
ACHO: A Framework for Flexible Re-Orchestration of

Virtual Network Functions

Gines Garcia-Aviles1, Carlos Donato2, Marco Gramaglia1, Pablo Serrano1,
Albert Banchs1,3

Abstract

Network Function Virtualization enables network slicing as a novel paradigm
for service provisioning. With network slicing, Virtual Network Functions
(VNFs) can be instantiated at different locations of the infrastructure, choos-
ing their optimal placement based on parameters such as the requirements
of the service or the resources available. One limitation of state-of-the-art
technology for network slicing is the inability to re-evaluate orchestration de-
cisions once the slice has been deployed, in case of changing service demands
or network conditions.

In this paper, we present ACHO, a novel software framework that enables
seamless re-orchestration of VNFs of any kind, including RAN and Core.
With ACHO, VNFs and resources can be easily re-assigned to match, e.g.,
varying user demands or changes in the nodes’ load. ACHO uses lightweight
mechanisms, such as splitting the engine of a VNF from the data it requires
to perform its operation, in such a way that, when re-allocating a VNF, only
the data is moved (a new engine is instantiated in the new location). We
demonstrate the use of ACHO in a small scale testbed, showing that (i) the
proposed re-orchestration is feasible, (ii) it results much faster than existing
alternatives (especially for relocation), and (iii) the framework can be readily
applied to existing VNFs after minimal changes to their implementation.

Keywords: 5G mobile communication, Computer network management,
Network architecture, Network function virtualization

1University Carlos III of Madrid
2IMEC
3IMDEA Networks Institute

Preprint submitted to Computer Communications June 25, 2020



1. Introduction1

One key technology of 5G Networking is network slicing [1], which allows2

the use of the same infrastructure to support very diverse services. Enabled3

by the irruption of the Network Function Virtualization (NFV) paradigm [2],4

network slicing breaks the traditional “one size fits all” network paradigm,5

by permitting the deployment of multiple VNFs in different general-purpose6

clouds. This coordination between the hardware elements of a given deploy-7

ment and the software running on top of them is usually referred to as network8

orchestration, which enables tailoring each virtual network deployment to a9

particular service.10

However, current orchestration solutions are not flexible, in the sense11

that this mapping between resources (e.g., hardware, radio spectrum) and12

software is decided once per service and it is hard to modify afterward. This13

reduced flexibility results in the following issues, which could be addressed14

by a more flexible orchestration:15

Lack of re-location While the current state of the art solutions allow for ba-16

sic scaling or migration of a VNF, they are usually limited to replica creation17

within the same datacenter on the same hardware platform. This falls short18

when the target is to flexibly adapt to the envisioned dynamic demand in19

a cost-efficient way, as the technology needs to support seamless re-location20

and re-configuration of VNFs [3] across datacenters, without any assumption21

on the underlying hardware. This approach naturally couples with hierarchi-22

cal and network slicing native architectures that have been recently proposed23

for next generation networks [4], and received very low attention from the24

research community, with the exception of [5].25

Lack of fine re-configuration The transition towards a full cloud native26

suite of network functions is still ongoing. While the traditional functions27

only exposed very few configuration parameters such as power management28

or frequency control [6], with network softwarization the variables that may29

be controlled from the management perspective can be much more, allowing a30

fine grained control of aspects such as the sharing of spectrum across different31

slices or tenants, or the configuration of radio resource blocks. Despite this32

possibility, and especially in the access network, a cloud-oriented control of33

network functions is lacking. In fact, only recently and for the Core Network,34

the Service Based Architecture [7] has been proposed, while for the RAN part35

some similar efforts have been proposed [8], but almost no implementation36

is available (the one in [9] is not provided as open source). In this paper, we37

2



propose ACHO a novel open source framework for flexible orchestration of38

network functions, which (i) provides the ability to relocate VNFs at run-39

time, and (ii) supports their fine-grained re-configuration.40

The main cornerstone of the ACHO design is the adjacency to the relevant41

standard solutions, mainly 3GPP and ETSI NFV. This further demonstrates42

the applicability of the ACHO’s concepts and vision on top of the relevant43

state of the art technology.44

Thus, the contribution of this paper are summarized as follows:45

• The design of a flexible re-orchestration framework that allows en-46

hanced operations such as VNF re-location and fine re-configuration,47

including the definition of the required interfaces that support these48

operations.49

• A library of VNFs adapted to this framework, including the basic set50

of features to have an operational 5G network.51

• A proof-of-concept evaluation of the overall ACHO solution.52

By open-sourcing ACHO, we aim to foster 5G experimenting repeatabil-53

ity, to improve code reliability, and to enable other researchers to extend the54

number of supported scenarios beyond those studied in this paper. The code-55

base, available on GitHub4 under the AGPLv3 license, is the first open-source56

solution of basic 5G Core functionality with seamless re-location capabilities57

(to the best of our knowledge).58

The rest of the paper is structured as follows: in Section 2 we describe59

the advantages of flexible network orchestration and the challenges to achieve60

it, discussing also the state of the art solutions. Then, Section 3 describes61

our solution, while Section 4 provides quantitative performance figures in62

terms of re-orchestration delay and achieved isolation across slices. Finally,63

concluding remarks are provided in Section 5.64

2. Flexible network orchestration: advantages and state of the art65

Network orchestration [10, 11] can be defined as the coordination between66

the hardware elements of a given deployment and the software modules run-67

ning on top of them. Current orchestration solutions only support a static68

4https://github.com/wnlUC3M/

3



and coarse-grained operation: once instantiated, it is hard to modify the69

resources associated to a specific network slice (e.g., re-locate a VNF to the70

edge), or to support a fine-grained re-configuration (e.g., scale-up just the71

flows belonging to a specific network slice). We define a flexible network72

orchestration as the one supporting a dynamic and fine grained operation.73

These characteristics would enable the so-called elastic orchestration of net-74

work slices [12] which, in turn, would improve the resource utilization in the75

network.76

In the following, we first make the case for these two features, and then77

discuss the state of the art technology and the current implementation land-78

scape.79

2.1. The case for flexible re-orchestration of VNFs80

As defined above, a re-orchestration solution is flexible only if it is both81

dynamic and fine-grained, features which are currently unavailable with ex-82

isting orchestration solutions (we discuss these solutions in Section 2.2). In83

the following, we discuss the main advantages of these two features.84

2.1.1. Advantages of a dynamic re-orchestration85

Some of these advantages obtained with a dynamic re-orchestration are:86

Adapting to user mobility. Low-latency services such as tactile or ve-87

hicular communications require that VNFs affecting latency are as close as88

possible to the user, to minimize the delay between these functions and the89

user. When a user moves to a new location, VNFs should move as well to90

keep close to the user’s new location. This requires the ability to relocate91

those functions without disrupting the ongoing service.92

Service enhancements in run-time. Flexible re-location also gives the93

ability to re-compose a service provided by a given slice, to add, substitute,94

remove, or relocate VNFs in the chain. This enables introducing a variety95

of features during run-time operation, such as, e.g., adding or relocating a96

firewall, or replacing a more efficient (but slower) video encoder by a quicker97

but less efficient one to adapt to changes in the measured delay while keeping98

quality of experience.99

Improved de/scaling. Resource scaling refers to the ability to assign re-100

sources as needed. While the traditional vertical and horizontal scaling could101

provide this feature to some extent, the use of relocatable VNFs introduces102

an additional level of flexibility without disrupting the service: when a VNF103

runs out of resources, it can be relocated to a different location with more104

4



resources. When few functions are running in different locations, this allows105

to relocate them in a single resource and deactivate the unused nodes, saving106

resources by implementing infrastructure on-demand schemes [13].107

Resilient operation. The ability to relocate VNFs in real-time enables108

novel methods to provide resiliency. In case of service disruption due to,109

e.g., the congestion of a node, or a hardware failure, it would be possible110

to relocate the required functions seamlessly trigger their “activation”, thus111

providing resilience against impairments of various kinds.112

2.1.2. Advantages of a fine-grained re-orchestration113

The transition to a more modular and software-based architecture such as114

the one in the 3GPP Release 15 [14] opens the door for a more precise resource115

management. Also, the API-based control of the core network function (the116

so-called SBA architecture) allows for an easier way of re-configuring func-117

tions, following the slice needs. Among the features that such fine-grained118

re-orchestration capabilities would enable, we have:119

Per-slice re-configuration. Network slices (or Sub Network Slices [15])120

are the “least common multiple” when it comes to service management. As121

VNFs can be shared among slices [15], they should expose APIs that enable122

the per-slice configuration. Besides the per-slice parameter re-configuration,123

the orchestration framework shall also support operations such as join and124

split, i.e., grouping into the same virtual instance (a Virtual Machine or a125

container) a group of VNFs belonging to different slices, and vice-versa.126

Joint parameters and resource configuration. Modifying a parameter127

of a given VNFs may have an impact on its resource footprint, and also on128

the one from other VNFs, both from the network resources perspective (i.e.,129

more or different frequency bands) and the computational (i.e., more CPU).130

An orchestration algorithm shall be able to assess the impact of a change of131

parameters on the underlying infrastructure and act accordingly.132

Access network re-configuration. While the core network functions al-133

ready have incorporated softwarization principles since the standardization,134

access network functions are more “grounded” in a less flexible architecture,135

which is partly also due to their need to comply with stringent timing re-136

quirements. Just very recently, industrial fora such as Open RAN [8] started137

to advocate for a finer programmable management of the radio access. Such138

concepts shall be incorporated in the orchestration framework.139

2.2. State of the art140

5



Despite the advantages discussed above, the technology currently avail-141

able does not support a flexible re-orchestration of VNFs. In the following,142

we revise the state of the art, highlighting the most relevant initiatives and143

contributions.144

2.2.1. General VNF placement and orchestration problems145

There is a bulk of literature available on the problems of VNF placement146

and orchestration, summarized by a number of surveys, e.g., [16, 17, 18]. In147

general, the different proposals can be classified depending on various axes:148

(i) the variables to be optimized, e.g., power, cost, latency; (ii) if the op-149

timization is mono- or multi-objective; and (iii) whether the matching of150

physical and virtual resources is carried out in an offline manner (gather-151

ing inputs, requirements, etc.) or in an online manner, following, e.g., the152

crossing of a threshold, or a periodic trigger. It should be noted, though,153

that even if the approaches falling into this latter category are referred to154

as “dynamic” in [17], these solutions are not tested in scenarios considering155

quick variations over time (see e.g. [19]).156

In fact, despite this remarkable amount of previous work, actually few157

proposals deal with the implementation of such algorithms on real VIMs,158

with the use of real-life traces being among the most common approaches for159

the performance evaluation. Furthermore, for those proposals performing a160

real-life evaluation, they typically rely on existing orchestration technologies161

that, as discussed in the next section, lack both the dynamism and granularity162

required for what we refer to as a flexible re-orchestation (i.e., dynamic and163

fine-grained).164

2.2.2. Genaral-purpose orchestration technologies165

Existing NFV Management and Orchestration (MANO) software solu-166

tions such as, e.g., Open Source MANO (OSM) [20] or the Open Network-167

ing Automation Platform (ONAP) [21], are continuously evolving solutions168

used in many fields to manage the VNF lifecycle (design, configuration, ter-169

mination, etc.). Their interactions with the underlying infrastructure (to170

instantiate, connect, and terminate virtual resources) are done through a171

Virtual Infrastructure Managers (VIM), a software element that abstracts172

the complexity of the cloud. To enable the discussed advantages of a flexible173

orchestration of network slices, this VIM has to support (i) flexible relocation174

of virtual resources, and (ii) their fine-grained re-configuration.175

6



On the one hand, a fine-grained orchestration is tough: state-of-the-art176

orchestration platforms only allow to re-configure very basic parameters such177

as the IP address of the VNF, while other fine-grained parameters (such as the178

ones described in the Information Model [22] are left to the implementation179

of each VNF.180

On the other hand, VNF re-location technologies are also lacking in terms181

of dynamism. Although existing VIMs can relocate a Virtual Machine (VM)182

from one compute node to another, this operation has notable limitations:183

• They especially target limited parts of a VM such as its memory. These184

techniques use an iterative process [23] that starts from the memory185

pages that were the least frequently accessed, keep updating them until186

the ones that are the most used are moved. While relocating memory,187

usually a significant part of the VM has to be kept in a fixed location188

(e.g., a NAS hosting the disks). As a result,189

• The relocation of a VM is limited within the boundaries of a single190

datacenter of a single VIM. These limitations are acceptable for cloud191

computing environments, which typically focus on very high reliability192

and therefore VMs are only relocated in case of, e.g., disk failures or193

programmed maintenance, but are inadequate for dynamic scenarios194

such as the use cases discussed above, involving the movement of VNFs195

across the network to reduce latency or to improve efficiency across196

datacenters. As a matter of fact, the topic of migration over WAN links197

(which is a relevant scenario for networking purposes, e.g., migration to198

edge cloud) is currently overlooked by the bulk of available literature, as199

also confirmed by the authors of [24]. Among the more than 200 works200

reviewed there, just a handful deal with migration over long distances201

and none of them provide experimental results.202

As discussed, state of the art orchestration platforms provide some meth-203

ods to relocate VMs. For instance, OpenStack provides live-migration tools204

[25]; however, their use precludes fast VNF re-location. Their operation is205

sketched in Fig. 1a: in contrast to ACHO, the full Virtual Machine has to be206

copied to the targeted destination. This includes common data such as the207

guest kernel, libraries, and the file system structure [23]: these elements are208

not copied when employing ACHO’s context migration. Also, as these tech-209

niques are very expensive in terms of exchanged data, they are only available210

7



Virtualization Layer

Virtual environment

VNF

Context

Execution

Virtualization Layer

Virtual environment

VNF

Context

Execution

Old Infrastructure New Infrastructure

VNF Relocation

(a) VM relocation

Virtualization Layer

Virtual environment

VNF

Context

Execution

Virtualization Layer

Virtual environment

VNF

Context

Execution

Old Infrastructure New Infrastructure

Context Relocation

(b) Context relocation

Figure 1: Relocation strategies: a full VNF relocation (left) vs. the context relocation
performed with ACHO (right).

between the same NFV infrastructure point of presence (i.e., the infrastruc-211

ture controlled by the same VIM instance), excluding thus the migration212

among VIMs, which ACHO supports.213

Also, commercial products such as VMWare implement sophisticated tech-214

niques that can perform live migrations in very short times, by incrementally215

copying the memory of running virtual instances. However, these methods216

require very high bandwidth and a very short latency between the endpoints,217

as well as a shared disk image. The technical report from VMWare [26] declares218

migration times in the order of tenths of seconds over a 10 Gbps Ethernet219

connection. All these requirements preclude their use in our target scenario,220

which should support re-locations between endpoints relatively “far away”221

(e.g., different datacenters). Similar techniques are also employed in the con-222

text of containers, e.g., Voyager [27]. Besides being substantially lighter than223

a VM, this technique however still has to copy all the memory and the disk224

used by the container, making it unsuitable for far re-locations.225

Similar considerations apply for other virtualization platforms that are226

particularly optimized for the VNF migration. For instance, unikernels can227

perform live migration within few milliseconds [28], but they are currently228

not part of any large scale NFV infrastructure deployment and therefore they229

are not integrated into commonly used MANO platforms such as ONAP or230

OSM. Because of this, they lack the required infrastructure management231

capabilities, and therefore they are unsuited accommodate basic features232

such as i.e., re-orchestration triggers in a seamless way.233

2.2.3. Ad hoc solutions234

Enabling flexible re-orchestration in softwarized network deployment re-235

8



ceived attention by the research community in the last few years. The work236

most closely related to ours is SENATUS [5], a framework that internally lever-237

ages on state of the art VIMs; because of this, this framework yields to very238

poor performance, in particular in challenging (i.e., very dynamic) scenarios,239

as we quantify in Section 4.240

The idea of splitting the context of a function from its execution en-241

gine has also been proposed by some works in the literature, most notably242

OpenNF [29] and Split Merge [30]. These papers propose the fast relocation243

of VNF by moving the least amount of information between different virtu-244

alization environments. While these cases are relatively similar to ours, the245

solutions lack two key features that preclude their use in mobile networks:246

(i) the considered VNFs do not constitute part of the “3GPP ecosystem,”247

and (ii) they lack an interface with a modern orchestrator, which is required248

to enable must-have features of mobile networks e.g., network slicing.249

A similar idea is also currently included in the 3GPP specification [31], to250

relocate the information related to a specific UE between different instances251

of a network function, in particular for load balancing purposes or to keep252

providing connectivity when a specific function is decommissioned. Still, this253

procedure is available for the core functions only.254

Finally, if we consider more targeted solutions that also specifically in-255

clude the access network, the available material is even less. The most re-256

markable solution is Orion [9], which allows for a per-slice re-configuration257

of radio resources but the software is not freely available.258

2.3. Main ACHO novelties259

Based on the above analysis of the state of the art, we conclude that there260

is no practical open source solution for flexible orchestration of VNFs in a261

mobile network architecture. This motivated the design and implementation262

of ACHO, a framework that provides the following novelties as compared vs.263

the state of the art:264

• Firstly, ACHO targets mobile networking, a more heterogeneous sce-265

nario with very diverse network functions with very different require-266

ments (e.g., access network vs. core network functions).267

• ACHO provides a clear methodology to adapt existing VNFs, which268

follows the recent architectural trends of 5G networking, and is aligned269

with the ongoing standardization efforts.270

9



RAN

AMF SMFUDMAUSF

UPF

N4C-PLANE

U-PLANE

N3

N2

N1

UE

Access Core

Figure 2: The selected 5G Core functions implemented for the tests.

• ACHO specifies two novel interfaces to support and dynamic and fine-271

grained orchestration, which can be easily implemented with existing272

off-the-shelf orchestrators.273

• ACHO also provides a fully-featured implementation of 5G VNFs and274

orchestration elements, which can be easily downloaded, customized,275

and tested with off-the-shelf hardware.276

• Finally, we discuss different implementation strategies, also aligned277

with existing standardization efforts, to maximize the practicality of278

ACHO.279

3. ACHO: A suite for flexible 5G networking280

We next present ACHO (Adaptive slice re-Configuration using Hierarchi-281

cal Orchestration), a software framework consisting of an implementation of282

5G Functionality (the most critical 3GPP Rel. 15 Core Network Functions,283

depicted in Fig. 2 and marked with SBA in Fig. 5), the radio access network284

functions and the MANO modules to handle them. ACHO provides a full285

network-slicing aware solution that includes all the MANO modules to en-286

able a flexible re-orchestration of the mobile network. Some of the network287

components of ACHO have been adapted from existing open source projects288

(e.g., srsLTE), while other components that were not available as open source289

10



have been implemented from scratch. As a result, the software codebase pro-290

vided by ACHO is very complete and has no match in the landscape of the291

open source mobile networking initiatives.292

3.1. Efficient re-configuration of VNFs through context migration293

As discussed in Section 2.2, a plethora of orchestration algorithms rely on294

dynamically migrating a VNF on the fly. However, very few of them deal with295

the actual implementation of the migration mechanism, with the work of [5]296

being among the notable exceptions, but providing very poor performance.297

This motivates the design of the ACHO framework. The key enabler of298

ACHO is a clean split between the context of a network function and its299

execution engine, which we refer to as the c/e split. The context is defined300

by the current values of all the variables employed by the function, while the301

engine is the part responsible for the actual execution of the function. In302

this way, when relocating a network function, it is sufficient to move to the303

new location just the context, which contains the “state” of the function.304

Therefore, we can instantiate a new function engine in the new location and305

feed it with the data corresponding to the context extracted from the previous306

location (this strategy is depicted in Fig. 1b).307

By moving the context of a VNF only, we reduce the amount of informa-308

tion that has to be moved to the bare minimum, without incurring into large309

penalties as done by VNF unaware solutions [23]. For instance, the tests310

performed in [32] show how the total amount of data transferred is almost311

a linear function of the VM size. In the following, we discuss in details how312

such VNF migration can take place.313

3.2. The VNF context314

As discussed above, by introducing the c/e split, ACHO trades flexibil-315

ity (i.e., the orchestration framework needs to know what kind of VNFs are316

running), with the compactness of the exchanged data, which is the bare min-317

imum data representing the internal state of a VNF. The context is specific318

to each VNF but it is independent of the execution environment: for in-319

stance, we implemented ACHO for a VM-based deployment, but it can work320

with containers or unikernels. A context may comprise the specific rules of321

a firewall, or the information of the authenticated UE for an Authentica-322

tion Server Function (AUSF). To support this, network functions need to323

be re-implemented to enable a clear separation between the context and the324

engine, a re-implementation that is specific to each function. Furthermore,325

11



these re-implemented VNF have to expose this new capability, which could326

be achieved by e.g. extending the Network Exposure Function (NEF) to327

support c/e split through an API.328

An example of the context extracted from the SMF Network Function is329

depicted in Fig. 3. Given that the SMF is in charge of handling the end user330

session, routing them from the base station to the UPF, the context of this331

function includes all the required information to re-install the relocated flow332

into the new VNF. Fig. 3 provides a JSON representation of the context, but333

binary formats such as e.g. Google PBF could also be used. The context334

does not contain information about the resources utilized in the underlying335

infrastructure (i.e., number of CPUs, amount of RAM) that are left to the336

MANO framework by using the standard technologies (e.g., the VNFD file337

descriptors). A full description of the implementation of such relocatable338

functions is provided in Section 3.5.339

Thus, according to operator-defined re-orchestration triggers (which can340

be computed from QoS metrics), the MANO pulls the context from the source341

VNF and injects it in the destination VNF (details on the specific interfaces342

are provided in Section3.4). Hence, in the SMF case discussed here, all the343

information related to the gNB and Gateway, including the tunnel id for each344

user is moved to the new location. Hence, the target VNF can immediately345

start serving the UE traffic from the new location.346

Analogously, we depict in Fig. 4 the context used in our implementation347

of the MAC scheduler, which can perform re-orchestration based on per-slice.348

As discussed in Section 4, we use it to enforce isolation across UEs belonging349

to different slices, changing the RB allocation according to the number of350

served slices. This allows for a very granular per-slice (hence partial) re-351

orchestration, as all the parameters handled by ACHO are related to specific352

slice instances, as we also show with our proof of concept results in Section 4.353

Hence, in addition to the re-implementation of these functions, we also354

need the means to transfer of the context from one location to another, i.e.,355

instantiate the engine in the new location, feed it with the context, and356

update the corresponding communication paths. ACHO provides an open-357

source and practical implementation of this functionality, demonstrating that358

it is indeed feasible to relocate VNFs without disrupting ongoing services.359

3.3. Baseline 5G implementation360

To illustrate the benefits of the c/e split we need a working baseline361

implementation of certain 5G functionality, neither supported by current362

12



1 {
2 "enb_tun_ip_addr": "192.16

8.10.12",

3 "gw_tun_ip_addr": "192.168

.10.10",

4 "enb_tun_hw_addr": "xx:xx:

xx:xx:xx:xx",

5 "gw_tun_hw_addr": "yy:yy:

yy:yy:yy:yy",

6 "external_src_mac": "zz:zz

:zz:zz:zz:zz",

7 "external_dst_mac": "cc:cc

:cc:cc:cc:cc",

8 "ue_ip_addr": "172.16.0.30

",

9 "teid": "1111111"

10 }

Figure 3: Representation of the SMF context

1 {
2 "nsl_id": "1",

3 "rnti": ["1","2","3"],

4 "start_rb_id": 1,

5 "stop_rb_id": 20,

6 }

Figure 4: Representation of the SMF context

versions of 3GPP (i.e., 4G/LTE) nor existing open-source implementations.363

We next describe the baseline architecture that we have developed, which364

is far more complete than any existing open source software alternative and365

includes: (i) a multi-slice capable access network (both in the UE and eNB),366

to support end-to-end network slicing, and (ii) a modular implementation of367

the Core Network, as mandated by recent 3GPP standards.368

Radio Access Network Our Radio Access Network (RAN) implementation369

is based on the open source software suite srsLTE [33], which is extended to370

13



VNFMVNFMVNFM

NFVO

VIMVIMVIM

ET
SI

 N
FV

 M
A

N
O

N
FV

 
In

fr
as

tr
uc

tu
re

cVNF

uVNF

cVNF
N

SS
I-

3

Edge Cloud

cPNF

uPNF

N
SS

I-
4

Antenna
vCPU vRAM vDisk
Virtualization Layer
CPU RAM Disk

N
SS

I-
2

cVNF cVNF

uVNF uVNF

cVNF

N
SS

I-
1

Central Cloud

SBA

Transport
Network

or-nfv

NSMFCSMF 3GPP 
Management 
System

NSSMF

or-nfvor-nfv

or-mon

or-nfv

vCPU vRAM vDisk
Virtualization Layer
CPU RAM Disk

vCPU vRAM vDisk
Virtualization Layer
CPU RAM Disk

Figure 5: MANO Implementation and new Interfaces. ACHO creates new interfaces in
the reference points defined by ETSI and acts on the underlying virtual or physical NFs
(both c-plane and u-plane) to provide a fast re-location.

support multiple slices. This Multi-slice RAN builds on a modified version371

of srsLTE to support multiple slices on the same radio VNFs (the full imple-372

mentation details of the baseline are available in [34]), that we have extended373

to support fine-grained reconfiguration of radio resources (see Section 3.5).374

Core Network ACHO employs an ad-hoc version of the Core Network375

(CN) functionality that has been specifically implemented for this purpose,376

as VNFs shall implement the c/e split paradigm. Moreover, our implemen-377

tation is fully modular and follows the service-based architecture (SBA).378

More specifically, the implementation of the Access Management Function379

(AMF), AUSF, User Data Management (UDM) and User Plane Function380

(UPF) functions is done in Python 3, and is detailed in Section 3.5.381

3.4. New MANO functionality382

The adoption of the c/e split requires novel MANO functionality, to en-383

able the relocation of network functions, and new interfaces between the384

management and orchestration layers and the VNFs, to extract and install385

the contexts.386

Hierarchical management and orchestration. To implement the relo-387

cation of VNFs within a running slice, we design a system that supports this388

14



functionality, following the recent efforts from the 3GPP [15] and ETSI [35].389

Our design is illustrated in Fig. 5 and follows a hierarchical structure, with390

the following two main components:391

(i) A 3GPP management system (top of the figure, as defined by [15]),392

which provides the entry point towards the business layers (i.e., the ten-393

ants that request a specific communication service) and manages services in394

the underlying network. We implemented these parts as Python modules,395

which includes the mapping of two communication services (namely, eMBB396

and mMTC) into two Network Function chains. In ACHO, we implement a397

reduced subset of the ones already defined by 3GPP. Namely, we logically398

select the VNFs that belong to each slice (including the sharing policies) and399

create their logic topology.400

(ii) An ETSI NFV MANO system (top right) in charge of the central part401

of the network lifecycle management (i.e., instantiation, runtime, and termi-402

nation). To implement this part, we have developed a composite implementa-403

tion of the ETSI NFV MANO [35] stack. Specifically, we employ a base-line404

OpenStack as the VIM, and then developed the other modules (i.e., VNFM405

and NFVO) as ad-hoc modules, in Python. Basically, we leverage OpenStack406

to trigger the instantiation of different VMs in our infrastructure, by using its407

API. Also, the interfaces towards the VNFs are implemented using Python.408

New interfaces. We designed two new interfaces: one to extract and install409

the context, and another one to estimate network conditions, which is needed410

to support decisions about VNFs re-locations. We denote these interfaces as411

or-nfv and or-mon, respectively (see Fig. 5). These interfaces can be con-412

sidered as part of the already defined ETSI MANO reference points or-vfnm,413

ve-vnfm-vnf and or-vi, although other extensions may be considered. They414

are described next:415

(i) or-nfv: This interface is used to extract and push the context of416

the VNFs. This interface is used by the Orchestrator (the NFVO), which417

is in charge of all the operational logic of a Network Slice. In particular,418

when deciding to relocate a function, the NFVO first extracts the context419

of the network function and then re-orchestrates this function, by pushing420

the context into the function available at the new location. This interface is421

similar to the one already included in the 5G system between the management422

service and the core network functions. This interface [36], connects the423

capabilities provided by the Network Exposure Function (NEF) and Network424

Repository Function (NRF) to extract and set configuration parameters from425

the network functions. In our implementation, following the current trends in426

15



network softwarization, this interface is implemented through a REST API.427

(ii) or-mon: This interface connects the VNF manager (VNFM) with428

the VNFs through the SBA, and serves to monitor the VNFs, to trigger a429

relocation when performance falls below a given target (although the VIM430

has some monitoring capabilities, they typically circumscribe to the Virtual431

Machines and not the VNFs). This interface is also similar to the one defined432

by 3GPP between the Network Data Analytics Function (NWDAF) available433

in the core and the management system. However, in our implementation434

(based on a REST API), we extend its focus by targeting different metrics435

(e.g. latency, in addition to load) and also including access functions.436

m
M

T
C

e
M

B
B

U
R

L
L

C

Antenna Edge 2

Central

Edge 1

Shared Functions

RAN

1

RAN

2

RAN

AR

UPF

UPF

UPF

IoT

AMF

AMF

SMF

SMF

SMF

UDM

UDM

AUSF

AUSF

FW

Experiment 2
Experiment 1

Experiment 3

Experiment 4

Figure 6: The Network Slice setup employed in the experimental evaluation, consisting of
3 slices.

3.5. Re-orchestrable VNFs437

The proposed c/e split can be applied to any VNF, provided it implements438

the interfaces described above to extract and install the context. To show439

this, we have implemented different VNFs following the c/e split and thus440

making them “re-orchestrable.” We note that the c/e split nicely fits with441

the SDN approach, which is an easy way to extract and inject the context442

from and to a VNF (i.e., in traditional SDN, the context of a switch are443

its forwarding rules). Thus, to implement the VNFs, for simplicity we have444

selected the Open Source Lagopus switch5 as basis for our implementation445

5http://www.lagopus.org

16



(alternatives such as ONOS [37] may be used for larger deployments). The446

diversity of the chosen functions shows the generality of our approach and447

the ability to apply it to any network function:448

UPF: This function provides the encapsulation, decapsulation, and forward-449

ing to the Packet Data Network. The implementation of this module follows450

the c/e split and includes the corresponding interfaces with our MANO sys-451

tem to extract and install the context. The context consists of the current452

rules applied to encapsulate/decapsulate packets and to forward them. We453

have implemented the UPF module building on the Lagopus switch.454

SMF: This c-plane function controls and configures the UPF instances on455

the u-plane through the N4 [14] interface. Thus, the context here also con-456

sists of the rules to encapsulate/decapsulate/forward packets, in this case457

for all the UPF functions controlled by the SMF. For the implementation of458

this module, we leverage available SDN-capable implementations, enriching459

them with mobile network functionality, and employing a Ryu Controller6 to460

implement the N4 interface between the UPF and the SMF.461

IoT broker: The IoT broker acts as middleware between the sensors con-462

nected to a mobile network and a data sink that may be located in a central463

location. We have implemented this module in Python from scratch, in-464

cluding specific libraries for the handling of traffic flows from the sensors.465

Our lightweight and flexible implementation allows to dynamically transfer466

the broker context to a new location, which is particularly suitable for Mo-467

bile Edge Computing (MEC) deployments, as it allows moving the broker468

functionality across different edge infrastructures.469

Firewall: This network function forwards IP packets from an ingress to an470

egress port following a set of firewall rules. The context of this network471

function thus consists of these rules. We have implemented the u-plane part472

of this function as a Lagopus switch, and the c-plane part as an extended473

Ryu controller. The latter gathers the rules, which are stored as Python474

objects, and provides them to the MANO system through the corresponding475

primitives.476

MAC scheduler: One of the main functions of MAC layer in LTE is the477

scheduling, which basically consist of assigning a given amount of resources478

to different users. The context of this function is, therefore, the amount of479

available resources, and the different users requesting them. Our implemen-480

6https://osrg.github.io/ryu/

17



tation includes an interface at MAC layer level to enable a dynamic resource481

management: each time a user gets authenticated, the MAC layer notifies482

the orchestrator, which replies with the amount of resources to be assigned483

to this user. We use ACHO just on selected events, to allow enough stability484

on the radio link. Although the ACHO mechanism do not impose any con-485

straint on the frequency of re-orchestration, each re-orchestration impose a486

price in terms of resource re-allocation. Finally, by employing ACHO at the487

network edge, allows for a better network slice isolation, as demonstrated in488

Section 4489

3.6. ACHO adoption strategies490

As discussed in the previous subsections, adopting ACHO in the state of491

the art architecture requires fundamentally two new features: (i) the intro-492

duction of new relocatable functions (see Section 3.5) and (ii) their interac-493

tion with the MANO (see Section 3.4). Indeed, they require an important494

re-structure of the current network implementation strategies, but we be-495

lieve that the advantages brought by our approach (i.e., the possibility of496

a fast re-orchestration of network functions) will certainly be considered in497

the upcoming transition to novel paradigms such as the cloud-native network498

functions [38].499

Still, the changes from the architectural perspective are limited and, in500

some cases, even already partially targeted by the current standardization501

work. Summarizing, the new architectural interfaces shall be able to expose:502

• Network parameters: as discussed in Section 3.4, ACHO envisions a503

new interface between the VNF and the MANO domains, that is used504

to perform extraction and injection of the context to and from virtual505

appliances. This kind of approach is totally aligned with current trends506

of network softwarization, which propose a profound restructuring of507

interfaces with an API based approach.508

• Network resource models: the context of a VNF is tightly bound509

with its internal state, which is represented by a set of parameters510

usually associated to different granularity levels: per user (such as the511

bearer information), per user group or slice (such as the IoT broker)512

or globally to the VNF (like the eNB configuration). All these aspects513

are discussed in Section 3.5.514

To this end, we next propose two implementation strategies that are515

aligned with the current efforts by SDOs.516

18



• Transparent mode: While the network functions shall provide an517

API to extract and inject their context, its definition may be actually518

up to the vendor. Therefore, the data blob comprising the context of a519

network function at a certain point in time can be transparently han-520

dled by the MANO through the or-nfv interface, which simply transfers521

it to another location. Then the consistency is provided internally by522

the VNF vendor. This is the strategy used in our implementation dis-523

cussed in Section 4.524

• Exposed mode: defining the parameters that are used by a VNF is525

a task that has already been carried out by 3GPP SA5 for manage-526

ment purposes. For instance, [39] defines such parameters list for every527

network function defined in the 5G Core and RAN. Thus, context can528

be exposed following a standardized approach, to enable inter-vendor529

migration and enhanced management functionality at the MANO side530

(e.g., extract the context from one VNF and split it into several virtual531

appliances).532

4. Performance evaluation533

To evaluate the performance of ACHO, we have deployed a testbed con-534

sisting of an access network and three datacenters, one acting as “central535

cloud” and two acting as “edge clouds,” which run the components presented536

in the previous section. Over this setup, three services (eMBB, mMTC, and537

URLLC) are provided as illustrated in Fig. 6. Arrows serve to indicate the538

four re-orchestrations that we perform and are described in Section 4.3. We539

remark that, since the same UE may connect to the same attachment point540

for different slices, the mobility management and authentication procedures541

can be shared across slices, and so are the AMF, AUSF and UDM func-542

tions (the “Shared Functions” in Fig. 6). This relies on the network function543

sharing functionality, which is mandated by 3GPP [14].544

In this section we thus evaluate the performance obtained by ACHO under545

a set of different metrics: VNF relocation delays (see Section 4.2), and the546

re-orchestration of the VNFs discussed in Section 2.1 (in Section 4.3).547

4.1. Testbed description548

The testbed, depicted in Figure 7 is entirely composed of commodity549

hardware, which shows that ACHO does not have any particular hardware550

19



Transport

Network

Compute
Controller

Edge 2

USRP B210

USRP B210

Antenna

UE

Controller

ComputeEdge 1
Central

Controller 

and 

Orchestrator

Compute

+ ACHO

Figure 7: The Physical testbed setup.

requirement. The access network consists of a physical UE and virtual UEs.551

The physical UE runs in a laptop with Ubuntu 16.04, and the radio link is552

implemented by two Ettus USRP B210 SDR cards cross-connected with RF553

cables. The multi-slice eNB software runs in an Intel NUC with an Ubuntu554

18.04. The same machine hosts the Virtual RAN software for the mMTC555

deployment.556

The datacenters run OpenStack, with one controller node that manages557

the virtual links connecting the VNFs. They are hosted in Ubuntu 16.04558

servers, each server equipped with two network cards: one acting as the559

provider network (i.e., carrying the 3GPP Network traffic), and the other560

carrying the control and management traffic. The transport network con-561

necting the different datacenters consists of four Northbound Networks Zo-562

diac FX Openflow-enabled switches. To emulate long-distance links (i.e.,563

between edge and cloud), we use the Linux traffic shaper tc.564

4.2. VNF relocation delay565

We start our evaluation by focusing on the delay to perform a relocation566

of a VNF, which is defined as the time elapsed between the MANO taking567

the relocation decision, and the moment in which the VNF is up and running568

20



ACHO
OpenStack

VNF Run Pool Cached Non-C.

UPF 70 ms 28.3 s 1 m 11.2 s 2 m 29.3 s 74 m 40 s
IoT br. 72 ms 28.8 s 1 m 5.7 s 2 m 29.2 s 89 m 35 s

FW 71 ms 27.7 s 1 m 3.3 s 2 m 27.3 s 59 min 48 s

Table 1: VNF relocation delays obtained by ACHO and by OpenStack.

in the new location.7 We measure the relocation delay for three of the VNFs569

described in Section 3.5: the UPF and the firewall (FW), each one running570

in a nano instance, and the IoT broker, which runs in a small instance (these571

VM flavors are inspired by the Amazon EC2 service). For all the considered572

VNFs, we evaluate the relocation delay incurred when using two different573

orchestration platforms: (i) ACHO, with four different configurations (dis-574

cussed below), and (ii) the one obtained with OpenStack live migration.575

We provide the resulting relocation delays, corresponding to the average of576

5 repetitions, in Table 1. This comparison allows us to quantify what are577

the advantages of a lightweight solution like ACHO with respect to a heavy578

migration technique such as the one provided by OpenStack. This scenario,579

which reflects a typical central cloud to edge cloud migration, cannot be580

properly handled directly through the VIM.581

That is, the results confirm that OpenStack results extremely slow as582

compared with ACHO, for all the configurations. These configurations are:583

(i) already running (Run in the table), where the engine is already boot-584

strapped, (ii) pool, where the engine is already created in the new location,585

but not started; (iii) cached, where the target engine has already been started586

in the destination machine in the past; and (iv) non-cached (Non-C.), where587

the image of the engine is available at the new destination but has to be588

created and bootstrapped for the first time.589

OpenStack results order of magnitude slower than any of these configura-590

tions, as moving a VNF requires moving a full copy of the engine (including591

memory and disks). This is the main showstopper for the direct application592

7Note that we do not consider “live-migrations,” since available orchestrators such as
OpenStack can only perform this type of migration when disk or memory is shared across
locations, something unfeasible in the scenarios we consider (e.g., a VNF relocated to a
different and possibly far node).

21



of the live migration in an environment such as the one depicted here, in593

which a flat NFV infrastructure may not be available. In contrast, delays594

are much smaller with ACHO, which furthermore enables having an engine595

already running in the destination node, thus making the relocation delay596

almost negligible (note that delays could be further reduced by employing597

more lightweight engines, such as, e.g., Containers or Unikernels). These598

results are also aligned with the ones provided in [40].599

We finalize this section by analyzing the relocation delay of SENATUS [5],600

the orchestration framework closest to our proposal (as we discussed in Sec-601

tion 2.2). SENATUS leverages the native OpenStack APIs to perform a full602

snapshot of the image running the VNF before moving it to the new location,603

which requires the service to be stopped during the migration. Using similar604

images to the ones reported in [5]8, we obtained migration times of approx.605

130 s, a performance comparable to ACHO’s non-cached configuration (in606

both cases, the image has to be created and bootstrapped for the first time).607

We note, however, that ACHO supports a “make before break” paradigm, as608

it only needs to stop the VNF in the old location when starting the context609

transfer, and not before. As a result, ACHO can re-orchestrate VNFs with-610

out any perceptible service interruption (as we confirm next), while SENATUS611

would incur in a service disruption during this 130 s interval.612

4.3. Performance under re-orchestration613

Next, we evaluate the impact of re-orchestration on performance. To this614

aim, we have performed four experiments:615

Experiment 1: Service function chain re-orchestration. One key feature616

of ACHO is the ability to seamlessly modify the function chain of a service617

already running, i.e., adding or removing a VNF. We tested this feature in618

the eMBB network slice by adding a new firewall function to support a new619

requirement. Using the interface or-nfv described in Section 3.4, injecting620

the state is an atomic operation decoupled from the execution environment621

of the network function.622

Our experiment starts with the eMBB slice serving three TCP flows,623

namely A, B, and C. After 30 s, we enforce a new policy by adding a firewall624

function into the slice and injecting the firewall rules (as context) through the625

8SENATUS is evaluated using CirrOS images, which by default do not have a context
as they do not run a proper VNFs. So we could not test ACHO’s mechanism against this
setup.

22



0 10 20 30 40 50 60 70 80 90
Time (s)

0

20

40

60

80

100
Re

la
tiv

e 
Th

ro
ug

hp
ut

 (%
) Flow A

Flow B
Flow C
SFC Re-Orch

Figure 8: SFC amendment. Flow A (top), B (middle) and C (bottom).

0 20 40 60 80 100 120 140 160 180 200
Time (s)

0
50

100
150
200
250
300
350
400

De
la

y 
(m

s)

RAN-1
RAN-2
Reloc-Start

Figure 9: Relocation of the IoT gateway across edge clouds.

or-nfv interface. These rules match flow A, which is immediately interrupted626

without affecting the rest of the flows of this slice. We plot the throughput627

obtained by each flow in Fig. 8, which illustrates that re-orchestration does628

not disrupt the performance of the ongoing services.629

Experiment 2: Follow-the-load VNF relocation. Next, we consider an630

mMTC service in a scenario with two RANs and two edge clouds. Initially,631

all the UEs are connected to RAN 1, which is closest to Edge 1 and therefore632

both the UPF and the IoT Broker application are orchestrated there. This633

results in a Round Trip Time (RTT) for the application of approx. 100 ms,634

as Fig. 9 shows. Then, at time t=50 s, half the UEs are moved to RAN 2,635

which is farther away from Edge 1, this resulting in RTTs of approx. 370 ms.636

This performance degradation is detected by the MANO via the or-mon in-637

23



terface, which reacts by instantiating new UPF and IoT Broker in Edge 2638

and, once these are available, relocating the context of those UEs that moved639

into them. This whole process (i.e., creating a new VM with the VNF image640

and, once ready, copy the context) takes approx. 30 s (which corresponds641

to the “pool” strategy in Table 1) and the service is never disrupted, nor642

for the UEs that stay in RAN 1 nor for those that move to RAN 2. These643

results show the ability of ACHO to flexibly relocate only selected parts of a644

context.645

Experiment 3: Bringing VNF closer to users. Next, we demonstrate the646

ability of ACHO to relocate VNFs inside the same slice. To this aim, we con-647

sider the URLLC slice, supporting a 600 kbps application that experiences648

a delay of approx. 150 ms. At some point, the MANO marks this delay as649

excessive and triggers a re-orchestration of the slice. This re-orchestration650

involves the relocation of the UPF and the low latency application (i.e., aug-651

mented reality in this case, marked as AR in Fig. 6), bringing both of them652

closer to the UE (i.e., from the central to the edge cloud). We analyze the653

resulting performance using three of the ACHO strategies discussed in Sec-654

tion 4.2, namely, Pool, Cached and Non-C. To this aim, we depict in Fig. 10655

the performance since the MANO triggered the re-allocation in terms of con-656

nectivity (i.e., frames received, top subplot), and delay (bottom subplot).657

The results confirm that (i) the re-orchestration is performed seamlessly658

towards the application, which perceives no disruption (i.e., no frames are659

lost), (ii) performance in terms of latency improves due to the relocation of660

the VNFs, (iii) migration delays (time between t = 0 and the thick black661

ticks in the figure) are in line with those presented in Section 4.2, with the662

“pool” strategy providing the smallest latency and the “non-cached” the663

largest one.664

Experiment 4: On-demand radio resources assignment. In this experiment,665

we consider two users (UE1 and UE2) of a video streaming services. Each666

user requests at the beginning of the experiment a low quality video, therefore667

the orchestrator assigns the same amount of resources to each of them. At668

time t=30 s, UE1 requests a higher quality video (720p) and the orchestrator669

reacts by assigning more resources to that flow. Similarly, at time t=60 s670

UE2 requests a higher quality video, triggering a similar re-configuration.671

We provide in Fig. 11, the resulting throughput obtained by each user.672

The insights about the above reconfiguration are provided next. The eNB673

is configured with a bandwidth of 10 MHz of bandwidth, which translates into674

16 RBGs (Resource Block Groups) of 3 PRBs (Physical Resource Blocks),675

24



Connectivity during relocation

0 20 40 60 80 100 120 140 160
Time (s)

0

100

200

De
la

y 
[m

s]

Delay
Pool Cached Non-Cached Reloc-End

Figure 10: UPF migration from the central cloud to the edge cloud, under different con-
figurations.

0 10 20 30 40 50 60 70 80 90
Time (s)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

Th
ro

ug
hp

ut
 (M

bp
s) UE1

UE2
Max. Achievable Throughput
R-Alloc

Figure 11: On-demand Radio resources assignment

and 1 RBG of 2 PRBs. The initial assignment is 4 RBGs per UE, which sup-676

ports the transmission of a 480p video. Then, at time t=30 s (t=60 s) the677

orchestrator assigns four more RBGs to UE1 (to UE2 ) to support the trans-678

mission of a 720p video. As the Fig. 11 confirms, we can dynamically assign679

resources to UE with strong guarantees on their isolation (i.e., increasing the680

bandwidth for one UE does not affect the other).681

5. Conclusion682

We have proposed a new framework to flexibly re-orchestrate a virtual-683

ized mobile network. This framework allows to re-orchestrate network slices684

on the fly without disrupting ongoing services, which can greatly improve685

25



performance under changing conditions. We have developed an implementa-686

tion of a 5G protocol stack that realizes it, and have applied it to VNFs of687

different nature. We have evaluated the resulting performance in a realistic688

network slicing setup, showing the feasibility and advantages of flexible re-689

orchestration. We believe that flexible re-orchestration framework envisioned690

and implemented for this work fits very well the current trends in network691

softwarization followed by the industry. As future work, more functions can692

be implemented, as well as the exposed mode discussed in the paper.693

Acknowledgements694

This work was partially supported by the European Commission in the695

framework of the H2020 5G-PPP 5G-TOURS (Grant no. 856950) project696

and the 5G-EVE (Grant no. 815074) project.697

[1] A. A. Barakabitze, A. Ahmad, R. Mijumbi, A. Hines, 5G network slicing698

using SDN and NFV: A survey of taxonomy, architectures and future699

challenges, Computer Networks 167 (2020) 106984. doi:https://doi.700

org/10.1016/j.comnet.2019.106984.701

[2] R. Munoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec, A. Aut-702

enrieth, V. Lopez, D. Lopez, Integrated SDN/NFV management and703

orchestration architecture for dynamic deployment of virtual SDN con-704

trol instances for virtual tenant networks, IEEE/OSA Journal of Optical705

Communications and Networking 7 (2015) B62–B70.706

[3] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, X. Costa-Perez, How707

should i slice my network?: A multi-service empirical evaluation of re-708

source sharing efficiency, in: Proceedings of the 24th Annual Interna-709

tional Conference on Mobile Computing and Networking, MobiCom ’18,710

ACM, New York, NY, USA, 2018, pp. 191–206. URL: http://doi.acm.711

org/10.1145/3241539.3241567. doi:10.1145/3241539.3241567.712

[4] V. Sciancalepore, C. Mannweiler, F. Z. Yousaf, P. Serrano, M. Gra-713

maglia, J. Bradford, I. Labrador Pavn, A future-proof architecture for714

management and orchestration of multi-domain nextgen networks, IEEE715

Access 7 (2019) 79216–79232. doi:10.1109/ACCESS.2019.2923364.716

[5] S. Troia, A. Rodriguez, R. Alvizu, G. Maier, Senatus: An experimental717

sdn/nfv orchestrator, in: 2018 IEEE Conference on Network Function718

26



Virtualization and Software Defined Networks (NFV-SDN), 2018, pp.719

1–5. doi:10.1109/NFV-SDN.2018.8725690.720

[6] L. Jorguseski, A. Pais, F. Gunnarsson, A. Centonza, C. Willcock, Self-721

organizing networks in 3GPP: standardization and future trends, IEEE722

Communications Magazine 52 (2014) 28–34. doi:10.1109/MCOM.2014.723

6979983.724

[7] J. T. J. Penttinen, Core Network, Wiley, 2019, pp. 139–725

186. URL: https://ieeexplore.ieee.org/document/8788396.726

doi:10.1002/9781119275695.ch6.727

[8] Open RAN Alliance, O-ran: Towards an open and smart ran, White728

Paper (2018).729

[9] X. Foukas, M. K. Marina, K. Kontovasilis, Orion: Ran slicing for a730

flexible and cost-effective multi-service mobile network architecture, in:731

Proceedings of the 23rd annual international conference on mobile com-732

puting and networking, ACM, 2017, pp. 127–140.733

[10] B. Ger, D. Jocha, R. Szab, J. Czentye, D. Haja, B. Nmeth, B. Sonkoly,734

M. Szalay, L. Toka, C. J. Bernardos Cano, L. M. Contreras Murillo, The735

orchestration in 5G exchange A multi-provider NFV framework for 5G736

services, in: 2017 IEEE Conference on Network Function Virtualization737

and Software Defined Networks (NFV-SDN), 2017, pp. 1–2.738

[11] L. Ma, X. Wen, L. Wang, Z. Lu, R. Knopp, An SDN/NFV based739

framework for management and deployment of service based 5G core740

network, China Communications 15 (2018) 86–98.741

[12] D. M. Gutierrez-Estevez, M. Gramaglia, A. de Domenico, N. di Pietro,742

S. Khatibi, K. Shah, D. Tsolkas, P. Arnold, P. Serrano, The path towards743

resource elasticity for 5g network architecture, in: 2018 IEEE Wireless744

Communications and Networking Conference Workshops (WCNCW),745

2018, pp. 214–219. doi:10.1109/WCNCW.2018.8369027.746

[13] J. Ortin, C. Donato, P. Serrano, A. Banchs, Resource-on-demand747

schemes in 802.11 wlans with non-zero start-up times, IEEE Journal on748

Selected Areas in Communications 34 (2016) 3221–3233. doi:10.1109/749

JSAC.2016.2624158.750

27



[14] 3GPP TS23.501, System Architecture for the 5G System,, Rel. 15, 2018.751

[15] 3GPP TR28.801, telecommunication management;study on manage-752

ment and orchestration of network slicing for next generation network,753

Rel. 15, 2018.754

[16] Xin Li, Chen Qian, A survey of network function placement, in: 2016755

13th IEEE Annual Consumer Communications Networking Conference756

(CCNC), 2016, pp. 948–953.757

[17] A. Laghrissi, T. Taleb, A survey on the placement of virtual resources758

and virtual network functions, IEEE Communications Surveys Tutorials759

21 (2019) 1409–1434.760

[18] H. Talebian, A. Gani, M. Sookhak, A. A. Abdelatif, A. Yousafzai,761

A. V. Vasilakos, F. R. Yu, Optimizing virtual machine placement762

in IaaS data centers: taxonomy, review and open issues (????).763

URL: https://doi.org/10.1007/s10586-019-02954-w. doi:10.1007/764

s10586-019-02954-w.765

[19] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. N. Chang, M. R.766

Lyu, R. Buyya, Cloud service reliability enhancement via virtual ma-767

chine placement optimization, IEEE Transactions on Services Comput-768

ing 10 (2017) 902–913.769

[20] OSM Release FIVE Technical Overview, https://osm.etsi.org/770

images/OSM-Whitepaper-TechContent-ReleaseFIVE-FINAL.pdf,771

2019. Online; accessed Apr. 2020.772

[21] ONAP Architecture Overview whitepaper, https://www.onap.773

org/wp-content/uploads/sites/20/2019/07/ONAP_CaseSolution_774

Architecture_062519.pdf, 2019. Online; accessed Apr. 2020.775

[22] OSM Information Model, https://osm.etsi.org/wikipub/index.776

php/OSM_Information_Model, 2019. Online; accessed Dec. 2019.777

[23] M. E. Elsaid, C. Meinel, Live migration impact on virtual datacenter778

performance: Vmware vmotion based study, in: 2014 International779

Conference on Future Internet of Things and Cloud, 2014, pp. 216–221.780

doi:10.1109/FiCloud.2014.42.781

28



[24] F. Zhang, G. Liu, X. Fu, R. Yahyapour, A survey on virtual machine782

migration: Challenges, techniques, and open issues, IEEE Communica-783

tions Surveys Tutorials 20 (2018) 1206–1243. doi:10.1109/COMST.2018.784

2794881.785

[25] Openstack Docs live-migrate instances, https://docs.openstack.786

org/nova/pike/admin/live-migration-usage.html, 2019. Accessed:787

Dec 2019.788

[26] VMware vSphere vMotion architecture, performance and best practices789

in vmware vsphere 5: Performance study, Technical White Paper, 2011,790

2019. Online; accessed Dec. 2019.791

[27] S. Nadgowda, S. Suneja, N. Bila, C. Isci, Voyager: Complete Con-792

tainer State Migration, in: 2017 IEEE 37th International Confer-793

ence on Distributed Computing Systems (ICDCS), 2017, pp. 2137–2142.794

doi:10.1109/ICDCS.2017.91.795

[28] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-796

gnaire, S. Smith, S. Hand, J. Crowcroft, Unikernels: Library op-797

erating systems for the cloud, SIGPLAN Not. 48 (2013) 461–472.798

URL: http://doi.acm.org/10.1145/2499368.2451167. doi:10.1145/799

2499368.2451167.800

[29] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,801

J. Khalid, S. Das, A. Akella, Opennf: Enabling innovation in net-802

work function control, in: Proceedings of the 2014 ACM Conference803

on SIGCOMM, SIGCOMM ’14, ACM, New York, NY, USA, 2014,804

pp. 163–174. URL: http://doi.acm.org/10.1145/2619239.2626313.805

doi:10.1145/2619239.2626313.806

[30] S. Rajagopalan, D. Williams, H. Jamjoom, A. Warfield, Split/merge:807

System support for elastic execution in virtual middleboxes, in:808

Presented as part of the 10th USENIX Symposium on Networked809

Systems Design and Implementation (NSDI 13), USENIX, Lombard,810

IL, 2013, pp. 227–240. URL: https://www.usenix.org/conference/811

nsdi13/technical-sessions/presentation/rajagopalan.812

[31] 3GPP TS23.502, Procedures for the 5G System (5GS); stage 2 (release813

16),, Rel. 16, 2020.814

29



[32] X. Feng, J. Tang, X. Luo, Y. Jin, A performance study of live vm815

migration technologies: Vmotion vs xenmotion, in: 2011 Asia Commu-816

nications and Photonics Conference and Exhibition (ACP), 2011, pp.817

1–6. doi:10.1117/12.905512.818

[33] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,819

C. Cano, D. J. Leith, srslte: An open-source platform for lte evolu-820

tion and experimentation, in: Proceedings of the Tenth ACM Inter-821

national Workshop on Wireless Network Testbeds, Experimental Eval-822

uation, and Characterization, WiNTECH ’16, ACM, New York, NY,823

USA, 2016, pp. 25–32. URL: http://doi.acm.org/10.1145/2980159.824

2980163. doi:10.1145/2980159.2980163.825

[34] G. Garcia-Aviles, M. Gramaglia, P. Serrano, A. Banchs, POSENS:826

A Practical Open Source Solution for End-to-End Network Slicing,827

IEEE Wireless Communications 25 (2018) 30–37. URL: https://828

ieeexplore.ieee.org/document/8524891/. doi:10.1109/MWC.2018.829

1800050.830

[35] ETSI, network functions virtualisation (nfv) release 3; evolution and831

ecosystem; report on network slicing support with etsi nfv architecture832

framework, 2017.833

[36] 3GPP TS29.510, 5G System; Network function repository services;834

Stage 3 (Release 15),, Rel. 15, 2020.835

[37] ONOS Project, https://onosproject.org, 2019. Online; accessed Dec.836

2019.837

[38] Cloud-native network functions, Cisco White Paper, 2018. URL:838

https://www.cisco.com/c/en/us/solutions/service-provider/839

industry/cable/cloud-native-network-functions.html.840

[39] 3GPP TS28.541, Management and orchestration; 5G Network Resource841

Model (NRM); Stage 2 and stage 3,, Rel. 15, 2018.842

[40] 5G-CORAL, Refined design of 5G-CORAL orchestration and control843

system and future directions, D3.2, 2019.844

30


