. Complementary
virtualization technologies (i.e., cloud sharing) are envisioned
to support multi-tenancy in NFV along with SDN. Indeed,
for a full multi-tenancy environment all the components in
the network (switches, data centers, etc.) must support multi-
tenancy. Architectures and Proof-of concept demonstrations in
the literature, such as [18]–[20], further explore the integration
of SDN and NFV in a multi-tenant scenario.

III. A FUNCTIONAL ONF-BASED ARCHITECTURE FOR
QUICK SERVICE PROVISIONING

In this section we first provide some background on SDN
related technologies, by presenting the architecture framework
defined by the Open Network Foundation (ONF). Then we
present and ONF-based architecture of SDN controller plane
that would be implemented to experimentally assess its feasi-

bility to significantly improve flexible and fast service creation
in mobile networks.

A. ONF architecture framework

The ONF architecture specifies, at a high level, the reference
points and open interfaces that enable the development of
software that can control the connectivity provided by a set
of network resources and the flow of network traffic though
them, along with possible modification of traffic that may be
performed in the network. The architecture only describes ba-
sic functions that are required, but does not preclude additional
functions, allowing a wide range of scenarios and compliant
implementations. Consequently, the architecture envisions par-
ticular services or applications to interrogate and manipulate
the resources in the network [17].

Fig. 1 illustrates the ONF-based architecture, which is
composed of four planes: Data, Controller, Application, and
Management, which is transversal to the first three [17]. The
Data plane comprehends several network resources and is in
charge of handling the traffic in the data path according to
the instructions received from the Controller plane. Examples
of operations in this plane are switching, routing, packet
encapsulation, etc. Network resources expose their capabilities
and receive instructions on how to handle the traffic via
the D-CPI interface which connects the Data plane with the
Controller plane. The OpenFlow protocol [21] is the most
widely spread protocol for this interface.

The Controller plane is in charge of configuring the appro-
priate rules on the network resources as to enforce a specific
network behavior. To accomplish this task, the controller
plane includes several cooperating modules devoted to the
creation and maintenance of an abstract resource model of the
underlying network which is then exposed to the Application
plane via the A-CPI interface. Although there is no standard
protocol for the A-CPI interface, it is commonly implemented
through Rest API.

The Application plane comprises several applica-
tions/services whose main goal is to define the network
behavior and may have exclusive control of a set of exposed
resources (e.g., network gateway). Applications may belong
either to the network operator or to clients with the former
usually having a broader scope and higher privileges than
the latter. It is worth noticing that applications that primarily
support the operation of the data plane (e.g., network topology
discovery) are not considered part of the Application plane.

The Management plane spans its functionality across all
planes and is in charge of monitoring, configuring, and main-
taining the network. These functionalities are largely the same
as in the Controller plane, therefore the two planes (Man-
agement and Controller) are often seen as a continuum [17].
However, a clear distinction between the two planes resides
in the entities interacting with them: a human operator in the
Management plane and applications in the Controller plane.2

2An extensive discussion on the differences between Management and
Controller planes can be found at [22].
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Fig. 1. Implemented SDN architecture.

Subsequently, the two planes differ in terms of (i) timescale
and reactiveness, whereas the Management plane works at
longer timescale than the Controller plane, and (ii) scope, with
the Management having having greater scope and privilege.
Indeed, it is in the scope of the Management plane to perform
via the D-MPI interface the initial configuration of the network
resources in the Data plane, such as the assignment of the SDN
controller(s) they need to connect to and the configuration
of queues and ports. This configuration is commonly done
via the OF-Config protocol [23] in case of OpenFlow-capable
switches. In the Controller plane, the Management uses the
C-MPI interface to configure the policies defining the scope
of the control given to the SDN applications, to monitor the
performance of the system, and to configure the parameters
required by the SDN controller modules. In the Application
plane, Management configures through the A-MPI the param-
eters of the applications and the service level agreements. In
addition to these interfaces, the Management plane provides
a dashboard to network operators for configuring and tuning
the network at each layer.

B. Controller plane: design and implementation
ONF provides an architecture framework and some design

guidelines, which can then be taken as starting point when

specifying a functional and operational system. In this section
we undertake the challenge of identifying and designing those
modules required for a comprehensive, implementable and op-
erating architecture tailored to quick service provisioning. For
that reason, we adopt a service-oriented architecture whereas
services can be activated by triggers fired upon incoming
events. Notably, the principles of service-orientation are in-
dependent of any vendor, product, technology, or implementa-
tion. In addition, we also adopt an event-driven communication
paradigm as a complement of our service-oriented architecture.
This paradigm enables the creation of loosely coupled soft-
ware components and services while increasing responsiveness
compared to asynchronous communication, being this aspect
fundamental in an environment like a mobile network.

Based on the guidelines set by the general ONF framework,
we designed the Controller Plane modules marked in blue in
Fig. 1. These modules form the Network Engine, which sup-
ports multi-tenancy and implements the following functions:
(i) discovery of the network topology and building of the
resource model for the different tenants, and (ii) computation
of the paths within the network and exposure of a management
interface for the paths tailored to the different tenants. The
Topology Discovery module is in charge of discovering the



TABLE I
CONTROLLER PLANE IMPLEMENTATION DETAILS

MODULE DATA REQUIRED EVENTS REQUIRED EVENTS PROVIDED API

Topology Discovery Connected netw. nodes Netw. node enter/leave/update Netw. node enter/leave/update Get netw. node
Link appear/disappear/update Get link

Topology View Connected netw. nodes Netw. node enter/leave/update Netw. node enter/leave/update Set network view
Available links Link appear/disappear/update Link appear/disappear/update Delete network view

Get network view
Get netw. node
Get link

Path Computation Network view Netw. node enters/leaves/update Paths computed Set traffic class constraint
Link appear/disappear/update Set path

Delete path
Path Management Available paths Paths computed - Set path for flow

Delete path for flow

network topology, while the Topology View builds one or more
abstract resource models of the network depending on the
multi-tenancy configuration received from the Management
plane. The Path Computation module uses these abstract
resource models to compute the optimal paths for the different
tenants, traffic classes, and requirements, such as latency and
bandwidth. The Path Management ensures that each path set-
up request received by applications can be accomplished (i.e.,
QoS requirements) and does not violate any constraint (i.e.,
maximum capacity of the links) or policy (e.g., SLA agreement
of the tenant). Table I reports the implementation details of
each module in terms of data and events required, and the
API provided to external modules.

The Topology Discovery module implements the Link Layer
Discovery Protocol (LLDP [24]) in order to discover the
network topology. The Topology Discovery module raises an
event whenever a network node enters or leaves the network,
or any change occurs on the network node ports. Similarly, an
event is raised whenever a link appears or disappears in the
network or suffers any changes (i.e., available bandwidth).

The Topology View requires the knowledge of the connected
network nodes and the available links in order to build
an adjacency list graph representation of the network. Such
representation is enriched with additional information about
network nodes’ capabilities (e.g., power profiles, load of the
CPU and performance statistics, traffic isolation, etc.). Next,
the Topology View module creates an ad-hoc network view
for each tenant configured by either the Management plane or
the Multi-tenancy application (see Sec. III-C). Such view may
be partial and only include a subset of the physical resources
or capabilities. With the purpose of maintaining an up-to-date
view of the network, the Topology View module subscribes
to the events provided by the Topology Discovery module. In
turn, the Topology View broadcasts for each tenant (according
with their current configuration) an abstracted and enriched
version of the events offered by the Topology Discovery. For
instance, if a link is not part of a given tenant’s view, any
event related to that link will not trigger a view update for
that tenant. In addition, the module maintains an up-to-date

vision of the network by periodically querying the status of
each link and network node.

Whenever the Topology View announces a change (or
update) in the network for a given tenant, the Path Com-
putation module updates the network view for that tenant
and (re)computes the paths within the network. The computa-
tion occurs for different traffic classes and constraints. MAC
bridges [25], M2M communications [26], D2D signaling [27],
and fronthaul traffic [28] are examples of traffic classes
subject to different constraints. Once the module has computed
the paths, it raises a path-update event for that tenant. The
module is kept as simple as possible implementing a standard
Dijkstra’s algorithm without any further functionality. If any
advanced feature is required, the module’s behavior can be
overridden by an external application through the exposed API
(i.e., Traffic Engineering).

The Path Management module works on the paths provided
by Path Computation (which are specific to each tenant and
updated periodically) and exposes a Rest interface toward ap-
plications. This API is used to request the setup of paths within
the network in the scope of a single tenant. Applications ask
Path Management to set-up (or remove) a path for a given flow.
A flow may have several requirements such as bandwidth,
latency, packet loss and nodes to traverse. At this point, the
module ensures that the path can be configured by checking
whether the requirements can be fulfilled and acknowledges
accordingly the requesting application. Besides, the module
can be configured by external applications to apply constraints
to specific requests. Finally, the module uses a combination
of MPLS-TP [29], which is a widely used transport network
protocol, and OpenFlow meters to enforce traffic privacy and
isolation in the Data plane. We note that the choice of using
MPLS-TP is mainly driven by the limitation of the OpenFlow
switch implementation used for our experimental evaluation
in Section IV. An alternative defined in OpenFlow [21] is
Provider Backbone Bridge Traffic Engineering (PBB-TE) [30],
which however is not supported in our reference OpenFlow
switch implementation. More details on how to implement
MPLS-TP with OpenFlow switches can be found in [31].



TABLE II
APPLICATION PLANE IMPLEMENTATION DETAILS

MODULE DATA REQUIRED EVENTS REQUIRED EVENTS PROVIDED API

IPv6 Connected switches Switch enter/leave/update Neighbor appear/disappear Enable IPv6 Ndisc on switch
Disable IPv6 Ndisc on switch

Mobility Management Available gateways Switch enters/leaves/update UE anchors selected Configure gateway selection
Nodes distance Paths computed
UE profiles UE connection

Privacy UE profiles UE profile update - -
Traffic Engineering Network view Switch enter/leave/update - Define path

Link appear/disappear/update Delete path
Service Function Chaining Network view Switch enters/leaves/update - -

Paths computed
Multi Tenancy Network topology Switch enters/leaves/update - Define network view

Link appear/disappear/update Delete network view

See [32] for a comparison between MPLS-TP and PBB-TE.

C. Application Plane: Design and Implementation

The modules implemented in the Application Plane provide
the functionality required by the use cases described before
in Section II. These modules are designed as stand-alone
pieces of software which subscribe to the events offered by
the Controller plane and make use of the exposed APIs to
trigger changes in the network. These modules are reported as
green boxes in Fig. 1.

The IPv6 module provides basic IPv6 connectivity to the
UEs. This module is enabled per-tenant basis and is a client
application, thus working with limited scope and privileges.
The module implements the IPv6 Neighbor Discovery Proto-
col [33] which is responsible for features such as address auto-
configuration, duplicate address detection, and maintaining
reachability information. Similarly, an IPv4 module may be
implemented providing DHCP [34] and ARP [35] functions.

Mobility Management is responsible of choosing the IP
gateways for the UEs in the network. Similarly to IPv6,
this module is also a client application and works on per-
tenant basis with limited scope and privileges. Whenever a UE
connects to the tenant’s network (or performs a handover), the
module may select different gateways for the UE depending
on her profile. For example, one gateway may be selected
for real-time traffic while another for best-effort traffic. The
selection is also influenced by the proximity of the gateways to
the UEs. Doing so, the module offers a two-fold benefit: UEs
are always served by optimal gateways and the network core
is offloaded. Once the gateways have been selected, Mobility
Management asks Path Management to configure the paths for
the UE between the selected gateway(s) and the access point(s)
the UE is attached to.

The Privacy module is a client application and implements
the location privacy service. The aim of the service is to
maintain the same gateway for those UEs that want to hide
their location changes from external nodes. This can be easily
achieved by overriding the default gateway selection policy
of Mobility Management. Privacy assigns a fixed gateway to
the privacy-enabled UEs and communicates the assignment to

Mobility Management which will always select that gateway
for those UEs.

The Traffic Engineering module is an operator application
and decides how to route different traffic classes within the
network. This module works with higher privileges and scopes
than client applications and operates either on physical or
tenants network. First, the module defines the path for a
given traffic class or constraint between two points in the
network. Next, the Traffic Engineering module contacts the
Path Computation one, and overrides the decision made by the
latter. In addition, the network operator can define manually
the paths using the module’s API. Finally, while many traffic
engineering optimization problems have been proposed in
literature [36], this module implements the linear programming
formulation for MPLS networks as proposed in [37] to reduce
the congestion level of the network.

The Service Function Chaining module is an operator
application and facilitates the deployment of new services
in the network. This module receives the configuration over
the Management plane and contacts Path Management for
configuring the constraints regarding the requested service.
The Service Function Chaining module has access to the
up-to-date view of available resources and connectivity from
the Topology View module. This view is used to compute
a logical overlay connection among the (physical and vir-
tual) network functions composing a given service (chain).
This logical overlay is then passed to the Path Management
module to compute and implement the required links. The
Path Management module does not only consider the logical
path imposed by the service needs (e.g., order and location
of the network functions that need to be interconnected),
but also the requirements on the connectivity itself, e.g., in
terms of bandwith, latency, isolation, geographical/topology
constraints, affinity considerations, etc. For example, if a
firewall is implemented as virtualized function on a gateway,
the Service Function Chaining module interacts with the Path
Management module, overriding its default behavior in such
a way that all the UEs traffic associated to that gateway will
pass through the firewall location.



TABLE III
EVALUATION OF IMPLEMENTATION EFFORT

MODULE LINES OF CODE TIME SPENT

Controller Modules 3218 95 hours

New Services 1589 20 hours 40 minutes

Mobility Management 356 4 hours
Privacy 153 40 minutes
Traffic Engineering 192 1 hour
Service Function Chaining 216 1 hour
Multi Tenancy 672 14 hours

The Multi-tenancy functionalities of the network are pro-
vided by different complementary components. On the one
hand, the architecture and internal modules of the controller
are multi-tenancy oriented since inception. One example of
this design, can be found on the Topology View module
which, by default, maintains a ”real” or physical view of the
network, while keeping multiple abstract ”views” used by the
different tenants. In addition, the allocation of resources to
the data plane is done through a combination of an encap-
sulation supporting resource isolation (e.g., MPLS-TP) and
traffic shaping (provided by the OpenFlow meter primitive and
software queues configured at the resource level). On the other
hand, this functionality is used in combination with the Multi-
tenancy module. This module is responsible of managing the
creation of different virtualized network views and to slice the
resources in the network. The multi-tenancy module retrieves
the physical network view from the Topology View module
and it builds different views of the network according to the
configuration received over the Management plane and to the
switches capabilities (i.e., traffic isolation, resource reserva-
tion, etc.). Each view is a subset of the network resources
and the module ensures that the sum of the network views’
resources does not exceed the ones of the physical network
by implementing a simplified version of the admission control
mechanism for new tenant requests as proposed in [38].3 Once
the module assures that the view is consistent, it contacts
Topology View and creates the network view for a given
tenant. From this moment onwards, all the other modules
(i.e., Path Computation and Path Management) will maintain
multiple network views, each for tenant. Whenever a tenant
contacts one of those modules, the module firstly identifies the
corresponding view associated with the tenant, and secondly
runs the required procedures as described in the previous
section. Similar approaches to this implementation of multi-
tenancy in two components, one integrated in the architec-
ture (providing supporting functions) and a second module
implemented as an application (providing the bookkeeping of
resources) can be found in the literature [39].

3For the sake of evaluation simplicity, we only consider the network
capacity constraint.

TABLE IV
PROGRAMMER COMPETENCY MATRIX

SKILL / LEVEL 0 1 2 3

Data structures X
Algorithms X
System programming X
Build automation X
Automated testing X
Problem decomposition X
System decomposition X
Code readability X
Defensive code X
Error handling X
API design X
Framework design X
Requirements definition X
Languages experience X
Platforms experience X
Domain knowledge X
Tools knowledge X
Upcoming technologies X

IV. PERFORMANCE AND FUNCTIONAL VALIDATION

The main goal of this paper is to provide evidence in a real-
life environment of the benefits of applying SDN concepts to
mobile networks in terms of easiness, flexibility and agility
when deploying new services. To do so, we deployed an SDN
test-bed based on off-the-shelf hardware running GNU/Linux.

A. Evaluation of service creation effort

In the following, we leverage our implementation to quan-
tify the actual effort required for this. Even though it is
generally claimed that reducing service creation time is one
of the key advantages of SDN, to the best of our knowledge
ours is the first attempt to quantify this benefit.

The effort required to implement a new service depends on
the complexity of the task that the service aims to accomplish,
and the ease with which the platform that implements it can
be used. While the complexity of the task is determined by
the use case, the implementation effort is highly influenced by
the tools offered to the developers. The goal of this section is
therefore to evaluate the developer-friendliness of our archi-
tecture. In particular, we quantify the implementation effort
associated to the exemplary use cases reported in Section II.

The network controller runs Ryu4 as component-based
SDN framework. Ryu APIs natively support the event-driven
communication paradigm allowing a simpler prototyping of
our architecture. Moreover, the Topology Discovery module
is already provided by Ryu. All the other modules of the
architecture have been implemented using Python. In the next
paragraphs, we evaluate the Controller and Application Plane
implementations efforts.

Table III reports the Implementation effort, both in terms of
lines of code and the development time spent. Those figures

4http://osrg.github.io/ryu/



are of course specific to the implementation choices we made
(e.g., the use of the Ryu controller and the Python language)
and to the developer, whose skills are reported in Table IV in
the form of a programmer competency matrix5 which is com-
monly used for assessing a specialist’s competences [40]. We
believe that they provide a valuable insight on the complexity
of our architecture and an good estimation of the required
effort, although there might be differences across developers.
We divide the architecture components in two groups: the core
“Controller” modules, which provide the basic functionality of
the architecture, and the “New services” modules, which build
on the former to implement the advanced functionality of the
network. As it can be seen in the table, the core modules
require a relatively large implementation cost (almost 100
hours); however, this cost is incurred only once. In contrast, the
application involve a much lower cost (approx. one fifth of the
core modules for all the considered functionality). In general
terms, this shows that our ONF-based architecture enables
network operators to provision new services with a very low
service creation time. We next summarize the implementation
challenges of these modules.

The implementation of the New Services modules required
relatively little time. The Multi Tenancy module was the most
challenging application to implement (more than two thirds of
the overall effort): while the implementation of its interface
was straightforward and its engine to ensure consistency is
relatively simple, we had to devote significant time in its test-
ing and validation to proper handling concurrent requests. The
implementation of the other services required much less time:
Mobility Management6 and Privacy modules required less than
5 hours and basically consist of a smart algorithm for gateway
selection, while Traffic Engineering module, which is based
on a solver for the linear programming formulation,7 required
one hour (i.e., one twentieth of the total effort implementing
new services). The implementation of the Service Function
Chaining is another key feature of our implementation, as it
provides the network operator with an interface for defining
and modifying paths between network elements, requiring a
similar implementation effort.

To support the development of the above modules, we
leveraged continuous integration (CI) tools for streamlining
the code testing and debugging. For automatic testing we
used a local installation based on Docker8 of Travis CI,9

which provides a customizable service for building and testing
software projects. A series of unit tests are hence executed
to (i) verify the correctness of the modules implementation
against the expected behavior of the events and API, as defined
in Table I and II, and to (ii) attest the robusteness of the
implementation against unexepcted inputs or events. Moreover,
we used Codecov10 for assessing the coverage of the unit

5http://sijinjoseph.com/programmer-competency-matrix/
6This module is available for download at: http://odmm.net/openflow/
7SciPy.org, Linear Programming Solver: https://docs.scipy.org/
8https://www.docker.com/
9https://travis-ci.org/
10https://codecov.io/

tests on the implemented code as to ensure that any line
being developed is properly tested. While those tools provided
the necessary testing functionalities in the context of this
evaluation, we acknowledge that a more complete suite, like
the one proposed in [41], is advisable to better automatize the
development process and thoroughly detect undesirable bugs,
as highlighted in [42].

For the sake of clarity, all the controller modules evaluated
in this article have been implemented on a single controller.
However, regardless the implementation of each controller
module, the interface toward the Application plane remains
the same and does not require any change on the applications
thanks to the adoption of a service-oriented architecture.
Indeed, one of the key benefits of such architecture is that
interactions occur between loosely coupled software compo-
nents that operate independently. Moreover, this architecture
allows for service reuse, making it unnecessary to rewrite all
the components when upgrades/modifications are needed only
affect a subset of the modules. As a result, the evaluation of the
effort required to implement the applications is still accurate
although being developed on a proof-of-concept.

Notwithstanding, we note that our prototype faces the same
challenges of centralized systems, in terms of reliability,
resiliency and scalability. Because of these issues, we envision
that a deployment of the controller in a realistic scenario might
be distributed across a number of separate servers. Therefore,
we envision that each controller module can be implemented in
a distributed fashion relying on well-known high performance
distributed computing (HPDC) techniques. For example, the
Topology Discovery and Topology View modules can be
implemented using a divide and conquer approach where the
whole network domain is split in sub-domains and the global
network view is created by combining all the partial views.
Path Computation might follow the same approach whereas
the computed paths are exposed via a distributed hash table
(DHT). In this way, the module can scale to large number
of paths and to handle continuous updates and requests.
Furthermore, additional applications can be implemented in
order to support and interoperate with legacy modules (e.g.,
ANDSF, HSS, AAA, IMS) following the same approach of
our implementation.

B. Experimental validation

The experimental validation of our implemented architec-
ture is based on a test-bed composed of 14 switches, a network
controller, and a UE. All the switches and the controller are
interconnected through Ethernet. Moreover, 3 switches expose
IP gateway capabilities and 6 switches offer IEEE 802.11b/g
connectivity to the UE.

As our SDN architecture does not devise any intervention on
the UE, its hardware and software requirements are simply an
IEEE 802.11b/g interface, and a standard IP stack. Employing
IEEE 802.3 and 802.11 as link layer technologies does not
affect the implementation nor the evaluation of our architecture
since the modules work on an abstract network view as de-
scribed in Section III. Clearly, the adoption of a different link
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layer technology may require some changes in the Network
Engine which is in charge of building the network model.

All the switches run Open vSwitch 2.3.3 LTS11 which
provides an OF 1.3 interface. We then use Linux traffic-
control12 to provide QoS capabilities to the switches.13 The
connection between Open vSwitch and the SDN controller
is performed out-of-band through standard OFP mechanisms.
To evaluate the performance of our implementation, we con-
figured the network topology shown in Fig. 2 on our test-
bed. We choose Mobility Management as representative case
for the performance assessment since is a key function of a
mobile network, and very sensitive to incurred latency. We
focus on the handover delay (i.e., the time an UE does not
have connectivity as a result of a change of access point), by
analyzing the components that affect more the overall latency.
For this analysis, a node external to the test-bed generates ping
traffic destined to the UE every 2ms. We performed a total
of 1000 handovers – and measured the average and standard
deviation of the handover delay – by moving the UE from one
access point to another, covering the cases in which the UE is
simultaneously using 1, 2 and 3 gateways – so we can assess
the impact of the number of gateways assigned.

The handover delay analysis can be studied looking at 3
different aspects: (i) the Link Layer handover: time elapsed
since the old radio link is torn down until the new one is
established; (ii) the IP Layer configuration: time required
by the UE to obtain network layer connectivity (including
the Link Layer handover); and (iii) the IP flow recovery:
time interval during which an IP flow is interrupted due
to the handover (including both the Link Layer and the IP
Layer configuration). Our results show that for the case of 3
gateways, the Link Layer handover was 12.7ms (σ = 4.4ms),

11http://openvswitch.org/
12http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
13http://docs.openvswitch.org/en/latest/howto/qos/
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the IP Layer configuration took 25.9ms (σ = 4.9ms), and the
IP flow recovery required 29.2ms (σ = 6.7ms). Fig. 3 shows
all the measured results which are compared against [43], a
legacy – non-SDN – implementation of an analogous mobility
protocol evaluated on a test-bed of similar characteristics. It
can be noticed that our solution takes few tens of milliseconds
to provide the UE with the IPv6 configuration, and the Link
Layer switch time is the major component. These figures
are aligned with the results presented in [43]. Moreover,
we observed a 6ms gap (MN-gap in Fig. 3) between the
instant the UE completes the Link Layer handover, and the
time it starts the IP Layer configuration. The processing time
required by the network controller to run all the algorithms
is about 1ms (NC-processing), while the time necessary to
configure the OpenFlow rules on the network nodes is about
2ms for each gateway (OF rule conf.). The network controller
spends 1ms for building and sending the IPv6 signaling
used to convey the UE’s IPv6 prefixes (RA preparation). The
remaining time in the overall IP Layer configuration latency
is due to the transmission delay (Tx time).

By comparing the above results with the standard latency
target of 50ms for path restoration in transport networks [44],
[45], we can notice that our implementation meets that target
with a worst case of 35.9ms (µ = 29.2ms, σ = 6.7ms) with 3
gateways. It is worth noticing that such result includes the time
required to perform the Link Layer handover (12.7ms) and the
MN-gap (6ms), which are independent of the implemented
application. Nevertheless, the 50ms target is for the overall
system and by focusing only in network controller operations,
it can be noticed how the whole handover procedure is
managed in about 5ms and depends linearly on the number
of gateways and corresponding paths. On the contrary, the
processing time at the network controller is constant for each
UE. This result indicates that our prototyped SDN architec-
ture and applications are able to react promptly to network
events, especially because it has been obtained on commodity
hardware without any kind of optimization.



V. CONCLUSIONS

Future networks will carry more traffic, and this traffic
will exhibit disparate characteristics, imposing very different
requirements and constraints on the network design. Current
network architectures are very rigid and inflexible in terms
of the way they manage users’ traffic, and are not capable
either of quickly deploying new services on demand to cope
with the dynamic needs from the customers. Therefore, future
network architectures should be characterized by an enhanced
flexibility. We believe SDN is the key tool to provide this
required flexibility. In this article we have adopted the general
SDN framework proposed by the ONF and fully designed a
compatible architecture suitable for future network operators.
By implementing our proposed architecture and testing it on
a medium sized test-bed, we have demonstrated how easy and
quick would be for an operator to create and put into operation
new (SDN-based) services.
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