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ABSTRACT
While thework on architectural and algorithmic solutions for

5G has reached a good maturity level, the experimental work

lags behind, in particular on the development of open source

solutions. In this paper, we describe our implementation

experiences when deploying a small-scale multi-service net-

work prototype, used to demonstrate some selected advanced

features of 5G Networking. We describe our implementation

experiences supporting two heterogeneous services over two

independent slices, namely, video streaming and augmented

reality, showcasing key features such as multi-slice orchestra-

tion, RAN slicing and support for local breakout. While the

applications running the services rely on proprietary code,

the core of our implementation is completely open-source.
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1 INTRODUCTION
While specification and documentation activities regarding

the 5
th
generation mobile systems (5G) are progressing at

a rapid speed, practical experiments are progressing at a

slower pace. Apart from the obvious reasons due to the rela-

tively high development costs, another (and partly related)

issue that precluded the prototype of mobile system is the

unavailability of resources: mobile equipment is typically

expensive, and the frequency bands are licensed. Because of

this, operators were the only performing experimentation

with cellular systems, while the academia was restricted to

technologies based on the ISM band (see e.g. [20] for a recent

survey on experimentation with 802.11). One technology

that helped this ISM-based experimentation is Software De-

fined Radio (SDR), which enables researchers to implement

all layers of a wireless protocol stack.

The use of SDR has enabled the implementation of novel

access schemes and communication paradigms (such as e.g.

cognitive radio, full-duplex), but prototypes have been lim-

ited to the lower layers of the protocol stack (i.e., the MAC

layer), the main reason being the lack of interest on develop-

ing complete systems over these prototype boards, given the

high development costs. These costs are further exacerbated

for the case of mobile systems, as these are characterized by

relatively complex protocol stacks (in contrast to e.g. TCP/IP).

The situation, though, has recently changed with the emer-

gence of software platforms based on SDR that enable instan-

tiating a complete mobile network, with Eurecom’s OpenAir-

Interface (OAI) [15] and srsLTE [10] among the most popular

initiatives. In fact, we have recently carried out an extensive

performance comparison of these platforms [11], confirming

https://doi.org/10.1145/3267204.3267216
https://doi.org/10.1145/3267204.3267216


their adequate performance for prototyping activities and

their compatibility with commercial equipment.

The availability of these open projects has leveled up the

playground, with now more players (academics, SMEs) be-

ing able to develop novel enhancements for cellular systems.

This helps accelerating the development of solutions for 5G

networking, which will boost the running of field trials under

realistic conditions and bring better understanding about the

performance of future mobile systems. For instance, thanks

to the above mentioned OAI and srsLTE initiatives, we re-

cently released POSENS, the first practical and completely

open-source solution for end-to-end network slicing [9].

Despite the above, the gap between theory and practice

for 5G networking is still large. In particular, while network

slicing has been acknowledged as a key technology to effi-

ciently support services with very diverse requirements [18],

there are little experimental “hands on” reports on the use

of this technology in practice. In this paper, we contribute to

filling this gap by reporting on the development and valida-

tion of a multi-slice 5G network prototype, each slice serving

a different application, and showcasing several features such

as the reallocation of virtual network features or the use

of local breakout (LB) to minimize delays [13]. We describe

the hardware used, the software installed, and how the dif-

ferent building blocks are connected, providing in this way

researchers and practitioners with a “how to” guide while

reporting on our experiences and best practices for proto-

typing. We believe our results provide valuable information

to boost the development of further 5G prototype initiatives.

1.1 Related work
We next provide a short summary of the most relevant initia-

tives to prototype mobile networks. We divide our revision

of initiatives in the networking part considering the Radio

Access Network (RAN), the Core Network (CN) and the Man-

agement and Orchestration (MANO) part.

Concerning the RAN part, the most relevant solutions are

OAI [15], and the more recent srsLTE [10] from Software

Radio Systems. OAI provides an implementation of a subset

of LTE R10 elements, while the srsLTE open-source project

provides a platform for LTE R8 experimentation, designed

for maximum modularity. While in general the performance

of OAI is better (both in terms of throughput and resource

footprint), srsLTE’s source code results easier to customize.

Regarding the CN part, the most relevant solutions are

the ones associated with the above initiatives: srsLTE has

recently released srsEPC, a light-weight CN implementation

including the mobility management entity (MME), home

subscriber server (HSS) as well as packet and serving gate-

ways (P-GW and S-GW, respectively), while OAI provides

the same elements for a basic EPC solution.

The MANO part has received a lot of attention from both

the open-source community and the enterprises, with a vari-

ety of tools such as Open Baton [17], ONAP [7], OPNFV [8]

or OSM [4]. They all rely on a Virtual Infrastructure Manager

(VIM), an element that can be provided with solutions such

as OpenStack [16].

While these solutions provide a subset of elements to im-

plement a 5G mobile network, only recently [1, 6, 9] that

researchers were provided with complete tools to imple-

ment end-to-end network slicing. Still, hand-on experience

is largely missing in the literature, so in this paper we provide

details on our experience in implementing specific elements

envisioned by 5G Networking on a real life testbed.

1.2 Paper structure
The document is structured as follows: in Section 2 we de-

scribe the implemented network services and their baseline

deployment in Section 3. Then we focus on some specific ad-

vanced items in Section 4 before checking them in Section 5.

Finally, Section 6 concludes the paper.

2 SERVICES CONSIDERED
The deployed network provides two services over two net-

work slices, with a focus on the QoS/QoE-aware control, and

NFs virtualization and orchestration aspects. The motivation

is to feature two different network slices on the cloud in-

frastructure: one with a reduced latency service and another

one with a mobile broadband service. We show how an ETSI

NFV MANO platform can be used to deploy, manage and

orchestrate different services on different network slices, this

including the dynamic re-orchestration of a particular NS

forwarding graph, and the placement of certain VNFs in the

appropriate host. In both cases, QoS/QoE aspects trigger the

re-orchestration function. The software produced for this

paper is based on [9] and it is mostly available on GitHub
1
.

The two network slices are: (i) a Reduced Latency slice

(i.e., URLLC), used to read real-time physical measurements

triggered byQuick Response (QR) labels, and (ii) an enhanced
Mobile Broadband (eMBB) slice, which serves contextual

captions to streaming media, according to the user profile

and surrounding context. Both slices are deployed on the

same eNB and share the same spectrum. For the CN part, each

tenant (i.e., a service) runs its own instance of the protocol

stack (i.e., mobility management, gateways and the upper

layers), performing the QoE/QoS policies needed by each

scenario.
2
In the following, we describe each slice, listing

1
https://github.com/wnlUc3m

2
Although we deploy a multi-tenancy case where each service belongs to a

different tenant, other multi-tenancy scenarios can be supported with our

solution.
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the most important orchestration-related features that have

to be implemented (which will be detailed in Section 4).

2.1 eMBB slice: Video Streaming
The first service is hosted by an eMBB slice that has been

designed to provide a service consisting of enriching a video

streaming signal with context-based add-ons (e.g., subtitles

or other graphical elements) depending on the user prefer-

ences (i.e., color, language), other conditions (e.g., hearing

impairments) and surroundings (e.g., ambient noise). These

profiles or environmental conditions can be understood here

as QoS/QoE influence factors: the final user generates a trig-

ger to explicitly request the service according to its pref-

erences, or also, certain QoS metrics could automatically

activate the service without an explicit user request.

The additional video features are activated by means of

MANO procedures that dynamically add the necessary VNFs

to the forwarding graph concurrently as the video is streamed.

Besides the possible real-life applications of this service, our

goal is to demonstrate three different orchestration-related

functionality:

(i) On-boarding of the network service itself, i.e., the deploy-
ment of the necessary VNFs driven by service descriptors

where the operational layout and requirements are defined;

(ii) Dynamic update of the NS Forwarding Graph (FG) depend-
ing on QoS/QoE measurements (QoS/QoE-awareness); (iii)
Placement of VNFs to specific compute nodes, to simulate the

placement of NFs in the edge or core cloud depending on the

service requirements.

2.2 URLLC slice: Augmented Reality
The Reduced Latency use case consists of an Android ap-

plication that performs Augmented Reality (AR) using QR

codes. In a real environment, those codes may be distributed

in an industrial area close to the equipment where measure-

ments of interest are obtained (e.g., pipes flow or pressure,

electric measurements, tank levels, etc.). On each QR code

decoding, the mobile terminal performs a request to get real

time information that is shown on the mobile terminal.

To get low delays between the User Equipment (UE) and

the information server, the latter shall be located close to the

user, e.g. in the same element hosting the eNB, or in a edge

cloud. This application also serves to demonstrate another

fundamental orchestration-related aspect: the use of local
breakout. That is, by selectively offloading flows from the

eNB and routing them directly towards an edge cloud, the

low latency traffic communicate with an edge deployment

of the information server, incurring into smaller delays.

USRP B210

USRP B210
Antenna

Multi-Slice UE

Controller

Compute 1

Cloud

Compute 2

Control Network Provider Network

Transport
Network

Figure 1: The deployed network setup.

3 BASE IMPLEMENTATION
We first describe what we refer to as the “basic” deployment,

consisting of the hardware and software components that

provide what we consider as the fundamental features of a

5G mobile network.

3.1 Hardware description
The orchestration platform runs on commodity hardware.

More specifically: an Intel 12 Core i7-3930K PC @ 3.2 GHz

with 32 GB RAM and 1 TB of storage and two twin AMD FX

8320 eight-core processor PCs @ 3.5 GHz with 32 GB RAM

and 1 TB of local storage.

Besides the CPU, memory and storage characteristics, the

main criterion to select this hardware is to have two iden-

tical nodes, to enable the VNF live-migration functionality.

Figure 1 shows the network topology. The twin PCs work as

compute nodes in the architecture, i.e., they run some of the

VNFs (as we describe next, not all network functions will run

as VNFs). The other PC acts as both network controller and

storage node. One general-purpose switch is used to inter-

connect the nodes through a private isolated network, while

another switch is used to connect the nodes with the Inter-

net through an OpenVPN Server. All nodes run the Linux

CentOS operating system (release 7.2).

The radio part of our deployment is based on two USRP

B210 Cards by Ettus Research
3
, one on the UE side and the

other for the eNB. As the USRP B210 features two antenna

ports (one RX and one TX), we cross-connected them using

two SMA to SMA cables, adding a 30 dB of attenuation. The

left part of Figure 1 represents the connected radio setup. The

network functions for the radio part run as physical network

functions (PNFs): the eNB runs on a bare metal server and

the UE runs in a laptop (the specific software components

are described in Section 3.3).

3.2 Management and Orchestration
The two services described in Section 2.1 and 2.2 run on

the hardware platform described above, which provides the

needed infrastructure (physical and virtual) to the different

3
https://www.ettus.com/product/details/UB210-KIT
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Table 1: Configuration of the Radio Front-end

Parameter Value
Frame Type FDD

Band 7

Downlink Frequency 2.68 Ghz

Uplink Frequency 2.56 Ghz

Number of RB in Downlink 75

Tx Gain 90 dB

Rx Gain 125 dB

VNFs and PNFs that compose the two slices. In order to pro-

vide the (ETSI NFV compliant) MANO implementation, we

focused on a programmatic solution, discarding the usage of

out-of-the-box orchestration platforms (Section 1.1) because

of their complexity and the lack of certain required features.

More specifically, we implemented the VNF management

and orchestration functions by directly building on the VIM

APIs. Given the high needed extension required by our net-

work slicing scenario, we selected an ad-hoc approach that

allowed us to directly focus on the innovative functionality

without the overhead of a more generic solution. Hence, the

final approach for implementing the cloud architecture has

been a hybrid approach with OpenStack (Pike release) to

implement the VIM, and a programmatic solution to imple-

ment the remaining blocks. Thus, the VNF Manager and the

NFVO components have been specifically developed for this

work using the Java programming language together with

the OpenStack4J library. Although not a fully fledged ETSI

NFV orchestration platform, our implementation includes

the needed functionality for advanced 5G Orchestration.

3.3 Softwarized Mobile Network
The mobile network architecture employed within deploy-

ment relies on two well-known software implementations of

the LTE Stack: OAI [15] and srsLTE [10]. The former is an

implementation of an LTE mobile network (including RAN

and Core), while the latter is an open source implementation

of a UE and the eNB.We describe here the setup that involves

the UE implemented using the srsUE software.

As discussed in Section 3.2, the Radio Access Network

functions take advantage of the USRP SDR card that use it

(on both UE and eNB sides) to modulate and demodulate the

in-phase and quadrature (IQ) samples produced and received

by the software on one of the available licensed bands (in

this case, we use Band 7 at 2.6 GHz). The full configuration

parameters for the radio front-end are listed in Table 1.

On the network infrastructure side, the SDR card is used

by SRS eNB to provide connectivity to the UE. The SRS suite

implements all the functionality of the RAN, while different

PHY

Core

RAN

Multiplexer

MAC

RLC

PDCP

MAC

RLC

PDCP

RRC RRC

NAS NAS

Slice 1 Slice 2

Slice Specific RAN

Shared RAN

RRC RRC

NAS NAS

Slice 1 Slice 2

Slice-aware shared RAN 

Multiplexer

Figure 2: RAN sharing options.

instances of the core network are provided by the OAI core.

More specifically, the available software components are:

The RAN: This is the main part of the SRS suite. It imple-

ments the Physical (PHY), Media Access Control (MAC), Ra-

dio Link Control (RLC), Packet Data Convergence Protocol

(PDCP), Radio Resources Control (RRC) and Radio Resource

Management (RRM) layers of the LTE stack.

The CN: composed by the Home Subscriber Server (HSS)

and the Mobility Management Entity (MME), on the control

plane and the Gateway (GW) function, joined into a SP-GW

module. All the core modules are from OAI.

Each of the CN functions runs as a VNF. While these

are not modified, the RAN network function has been thor-

oughly configured and substantially modified to provide:

(i) the appropriate bandwidth and latency characteristics to

fulfill the requirements of the mobile broadband low latency

services; (ii) some means to multiplex and de-multiplex traf-

fic associated to the two different slices. This entails software

modifications to the srsLTE mobile network protocol stack.

The latter item is a fundamental enabler as the two im-

plemented services share the same RAN, while each tenant

can deploy its own core NF for each service. To enable such

functionality in the core network we changed the RAN; more

specifically, we implemented the “Slice-aware shared RAN”

concept as it is defined in [2] and represented in Figure 2.

The SRS suite used for this implementation defines differ-

ent classes for the different tasks that have to be fulfilled in

the RAN: (i) a common library (formerly known as SRSLTE)

that performs the encoding/decoding operations, up to the

MAC; (ii) the RLC, RRC and the PDCP layers; and (iii) spe-
cific modules for the UE (the UE module for the data plane of

the UE) and the eNB (S1AP, that manages the connectivity

for the core control plane, and GW for the GW connectivity).

Therefore, to provide the slice-aware shared RAN, we

modified the higher layers of the network protocol stack

(i.e., PDCP and RRC) on both, eNB and UE. Namely, we



provided per slice differentiation for the common c-plane

and u-plane procedures, as follows: for the c-plane, we had

to allow two registrations against two different Non-access

Stratum (NAS) instances, so we duplicated (i.e. an instance

for each slice) the UE module and the RRC layer, which

triggered two NAS connectivity requests. On the other hand,

the u-plane is multiplexed and de-multiplexed at the PDCP

module, according to the traffic final destination address.

That is, by triggering two NAS registration procedures, the

UE obtains two valid IP addresses from each slice GW and

creates two virtual network TUN interfaces (one per each

slice). Therefore, the UE can connect to two different slices

at the same time. More details about the slice-aware shared

RAN implementation can be found in [9].

4 SERVICE-SPECIFIC FEATURES
In this section we described the additional pieces of software

that we have implemented to provide the service-specific

functionality described in Section 2.

4.1 An Amendable Service Function Chain
The main feature of the eMBB network slice is to provide a

service that may add context-based add-ons on a live video

streaming signal, depending on the user profile, preferences,

and certain environmental conditions. These parameters are

defined here as QoS/QoE influence factors, and serve as VNFs

re-orchestration triggers.

The add-ons can be subtitles, generated depending on the

subscriber preferences (language, colour, size, position, etc.)

or other support videos, with the sign language translation

(e.g., for people with a hearing impairment). These add-ons

could be explicitly requested by the user at any time during

the video playback or triggered by environmental conditions

(e.g., excessive ambient noise), so a good synchronization

between add-ons and the main video signal is a must.

The MANO architecture and the orchestrated network

functions to provide this service are depicted in Fig. 3. In the

figure, the red arrows labelled from 1 to 5 show the initial

interactions, where the user request the playback of a certain

video from a client (yellow box on the right). This is just a

regular video service providing the requested video to the

user, where the Streaming Server block (bottom left) is acting

just as a proxy for the Main Videos Server (where the video

files are actually stored). The video stream pass through the

Video Mixer block (orange box), which although it does not

mix the video with any other content, it helps to prevent

disruptions when add-ons are inserted.

When add-ons are requested by the user (green arrows,

labelled from A to H), the Streaming Server communicates

with theMANO block, which instantiates the Add-ons Server

(green box). This server is split into two internal blocks: the
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Figure 3: The Orchestration architecture

Sign Language Videos Server (which is used to provide the

sign language videos) and the Captions Server (for providing

subtitles). Once the appropriate Add-on Server is instantiated,

the MANO informs the Streaming Server block, which sends

control commands towards the Add-ons Server (dashed line).

The selected add-on (video and/or subtitle) is injected into

the Video Mixer block which delivers the mixed video signal

to the final user.

The Video Mixer block is implemented using Snowmix,

an open-Source and very-flexible command line tool for dy-

namically mixing live audio and video feeds which supports

overlaying video, images, texts and graphic elements as well

as mixing audio [21]. All these components have been em-

bedded in a special-purpose VNF, deployed on one of the

compute nodes. The Add-ons Server is split in two VNFs, cor-

responding to the two blocks in the figure, i.e., the Captions

Server and the Sign Language Videos Server. Each VNF con-

tains a database with the necessary caption and video files,

and a service running over TomCat [3]. The service exposes

a REST API used by the Streaming Server block to execute

the necessary control commands once the VNF instances are

up and running. The Caption Server communicates with the

Video Mixer block using a Snowmix-specific protocol which

makes it possible to specify where and how the add-ons are

placed within the video. The Sign Language Videos Server

uses ffmpeg [5] to stream the add-on videos into the mixer.

The Main Videos Server is also an independent VNF, run-

ning over the same compute node as previously mentioned.

It contains a database with all the possible videos the final

user could access. The Streaming Server is an independent

VNF which performs three primary functions: (i) It works
as a server for the end user. Specifically, it embeds an HTTP
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server to what the final user can access (using a general pur-

pose web browser) to request the video playbacks and the

available add-ons. (ii) It decodes the user’s HTTP requests,

implementing the logic to trigger the instantiation of the

necessary add-on server (through a request to the MANO)

and sending the necessary control commands to these in-

stances, and also, to the Main Videos Server. (iii) It maintains

a good synchronization between the main video stream and

the add-ons. Add-ons can be requested at any time by the

final user, so they must appear properly synchronized with

the main video and with a minor delay.

The MANO block (purple box in the figure) represents our

implementation of the MANO framework. It is basically a

process developed using the Java programming language,

acting as a server attending the commands from the Stream-

ing Server. Although not explicitly represented in the fig-

ure, it also communicates with the underlying ETSI NFVI

MANO components (i.e., NFVO, VNF Manager and VIM) to

orchestrate and manage the virtual resources. This process

is executed on the Controller Node (represented in Figure 1).

Finally, regarding the End-User equipment (yellow box in the

figure), it consist of two different elements, namely, the video

player and a web browser with a GUI. The former is based

on the ffplay video player [5], while the later is developed

for the end-user to control the service.

4.2 Local breakout
Even though the Local Breakout (LB) feature could be imple-

mented within the eNB software, deploying it as an indepen-

dent VNF results a more flexible solution, for at least two

reasons: (i) it can be maintained and upgraded separately,

and (ii) it would work (in principle) with any eNB. We next

present the main characteristics of our LB implementation.

4.2.1 GTP-tunnel and LB. Differently than in a Wireless

Local Area Network, traffic generated by mobile users is not

routed at the device that terminates the air interface: it is,

in fact, delivered inside a GPRS Tunneling Protocol (GTP)

TEID	UL TEID	DL BEARER
IP	ADDRESS

TEID	UL IP	SRC
UL GTP packet

GTP pkt header

… … IP	DST

IP pkt

…

Table line# S1AP	ID

DL S1 packet
TEID	UL S1AP	ID… …

TEID	DL S1AP	ID… …
UL S1 packet

Figure 5: TEID table maintained by the LB threads: it
associates TEID numbers to the IP address of each UE.
It is used for crafting GTP tunnel return packets.

tunnel to the remote Gateway controlled by the user’s service

provider (S/P-GW for LTE, UPF for 5G) where it starts its

journey to the destination (top tunnel in green/dotted line in

Figure 4). Return traffic is first received by the gateway that

tunnels it to the specific eNB at which the destination UE is

connected. This method facilitates accounting for roaming

users but introduces inefficiencies at the routing level.

To avoid these issues, a LB device can be set up to intercept

GTP packets earlier (bottom tunnel in red/dashed line). We

report in the following the LB architecture focusing on the

mechanisms for transparently intercepting and conveniently

routing selected traffic locally.

4.2.2 LB implementation. As shown in Figure 4, the LB node

has to (i) inspect tunneled packets to extract those matching

specific rules and forward them through the new interface

IF; and (ii) push packets received from IF into the tunnel. As

uplink users’ packets are embedded in UDP datagrams, the

LB can easily access both the fixed length GTP header and

the original IP packet [12]. The GTP header is 8 byte long

and contains the Tunnel endpoint identifier (TEID), a 32-bit
value that identifies the bearer to which the inner IP packet

is addressed and that is generated by the eNB/MME when

the UE node connects to the network (or when it requests

a new service). We implemented the tasks for intercepting

and pushing packets into the tunnel and for determining the

TEID values as three main threads that refer to a common

TEID table for storing/fetching TEID values:

S1 sniffer thread. When a UE requests a new service, the

eNB and the MME exchange a couple of S1 packets that

carry new TEID values: one in downlink with the TEID

decided by the MME; followed by one in uplink carrying

the TEID chosen by the eNB. The knowledge of the latter is

fundamental to the LB for pushing downlink packets received

from the IF interface into the tunnel. We show in Figure 5

how the S1 thread correlates the two S1 packets by using

the common S1AP-ID field to create a new row in the TEID

table with the corresponding TEID values. Because of the
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Figure 6: Throughput obtained by the eMBB slice.

complexity in dissecting S1 traffic, the S1 thread forks a

tshark process and uses a pipe for receiving the TEID data

from it. It is worth noting that at this stage the IP address of

the UE is not yet known: it will be discovered by the Uplink

thread as we explain next.

Uplink thread. To inspect all GTP packets going to the

S/PGW, the Uplink thread installs a rule in the netfilter frame-

work of the LB kernel that matches UDP packets addressed

to the remote gateway. Setting NFQUEUE
4
as target allows

the Uplink thread to receive all packets and decide which

must be stopped, stripped by their GTP header and injected

through interface IF.

When a UE bearer transmits an uplink data packet for the

first time, the thread adds the source IP address found in

the packet inside the TEID table: to this end, it looks up the

corresponding row by searching the TEID UL value extracted

from the GTP packet, as shown at the bottom of Figure 5.

Downlink thread. This thread receives packets from the IF

interface and pushes them into the GTP tunnel. It first uses

the destination IP address of the packet to look up in the

TEID table the value of the TEID DL field: it then crafts a

new GTP packet by copying the TEID DL value in the header

and concatenating the IP packet in the GTP payload. If no

TEID DL value is found, the thread simply drops the packet.

5 FEATURE VALIDATION
In this section we provide the evaluation of the implemented

services in practice.

5.1 Service composition
This test simply evaluates whether the proposed mobile

broadband service provides the expected results. We used

videos from the Spanish Congress of Deputies, which offered

open source video feeds of their sessions (including sepa-

rate video streams for the main video signal and the sign

language translations).

The needed throughput is largely supported by the radio

system. Values for the available throughput are depicted in

Figure 6. The results, averaged over ten experiments, show

4
https://www.netfilter.org/projects/libnetfilter_queue
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Figure 7: Latency evaluated for the URLLC scenario.

that the achievable throughput is much higher than the one

needed by the streamed video (which ranges between 500

kbits and 1.4 Mbps).

5.2 VNF re-location
One of the objectives of this multi-service deployment is

to showcase advanced orchestration functionality, like a

service-aware adaptive allocation of functions to different

network nodes using VNF mobility concepts. Regarding this,

we envisioned the possibility of relocating the VNFs between

different compute nodes, which are acting as edge and cen-

tral cloud nodes in a real 5G network. For our particular

case, we provide this feature by using the so-called “live-

migration” functionality provided by OpenStack. Namely,

we performed two different experiments:

The first one, based on the so-called “block live-migration”,

just needs a network connection from the source node to the

destination. Basically, the complete virtual machine is trans-

mitted without service interruption. In our specific case, VNF

instances can be quite big (tens of GBs once instantiated), so

it would be necessary to have a very high bandwidth and ded-

icated network connection to achieve fast migration times.

With a common network connection like the ones we have

in our testbed the process takes times in the range of seconds

to minutes. Moreover, while very high bandwidths may be

achievable within the same datacenter, having them avail-

able in different geographical locations may be questionable.

Furthermore, this approach also reduces the VM processing

power during the migration time, so we considered this is

not an acceptable approach for a future 5G network.

The second approach is called “shared storage live migra-

tion”. As the name states, it is based on using a shared storage

which is accessible from both, source and destination host.

https://www.netfilter.org/projects/libnetfilter_queue


In this case, performance has been quite good (in the range

of few milliseconds), without any service interruption.

Although the performance is quite good using the latter

approach, this shared storage node is a drawback in itself.

This procedure has well-known inconveniences, among oth-

ers: (i) adding shared storage nodes implies to design the

network topology according to this; (ii) the shared storage

node becomes single point of failure; (iii) the network itself

becomes a single point of failure (iv) the network security

shall be improved as the shared storage should be placed in

a separate secured network, and (v) even with the good per-

formance results experienced in our demo case, the network

latency could impact performance, especially for certain very

high requiring low latency scenarios in 5G. However, while

this aspect goes beyond the purposes of this paper, we think

these problems may be solved in different ways. They range

from reducing the size of the VMs to be migrated to the usage

of containers [19] or unikernels [14]. Another possibility is

the improvement of the shared storage option to tackle the

known weaknesses, e.g., adding redundancy to the single

points of failure and improving the security.

5.3 Low latency through LB
We tested our LB implementation by running the correspond-

ing VNF in the slice providing the low latency service. We

attached to our setup the multi-slice UE (UE1) presented

in Section 3.3 and an additional single slice UE (UE2) that

connected to the low latency slice only.

In one scenario, we co-located the AR server with the

gateway, and compared it with another scenario where the

AR server was placed together with the LB VNF. An addi-

tional delay of 100 ms was added between the eNB and the

gateway, to emulate the distances between edge and central

cloud. The box and whiskers plot in Figure 7 shows the de-

lay for a UE to server and UE to UE communications. The

latter is not related to the provided URLLC service, but it is

useful to assess the performance of e.g., machine to machine

communications. As expected, the latency with the LB VNF

activated is much less than the normal case, with a median

value of around 30ms and 135ms for the UE to Server case

with or without LB respectively. The gap is even higher for

the UE to UE case, with median latency figures of 55ms and

255ms respectively.

6 CONCLUSIONS
In this paper, we described our hands-on experience gained

from the implementation of some distinctive functionality of

5G Networking, (i) multi-slice orchestration, (ii) RAN slicing

and (iii) local breakout. All our software is based on open

source components, and most of it is also released as open

source on public repositories.
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