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POSENS: a practical open-source solution for
end-to-end network slicing

Gines Garcia-Aviles, Marco Gramaglia, Pablo Serrano, Albert Banchs

Abstract—Network slicing represents a new paradigm to op-
erate mobile networks. With network slicing, the underlying
infrastructure is “sliced” into logically separate networks which
can be customized to the specific needs of their tenant. Hand-on
experiments on this technology are essential to understand its
benefits and limits, and to validate the design and deployment
choices. While some network slicing prototypes have been built
for the radio access networks (RANs), leveraging on the wide
availability of radio hardware and open source software, there
is currently no open source suite for end-to-end network slicing
available to the research community. In this paper we fill this
gap by developing an end-to-end network slicing protocol stack,
POSENS, which relies on a slice-aware shared RAN solution.
We design the required algorithms and protocols, and provide
a full implementation leveraging on state-of-the-art software
components. We validate the effectiveness of POSENS in achieving
tenant isolation and network slices customization, showing that
no price in performance is paid to this end. We believe that
our tool will prove very useful to researchers and practitioners
working on this novel architectural paradigm.

I. INTRODUCTION

5G Networks will change the way in which cellular con-
nectivity is provided. High data rates (50+ Mbps), extensive
coverage (10+ Tbps/Km2) and low latencies (<5 ms) are
just few of the target Key Performance Indicators (KPIs)
to be fulfilled by the next generation mobile networks [1].
However, not all services are going to require these KPIs,
as different applications will have different requirements. To
efficiently provide services that meet these requirements, one
key enabling technology is network slicing [2].

A network slice consists of a set of resources assigned to a
tenant to provide a specific service.1 Those resources are both
network resources (e.g., spectrum, link capacities), and cloud
resources (i.e., the infrastructure required to run the Virtual
Network Functions, VNFs). Tenants could be mobile network
operators providing enhanced Mobile Broadband (eMBB), or
third party verticals [3] that use a slice specifically tailored
to their needs (e.g., ultra-low latency). To satisfy the service
requirements of each tenant, a different network slice will
be instantiated to provide the corresponding service. This
ability to provide highly customizable services over the same
shared infrastructure will increase the revenue opportunities,
and drastically reduce the costs of 5G networking, due to the
improvements in efficiency.

The advantages of network slicing are clear [4], and there
is a wide consensus among the industrial and standardization
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communities on the need to adopt this technology. However,
we lack a thorough experimental validation of its effective-
ness, e.g., on the gains when using different mechanisms for
orchestrations, or under different traffic scenarios. While there
are implementations for some of the the enablers for network
slicing, to the best of our knowledge there is no solution
that implements end-to-end network slicing. More specifically,
virtualization is a mature technology that has been extensively
used for the wired elements, with technologies such as e.g.
OpenStack2 and Kubernetes3 for virtual machine and contain-
ers management, respectively. However, the situation is less
mature for the wireless access part, Orion [8] being among
the few proposals to implement slicing at the Radio Access
Network (RAN) that have been tested in practice.

In this paper, we fill this gap with the design of POSENS, a
practical open-source solution for end-to-end network slicing
that comprises all the elements of an end-to-end mobile
network: the User Equipment, the RAN and the Core Network.
POSENS implements a “slice-aware shared RAN” solution,
enabling the effective and efficient sharing of the network
resources between different tenants that can independently
provide different services.

While POSENS is based on state-of-the-art open-source
solutions for mobile networks, these are substantially extended
with the following additional implementations: (i) a multi-
slice UE, (ii) a slice-aware shared RAN solution, and (iii)
specific multi-slice Management and Orchestration (MANO)
capabilities, all of which are needed to provide an end-to-end
solution for network slicing.
POSENS provides a complete solution to instantiate end-to-

end slices, using commodity hardware and Software Defined-
Radio (SDR) boards for development. Our results show that it
supports the efficient instantiation of independent, customiz-
able network slices. This open-source solution is available4 for
developers to put their slicing ideas in practice. This tool will
thus support researchers and practitioners experimenting with
different algorithms and mechanisms for network slicing. The
codebase includes the most important network elements and
the MANO part. POSENS can run on any compliant physical
hardware, independently of the deployed transport network.

The rest of this paper is organized as follows. Section II
provides a discussion on the building blocks needed to imple-
ment the network slicing concept, including a review of open-
source software projects in the field of virtualized wireless

2https://www.openstack.org
3https://kubernetes.io
4The source code and detailed installation guidelines are available at https:
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mobile networking. We describe the design of POSENS in
Section III, and validate its efficiency in providing isolation
across slices in Section IV. Finally, Section V concludes the
paper.

II. THE PATH TOWARDS END-TO-END NETWORK SLICING

Network slicing can be seen as a consequence of the
softwarization of the protocol stack. We next review the
path towards this softwarization, highlighting the complexity
involved with sharing RAN resource across tenants due to
the tight synchronisation required. Then, we review different
approaches to share the RAN, each one imposing a different
trade-off between efficiency and isolation. Finally, we review
the most promising software solutions to instantiate a mobile
network, identifying the building blocks for the design and
implementation of POSENS.

A. Softwarization of networks

4G and previous networks are usually composed of mono-
lithic physical boxes, each one providing a very specific
functionality and running specialised software on specialised
hardware. 5G and future networks will be based on network
function virtualization (NFV) and software defined networking
(SDN), these technologies enabling flexible network deploy-
ments thanks to network programmability.5

In this new approach, a network is decomposed into three
layers: (i) infrastructure, which consists in general-purpose
hardware (e.g., cloud computing servers), (ii) network, com-
posed by all the networking functions, virtual (VNFs) or
physical (PNFs), and (iii) management and orchestration,
that extends the legacy management layer (e.g., the Element
Managers defined by 3GPP) to support the instantiation and
orchestration of network functions.

This approach is represented in Fig. 1, which illustrates one
configuration of the testbed that we use to validate POSENS,
where the same User Equipment (UE, in POSENS a “Multi-
Slice UE”) runs two independent slices (blue and red) over the
same set of physical resources. The infrastructure layer is com-
posed by a laptop, two SDR cards (USRP B210 boards) that
provide the RF front end, and a small set of server nodes. The
network layer runs over this infrastructure, and is composed
of the required network functions such as the RAN, HSS, S/P-
GW.6 Finally, the management and orchestration also runs over
the same infrastructure, and is in charge of instantiating and
connecting the networking functions composing the slices.

To support the above vision, data from different slices (and
not necessarily from different UEs) has to be (de)multiplexed
over a set of shared resources. That is, the mobile network
protocol stack has to be divided into VNFs that explicitly
belong to one tenant (i.e., usually the core network), and
functions that are shared across them (i.e, usually the access
network, to lower the deployment costs). This imposes some

5In fact, one of the most relevant features of future 5G Networks is to reduce
the time needed to deploy a new service from 90 minutes to 90 seconds.

6In POSENS we use LTE/EPC VNFs as they are currently the only open-
source option available. However, POSENS may easily integrate other 5G
VNFs, especially the ones related to the CN.

novel requirements on various elements, in particular, on the
RAN functions to support e.g., the existence of multiple Core
Networks (CNs), or for the UE to attach to multiple slices
at the same time. Allowing UEs to simultaneously access
different slices is essential for many scenarios envisioned in
5G, including the simultaneous access to services supported
by different slices as well as the provisioning of a service
that employs multiple slices. For instance, for “Industry 4.0”
scenarios, augmented reality devices could connect to an
“industrial” slice and to an enhanced mobile broadband slice;
for vehicular scenarios, different slices could be used for
automated driving and for infotainment services. This is in
line with the 3GPP SA2 standardization work, which envisions
a 5G core network that can attach to up to 8 network
slices instances at the same time. This multi-slice support
requires that traffic from different tenants has to be handled
over the same spectrum, which makes it more complex to
have dedicated/customized RANs for different slices. In what
follows, we discuss how to perform RAN slicing from an
architectural point of view.

B. Addressing the RAN slicing
We next present the three architectural options that have

been proposed in the literature [4] for RAN Network Slicing.
These options are presented in order of “increasing depth”
in Fig. 2, where the deeper the slicing (the “MUX” block
represents this depth), the less functions are shared by different
tenants.

The leftmost option (“Option 1”) is the so-called slice-
aware shared RAN, which basically consists in sharing the
complete RAN, and then each tenant is responsible for its
CN. With this option, the same UE can use different slices,
and therefore connect to different CNs. This solution, which
can be considered as the “basic” solution to support network
slicing, provides relatively little isolation across tenants, but
also leads to the highest potential gains in terms of efficiency.
This solution can be related with some current proposals
such as 3GPP LTE eDECOR [10], introduced to support the
instantiation of dedicated CNs. However, eDECOR requires
introducing changes to the CN and new signaling messages
for the connection setup (something that POSENS does not).
We also remark that 3GPP RAN3 Working Group [11] is
considering a functional split performed at this level. This
approach nicely fits with the shared RAN slicing option, in
which multiple network slices are handled by a centralized
unit. While with this option the RAN is shared to a large
extent by different slices, the core instances are completely
independent among tenants, allowing per-tenant configuration,
orchestration and (cloud) resource assignment.

The central option in the figure (“Option 2”) is the slice-
specific Radio Bearer configuration. With this option, the
slicing goes deeper in the network stack, and basically only
cell-specific functionality are shared, i.e., the PHY and MAC
layers in the user plane, and the RRC in the control plane. This
configuration increases the resource isolation between tenants,
at the price of a higher complexity at the MAC layer (for
instance, to fully exploit this resource isolation, slice-aware
scheduling algorithms are required).
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Fig. 1: A multi-slice network architecture. We also used this blueprint for the evaluation of POSENS.
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Finally, the last option (“Option 3”) is the so-called slice-
specific RAN. In this case, only the air interface is shared
among network slices, while all the other functionality is
instantiated specifically for each tenant. This configuration
provides the maximum degree of freedom, given that each
network slice can be customized down to the physical layer.
However, this option also requires a tight synchronization
between the multi-tenancy policies implemented by a common
part, and the per-slice (dedicated) implementation.

This option could be particularly useful in scenarios where
different radio access technologies coexist within the same
shared spectrum, e.g., 4G and 5G. Since it may be very
challenging to dynamically reallocate spectrum resources at a
fine time granularity, this option may potentially harm resource
utilization and limit the potential multiplexing gains.

The above options can be regarded as a “roadmap” to enable
a fully configurable protocol stack to support any network
slicing option, where each option presents a different trade-
off between efficiency, isolation and complexity. For the first
release of POSENS, we decided to implement “Option 1,”
which can bring the maximum efficiency gains and provides
end- to-end slicing, in this way providing researchers with a

tool to experiment with different algorithms and mechanisms.
Although options 2 and 3 provide a higher degree of isolation
between slices, “Option 1” already enables key features with-
out requiring the complexity of more advanced RAN schema.7

More specifically, this option readily supports experimentation
on fundamental research items in 5G, such as (i) per-tenant
Service Function Chaining (SFC), as the network slices flows
go through chains that contains instantiations of different
VNFs, or (ii) per-tenant orchestration, as different tenants can
implement their own MANO using their preferred software on
their cloud, enforcing thus service specific management and
orchestration policies regardless of other tenants’ ones.

C. Software building blocks
There are several recent initiatives to prototype mobile net-

works in software, with most solutions building on the GNU
Radio development suite and the Ettus Research USRP SDR
platforms, and running on standard Linux-based computing
equipment (Intel x86 PC architectures).8 We next provide a
short review of the current ecosystem of open solutions.

Concerning the RAN part, three of the most popular SW
solutions to run LTE over SDR are Eurecom’s OpenAirIn-
terface (OAI),9 openLTE,10 and srsLTE.11 OAI [12] provides
an implementation of a subset of LTE Release 10 elements,
including the UE and the eNB. Its performance is considered
relatively good, although is also acknowledged that the code
structure is complex and difficult to customize. It is also worth
mentioning that the eNB and UE RAN are licensed under a
specific OAI Public License.

7While Options 2 and 3 require very tight synchronization among slices,
this is not an issue for Option 1 since it employs a conventional RAN stack
that already provides the required synchronization.

8We note that there are complete commercial products such as the Amari
LTE 100 (a fully softwarebased LTE BS solution), its closed license makes
it unsuitable for research activities.

9http://www.openairinterface.org/
10http://openlte.sourceforge.net/
11https://github.com/srsLTE/srsLTE
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openLTE is an open-source project providing an implemen-
tation of LTE specifications, which includes a C library, Octave
code for testing downlink and uplink physical random access
channel (PRACH) functionalities, GNU Radio applications for
DL functionalities, both simulated and using HW platforms,
and a simple implementation of an eNB using USRP. While its
code is considered as relatively well organized, documented
and would result easier to modify, it does not provide an UE,
and many features are still unstable or under development.

Finally, the srsLTE [13] open-source project provides a
platform for LTE Release 8 experimentation, designed for
maximum modularity. The RAN part provides a complete UE
application and a complete eNodeB application. The project
is more recent than OAI, and in general the source code
is considered easy to customize, although it also consumes
more CPU resources than the other alternatives. The code is
provided under an AGPL v3.0 license.

Given that our aim is to develop a solution to validate end-
to-end slicing, and not an efficient software to put in produc-
tion, code modularity and re-usability are determinant factors
when selecting a platform, and therefore we decided to design
our solution as an extension of the srsUE and the srsENB (the
applications for the UE and eNodeB, respectively).

We were convinced by the srsUE source code availability,
as having a stable UE software implementation is beneficial
for several reasons, e.g., it supports the development of multi-
slice inside the UE, and speeds up the deployment and testing
of new orchestration solutions.

Concerning the core network, apart from commercial
solutions such as OpenEPC12 (also supporting shared source
code licensing), two of the most relevant solutions are the ones
associated with the same initiatives mentioned above. Firstly,
srsLTE has very recently released srsEPC, a light-weight CN
implementation, including the mobility management entity
(MME), home subscriber server (HSS), packet and serving
gateways (P-GW and S-GW, respectively), under the same
license. Secondly, OAI also provides the same elements for
a basic EPC solution, in this case released under a standard
Apache v2.0 license. Given that when we started our work
only the latter was available, we used OAI CN as the software
solution for the CN.

One additional advantage of our POSENS, which contrasts
eDECOR (see Section II-B) is interoperability: our solution
works with any implementation supporting the S1AP protocol
(we confirmed that POSENS is compatible with different dif-
ferent commercial EPCs, whose names we cannot disclosure
due to confidentiality agreements).

Finally, concerning MANO, it has received a lot of attention
from both the open-source community and the enterprises [14].
There is a wide range of fully-fledged MANO tools such as
Open Baton,13 Open-O14 or OSM,15 that provide the required
functionalities related to the VNF life-cycle management, in-
cluding their scaling on a virtual infrastructure. They rely on a
Virtual Infrastructure Manager (VIM), a software that is more

12https://www.openepc.com
13https://openbaton.github.io/
14https://wiki.open-o.org/
15https://osm.etsi.org/

mature, as it has been already employed in production cloud
computing environments since many years. Among VIMs, we
can list solutions such as OpenStack16 or OPNFV.17 However,
as key required features such as per-tenant orchestration are
not available with existing open-source solutions, we decided
to implement POSENS MANO using a dedicated software that
directly leverages on the VIM APIs.

We finish this section by reviewing state-of-the-art solutions
on Network Slicing that have recently appeared, which we
list in Table I. To the best of our knowledge, POSENS is
the most complete solution as it includes an open-source,
end to end, network slicing-aware mobile network stack, that
includes also a Management and Orchestration framework.
Other solutions are either considering the RAN only [5], [6],
[7] or neglecting the UE role [8]. Furthermore, POSENS is the
only completely open-source solution that is readily available
in a public repository (GitHub).

III. DESIGN OF POSENS
POSENS provides an implementation of all the modules

needed for an end-to-end network slicing-aware mobile net-
work. This includes elements belonging to all the realms of
a mobile network (UE, RAN and CN), plus an orchestration
framework. Still, the most important enabler of an end-to-end
network slicing setup is RAN slicing.

In the following, we describe the design of our solution to
support RAN slicing. This solution consists on introducing a
number of changes and new modules to the srsLTE UE and
eNB implementations. The resulting software architecture, for
the case of two slices, is illustrated in Fig. 3, where each slice
is depicted with a different color (we consider the case of two
slices for simplicity, but the software can be easily extended
to support more slices). We will also assume for simplicity
that each slice is associated with a different tenant.

As discussed in Section II, we decided to implement in
our first release of POSENS the “Option 1” for RAN slicing,
where slices are multiplexed and demultiplexed at the PDCP
layer. This option has the additional advantage of requiring
less changes in the eNB software implementation, which
is the main cause of instabilities in a SDR-based testbed.
The cornerstones of the solution are the “slice coalescer”
modules, located at the PDCP layer and above. These modules
forwarding the control and data layer information for each
slice over the common communication channel. Another key
feature of our implementation is that each slice at the UE has
its own RRC module, and does not require any additional
functionality inside the CN. Conversely, at the eNB there
is only one RRC module, as with its default behavior is
capable of managing multiple Non-access stratum (NAS) from
various users simultaneously. In what follows, we provide a
more detailed description of the enhancements required by our
solution, by describing the behavior of the UE and the eNB.

A. User Equipment
The UE plays a fundamental role in the network slice

selection procedure. As depicted in Fig. 3, one slice performs

16https://www.openstack.org
17https://www.opnfv.org/
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TABLE I: Recent software contributions for network slicing.

Work Base Software Main purpose Main Feature Limitations Open Source

Mendes et al. [5] srsLTE RAN Slicing Multiple, per tenant,
eNB virtualization . Implementation only

up to MAC layer. No

Chang et al. [6] OAI RAN Slicing Thorough evaluation of
slices utilization RAN Slicing only. No

Foukas et al. [7] OAI RAN Slicing SDN-based RAN slicing It does not include a core. Download upon request

Foukas et al. [8] OAI End-to-end slicing Core Network
handling multiple slices Single Slice UE only. No

POSENS srsLTE End-to-end slicing Slice aware shared RAN. One RAN split available. Yes
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Fig. 3: Design of POSENS: changes introduced at the UE and the eNodeB.

a full radio configuration of all the RAN layers (including
PHY and MAC), while the other one relies on the RRC
configuration parameters set by the first slice and prepares the
PDCP entities and the RLC channel managers (Acknowledged
mode for the u-plane and Transparent mode for signaling
messages).

Once the UE has been powered on, the (unmodified) PHY
performs the usual cell search (following the configuration
provided within the MIB, SIB0, SIB1 and SIB2 messages)
and synchronization. Then, the RRC module corresponding
to the first slice sets up the initial connection with the eNB
by performing the Random-Access procedure (RA) to get
an initial UL grant, i.e., a valid configuration for PDCP,
RLC, MAC and PHY. This configuration is shared across
slices, and therefore subsequent RRC modules (corresponding
to other slices) will not request it. This motivates that the
RRCConnectionSetup message that arrives during the
RA process has to be stored within the PDCP module, for
subsequent slices to be able to establish their session with the
CN.

Following the initial UL grant, the NAS protocol of the
first slice establishes a session with the CN, generating
a RRCConnectionSetupComplete message nesting the
initial NAS messages in the same packet. The selection
of different slices happens in a sequential fashion, after
the first slice RRC has configured the wireless link, the
subsequent slices are configured using the reception of a

RRCConnectionSetupComplete as triggering event.
That is, upon a RRCConnectionSetupComplete

the PDCP sends to the next slice a previously stored
RRCConnectionSetup message, containing the details of
the RRC channel. This, in turn, triggers the NAS authentica-
tion procedure in the new slice. Each time a slice finishes its
NAS configuration, the RRC calls a slice_configured
function within the PDCP, including the (slice_id, IP
address) tuple of the slice, which will support the proper
forwarding of information within the module (this is only
needed for receiving information).

Besides coordinating the c-plane, the slice coalescer in the
UE also has to multiplex and demultiplex the u-plane. This
is achieved by exploiting the data multiplexer available at the
MAC for the uplink:

this function demultiplexes the data coming from the lower
layers and forwards to the appropriate slice instance at the
PDCP on a per-destination IP prefix basis.

B. eNodeB

The changes in the eNB are the counterpart of the ones
introduced in the UE. That is, the slice coalescer handles the
multiplexing and demultiplexing of the c- and u-plane. The
multi-slice updates in the eNB are less elaborated than the ones
in the UE, as the eNB is already capable of handling parallel
authentications coming from different UEs. We remark that
multiple authentications coming from the same multi-slice UE
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(such as the one described in Section III-A) can be considered
as atomic operations, as they happen sequentially.

This simplifies the required enhancements at the eNB, as
there are no concurrent NAS procedures for the same UE
running simultaneously, and therefore each one can use the
same inner data structure available at the RRC. In this way,
we use a flag to mark the slice under configuration, which
enables forwarding the control traffic to the corresponding CN
via the appropriate S1AP interface.

Like with the UE implementation, the u-plane multiplex-
ing happens in the PDCP, following an IP-prefix matching
approach, i.e., data traffic is forwarded to the right CN by
considering the source address of IP packets.

C. Core and MANO

The main enabler of our slicing solution is the RAN slicing.
Therefore, to allow an easier experimentation with unmodified
software solutions, we did not tackle CN VNFs, leveraging
on a vanilla implementation such as the one provided in
the OpenAirInterface suite. Similar considerations hold for
the MANO part: one of our objectives is to allow the open
experimentation of MANO algorithms on top of the POSENS
stack.

The MANO of VNFs, a fundamental part of the future 5G
Networks, is being standardized by the 3GPP SA5 and will
leverage on the already consolidated elements of the ETSI
NFV MANO architecture [15]. We include in POSENS a
baseline implementation of this MANO functionality, which
builds on top of a open source VIM (OpenStack), and pro-
vides a per-slice orchestration (which is the functional role
played by the VNF Manager and the NFV Orchestrator in
the ETSI architecture) through an ad-hoc Java software. This
implementation leverages directly on the Nova and Neutron
APIs to provide a lightweight version of the VNFM-Vi and
Or-Vi reference points defined by ETSI.

IV. EVALUATION

We next validate and evaluate our solution by deploying a
small testbed consisting of one UE implementing two slices,
and one eNB connected to two different CN (one per slice).
The testbed architecture is depicted in Figure 1. The UE runs
over an Ettus USRP B210 board connected to an HP OMEN
laptop, running Ubuntu Linux 16.04. The eNB runs over
another B210 board, connected to a Intel NUC running the
same Linux distribution. The TX and RX ports of one B210
board are connected to the RX and TX ports, respectively, of
the other board, using coaxial cables with SMC connectors
to prevent any interference. To implement the CN, we run
two instances of the OAI CN implementation, which contains
the MME, HSS, S-GW, and P-GW. The OAI-CN VNFs are
packaged in Ubuntu 16.04 VM, running in an OpenStack
managed cloud composed of three compute nodes and one
controller node.

Before performing the actual validation of POSENS, we first
conduct an extensive evaluation of the best RAN (i.e., srsLTE)
parameters that lead to the most reliable configuration. To
find a good trade-off between RAN performance (in terms

of throughput) and stability, we set the channel bandwidth to
10 MHz and a RX gain of 60 dB for the UE and 60 dB
for the eNB. We used the LTE channel 7 (centered around
2600 MHz).

A. Independence between slices

We first validate that the slices can run simultaneously and
independently, in this way supporting e.g., experimentation
in scenarios with multiple slices, each one potentially re-
configured in real-time. To this aim, the experiment starts
with two configured slices, each one implementing a periodic
request- response service between the UE and a server. We em-
ulate that these servers are relatively far away by introducing
an extra delay of 100 ms via the tc command. Then, after 20 s,
the server of the second slice is moved to the eNB, simulating
e.g. the use of a MEC-like solution. We represent the obtained
performance in terms of average Round Trip Times (RTTs)
across 10 repetitions in Fig. 4a.

As the figure illustrates, at the beginning of the experiment
both slices experience the same RTT of approx. 120 ms, with a
few outliers across experiments. The re-allocation of the server
in the second slice has an obvious impact on performance, with
the RTTs immediately reduced to approx. 20 ms, while the
performance with the first slice remains unaltered. With this
experiment, we thus confirm that researchers could prototype
scenarios where different services are provided with different
slices, and each service could be independently modified
without altering the others.

B. Throughput performance

We next assess quantitatively the performance of our solu-
tion, to analyze if the overall efficiency is degraded because
of the use of slicing, and if the slices are fairly sharing the
available resources. To this aim, we start our experiment with
both slices configured, but only one (“Slice 1”) performing
a TCP download from a server. Then, after 20 s, another
download is performed on the second slice (“Slice 2”), from
a different server. We illustrate the per-slice throughput and
the total throughput (“Aggregated”) averaged over windows of
1 s in Fig. 4b. We also represent in the figure the throughput
performance when no slicing is done, i.e., both the UE and
the eNB use the vanilla version of srsLTE (“Single Slice”).

The figure illustrates two main results: first, there is prac-
tically no difference in total throughput between our imple-
mentation and the use of the vanilla version of srsLTE, which
confirms the efficiency of the developed solution. Second,
when both slices are active, they fairly share the medium,
each one obtaining approximately 50% of the total throughput
(we repeated the experiment several times and in all cases the
performance was very similar).

C. Slice customization and orchestration

We next show how our solution supports a per-slice orches-
tration and customization of services, as well as the adjustment
of the resources that a slice consumes. We demonstrate this
capability by modifying in real-time the chain of VNFs that
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Fig. 4: POSENS evaluation experiments

build a service. In particular, we insert two additional user
plane functions into an operating slice: a traffic shaper and a
firewall. Our experiment works as follows. We start with two
slices serving downlink traffic to the UE, fairly sharing the
channel as illustrated in Fig. 4c. Then, after 20 s, we add into
“Slice 2” a firewall function to block incoming connections
and a traffic shaper function to limit the bandwidth to 2 Mbps.
As the figure illustrates, the effect is immediate and “Slice 1”
receives a higher throughput. We also confirmed that connec-
tions were blocked immediately. This shows that, even though
the our slicing solution cannot allocate RAN resources directly,
it can control the overall resource consumption (including
RAN) as long as terminals employ some congestion-aware
sending mechanism.

D. Compatibility with commercial equipment

In this section, we confirm that our solution is compat-
ible with commercial equipment. To this aim, we perform
a connectivity test using a Nexus-5 phone, equipped with a
Sysmocom programmable SIM card.18 To support this test,
we slightly modified the hardware setup, attaching an antenna
to the eNB SDR card, and using isolation hardware (Ramsey
electronics shielded enclosures19) to prevent interference.

We confirmed that POSENS supports both modified UEs
and commercial UEs, namely, slice-aware and slice-unaware
UEs. In this way, we support scenarios where several UEs can
be attached to the same slice (e.g., eMBB), and only a few
UEs, in need of specific services, require the instantiation of a
different slice (e.g., an URLLC service). This further extends
the applicability of our solution, opening it to a very wide
range of testing scenarios.

V. CONCLUSIONS

We have presented POSENS, an open-source solution for
practical end-to-end network slicing based on slice-aware
shared RAN. This tool includes all the software components
needed to deploy a multi-slice network setup. POSENS enables
the slicing of the RAN as well as the core, which are
fundamental building blocks for achieving end-to-end network
slicing. We validated POSENS in a lab deployment, showing

18http://shop.sysmocom.de/products/sysmousim-sjs1
19http://www.ramseyelectronics.com/product list.php?category=1&series=

1

how it can obtain per-slice customization without paying a
price in terms of performance. Our ultimate goal is to provide
a tool that allows researchers and practitioners to experiment
with per-tenant MANO algorithms, using the now widely
available SDR and cloud hardware commodities.
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