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Abstract: Anonymous communication tools, such as Tor, are
extensively employed by users who want to keep their web ac-
tivity private. But recent works have shown that when a local,
passive adversary observes nothing more than the timestamp,
size and direction (incoming or outgoing) of the packets, it can
still identify with high accuracy the website accessed by a user.
Several defenses against these website fingerprinting attacks
have been proposed but they come at the cost of a significant
overhead in traffic and/or website loading time. We propose
a defense against website fingerprinting which exploits mul-
tihoming, where a user can access the Internet by sending the
traffic through multiple networks. With multihoming, it is pos-
sible to protect against website fingerprinting by splitting traf-
fic among the networks, i.e., by removing packets from one
network and sending them through another, whereas current
defenses can only add packets. This enables us to design a de-
fense with no traffic overhead that, as we show through exten-
sive experimentation against state-of-the-art attacks, reaches
the same level of privacy as the best existing practical de-
fenses. We describe and evaluate a proof-of-concept imple-
mentation of our defense and show that is does not add signif-
icant loading-time overhead. Our solution is compatible with
other state-of-the-art defenses, and we show that combining it
with another defense further improves privacy.
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1 Introduction

The web activity of users, i.e., which websites they visit, is
known to be sensitive data as it discloses a large amount of in-
formation. Such information can be used by repressive states
against citizens who try to go against country-level censor-
ship and by marketers (e.g., it has been revealed that in the
USA, Internet service providers (ISPs) sell the Internet brows-
ing records to marketers [4]). Being able to keep a person’s
web activity private is thus of the utmost importance. Typical
solutions include the use of encryption protocols that hide only
the content of the packet, such as TLS (used by HTTPS), and
of anonymous communication tools that also hide the destina-
tion of the packets from a local adversary (e.g., a curious or
state-controlled ISP, or the curious administrator of a public
WiFi access-point), such as Tor. Anonymous communication
tools like Tor, which we study more particularly, are supposed
to make it impossible for a local adversary to detect which
website a client visits.

Recent works [18, 30, 32, 48, 49, 66, 68], however, have
shown that traffic analysis techniques, such as website finger-
printing (denoted in this paper by WF), enable a local adver-
sary to identify with high accuracy which website is visited
(more than 90% accuracy in a list of 100 monitored websites),
even if the client uses an anonymous communication tool (i.e.,
she hides the final destination and content of the packets from
the local adversary). The adversary can successfully identify
the website (carry out a WF attack) by looking at only packet
metadata; with Tor, the packets are fragmented in so-called Tor
cells of fixed size, which means that only the timestamp and
direction (incoming or outgoing) of the packets are available to
the adversary, and not the size of the packets. WF attacks typi-
cally extract features on the observable metadata (such as total
number of packets, timings of packets, ratio between outgoing
packets and incoming packets). These attacks are formulated
as a classification problem and rely on supervised machine-
learning techniques to learn associations between features and
websites.

A large number of defenses has been proposed to de-
feat these attacks. They rely on two main techniques: (i) link
padding, which takes advantage of the inability of the adver-
sary to see the content of the packets and inserts dummy pack-
ets to the packet flow to confuse the adversary; and (ii) packet
delaying, which delays packets to modify the trace. Both of
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these techniques incur a performance overhead: Link padding
causes a traffic overhead, because more packets are sent; and
packet delaying causes a loading-time overhead, because de-
laying packets makes the website loading time larger. This
yields a trade-off between privacy and performance.

In this paper, we consider a client that is multihomed, i.e.,
she is connected to the Internet through multiple networks.
Multihoming has been studied for quite some years as a so-
lution for improving reliability and performance. It has long
been used by enterprises [7] but, until recently, rarely by in-
dividual clients due to the lack of natively multihomed de-
vices, and because it relied on multipath solutions, such as
SCTP [33, 64], which are difficult to use in today’s Inter-
net. Multihoming has recently gained popularity for individ-
ual clients for two reasons. First, multihomed devices have
become omnipresent in the last few years, in particular due
to the emergence of hybrid networks (networks with two or
more technologies). Today, virtually all smartphones are na-
tively multihomed and support both WiFi and cellular. All lap-
tops have a WiFi interface and can easily be made multihomed
by the addition of a lightweight and low-cost component (e.g.,
3G/4G USB dongles) or with a smartphone sharing its con-
nection through Bluetooth or USB. Dual-SIM cellphones have
also been launched onto the market and are gaining popular-
ity. Second, multipath solutions compatible with the protocols
dominant in today’s Internet have been recently developed to
exploit hybrid networks. The most popular solution is multi-
path TCP (MPTCP) [27, 28]: It has been shown to bring signif-
icant performance gains [16, 29, 42, 53] and it is now widely
deployed [11]. In particular, all Apple operating systems (for
phones and computers) now support MPTCP [1], and an im-
plementation exists for Linux-based devices [46].

As exposed above, multihoming and multipath are be-
coming increasingly present in today’s networks. Here, we
study their implications on WF attacks. We consider the sce-
nario of a multihomed client with an adversary that can only
observe the traffic sent through one of the networks—which is
very likely in several use cases. For instance, one of the most
relevant use cases for Tor is web access in countries under cen-
sorship, where users might be fingerprinted by their local ISP
under government regulations. In this case, multihoming does
not only offer better performance and reliability; it can also be
a means to circumvent fingerprinting by a local ISP, because it
is very complex and highly unlikely that different ISPs com-
bine their traces to fingerprint a user, as we explain later.

The availability of multiple networks makes it possible to
choose, for each packet, through which one of these networks
it should be sent, which is referred hereafter as splitting. Split-
ting traffic among the networks makes it possible to remove
packets from one network by sending them through another—
whereas current defenses can only add and/or delay packets,

which creates performance overhead, as explained above. This
enables us to design a defense with no traffic overhead. Insert-
ing dummy packets and/or delaying packets remains of course
possible in multihoming and can be combined with splitting to
further improve privacy, as we also show.

To provide security and privacy guarantees, exploiting
the existence of several non-colluding entities is a standard
and successful technique used in other contexts (e.g., secret
sharing [58]). But splitting traffic through multihoming is not
straightforward and raises several challenges. The main chal-
lenge that needs to be addressed is to know how to split
the traffic between the networks to improve the resistance
against WF. We show that this is non-trivial, as determinis-
tic schemes (e.g., round-robin) do not significantly improve
privacy. This makes necessary the development of a spe-
cific multipath scheduler for increasing the resistance against
WF. Our first contribution is the design of a novel multi-
path scheduler for protecting against WF. Because one of the
main use cases of multihoming relies on hybrid networks, we
call this multipath scheduler HyWF. We extensively evalu-
ate HyWF against state-of-the-art WF attacks and we show
that it achieves the same level of accuracy as the best exist-
ing practical defenses, but does so without adding any traffic
overhead. HyWF is compatible with other defenses that rely
on link padding or packet delaying, and combining HyWF
with another defense further improves privacy by combining
the gains brought by the two defenses. Our second contribu-
tion is to demonstrate this with the description and evaluation
of two novel defenses that combine HyWF with two state-of-
the-art defenses: HyWF-AP, an extension of HyWF with adap-
tive padding [36, 60], and HyWF-WT, an extension of HyWF
with Walkie-Talkie [69]. Our third contribution is a proof-of-
concept implementation of HyWF. Our implementation does
not require modifying Tor or the application. It enables us to
evaluate the performance of our splitting scheme. We show
that having two paths instead of one has no cost in terms of
performance, as HyWF does not add significant loading-time
overhead.

This paper is structured as follows. We discuss related
work in Section 2, present our system and adversarial model in
Section 3, and describe our methodology in Section 4. In Sec-
tion 5, we introduce HyWF, a defense with no traffic overhead.
We evaluate it through extensive simulations in Section 6. In
Section 7, we describe the implementation of HyWF and show
that it does not add significant loading-time overhead. In Sec-
tion 8, we introduce and evaluate HyWF-AP and HyWF-WT,
two extensions of HyWF with two state-of-the-art WF de-
fenses: adaptive padding and WalkieTalkie, respectively. We
conclude in Section 9.
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2 Related Work

2.1 Traffic Analysis

Traffic analysis has been extensively studied in the last 20
years. In 1996, it was shown that valuable information could
be extracted from encrypted data [65]; and in 1998, that
the website accessed by clients could be successfully identi-
fied when observing encrypted data [18]. In 2009, Herrmann
et al. showed that WF attacks could be successfully applied to
anonymous communication tools [32]. Since then, many WF
attacks and defenses have been proposed and several attacks
have been shown to be efficient for Tor, as detailed below.

2.1.1 Existing Attacks

WF Attacks against Tor: After the first work by Herrmann
et al., many other attacks were proposed. They are all for-
mulated as a classification problem: They first extract mean-
ingful features from the observable metadata; then, to as-
sociate these features to the websites, they train a super-
vised machine-learning model. The first attack against Tor
that proved to be successful relied on support vector ma-
chines (SVM) [49]. Since then, many attacks that employ dif-
ferent features and machine-learning models have been pro-
posed [15, 26, 30, 34, 48, 59, 66, 67, 71]. Recently, attacks
employing deep learning have been proposed and proved to be
successful [9, 44, 55, 62]. In this paper, we evaluate our de-
fenses against the most relevant attacks, considered to be the
most advanced and effective WF attacks [19, 45]. They are
very general and not bound to any specific defenses.
• k-NN [66]: Wang et al. use a k-nearest neighbors model

with N = 1,225 features (total transmission time, number of
packets, concentration of outgoing packets, etc.).
• CUMUL [48]: Panchenko et al. propose an attack that uses

an SVM model with, as features, the cumulative sum of the
packet sizes (negative for outgoing packets, positive for in-
coming packets). With Tor, the absolute value of the packet
sizes is constant.
• k-fingerprinting [30]: Hayes et al. propose an attack that

extracts N = 175 features out of the traces (e.g., total num-
ber of packets, number of packets per second, concentration
of incoming/outgoing packets, etc.) and uses a random forest
classifier.
• Deep Fingerprinting [62]: Sirinam et al. propose to use deep

learning on the sequences of incoming and outgoing packets to
predict the visited website. It is denoted hereafter by DF.

Juarez et al. [35] and Wang and Goldberg [68] study the
practicality of WF attacks. In particular, Wang and Goldberg
show that by carefully building the datasets on which the at-

tacks train their model, it is possible to achieve a practical WF
attack against Tor.
Other WF Attacks: Attacks in contexts other than Tor are
also studied. Danezis [21] and Miller et al. [43] study attacks
against HTTPS traffic, where the adversary has information
about the website that is accessed (the IP address of the server
is sent in clear). They show that it can with very good ac-
curacy infer which webpage of the website the client visits.
Website fingerprinting is also possible by looking at the ef-
fects of contention on the CPU’s cache of the client’s com-
puter [61]. Recently, a new attack based on similarity digest
has been proposed [51]. As opposed to all other existing at-
tacks, it is not formulated as a machine learning problem, and
it requires fewer samples for training. This attack is shown to
be effective against VPN traffic and to detect malware activity,
but not as an attack against Tor traffic.
End-to-end Traffic Analysis: Finally, end-to-end traffic anal-
ysis attacks, introduced by the seminal work of Feamster and
Dingledine [25], are performed when the adversary (typically,
an ISP) sees traffic on both ends of the path and can identify
the website visited by a client by correlating the traffic sent
before and after an anonymity network (e.g., Tor). Similarly
to most WF defenses [14, 19, 36, 69], we assume here that
the adversary is local, i.e., it is unable to perform end-to-end
traffic analysis attacks. With a non-local adversary, the multi-
homing solution presented in this paper has two contradicting
consequences: On the one hand, by sending traffic to different
ISPs at the client side, multihoming increases the probability
that the same ISP is on the two ends of the path and is able
to perform an end-to-end traffic analysis attack. On the other
hand, because this ISP would see only part of the packets at
the client side and all the packets at the server side, correlation
would be looser, which would very likely decrease the accu-
racy of the attack. Studying the precise effect of multihoming
on end-to-end traffic analysis attacks is out of the scope of this
paper.

2.1.2 Existing Defenses

In parallel, mechanisms to protect against these WF attacks
are studied. The large majority relies on link padding (insert-
ing dummy packets1 to confuse the adversary that is unable to
distinguish them from real packets) and/or on packet delaying,
and incurs traffic and/or loading-time overhead.

1 Note that breaking packets in Tor cells also requires some padding so
that all cells have the same size. Because this padding is done with Tor
with or without another specific defense against WF attacks, we only con-
sider the insertion of dummy packets to compute the traffic overhead.
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The most secure defense consists in ensuring that all
traces look exactly the same; this is the basis for constant-
rate padding, such as BuFLO [24]. With BuFLO, real packets
are delayed and dummy packets are inserted so that the inter-
arrival times (time interval between two consecutive packets)
stay constant. But this might still leak some information as
the total loading time might be different for different websites
(short traces will end before long traces). CS-BuFLO [13] and
Tamaraw [14] are proposed to improve the performance and
to reduce the overhead of BuFLO. With these improved tech-
niques, traces for different websites look the same, and the ad-
versary is virtually unable to distinguish between them. How-
ever, sending packets at a constant rate requires both insert-
ing dummy packets and delaying real packets, which causes
very high traffic and loading-time overhead. Tamaraw offers
the best performance, but the authors still report a loading-time
overhead of 320%. For this reason, several other defenses are
proposed.

One defense is proposed that does not rely on link padding
or on packet delaying: randomized pipelining (RP) [50]. It en-
ables HTTP pipelining (i.e., sending multiple HTTP requests
in parallel) and it randomizes the number and order of parallel
HTTP requests. But this technique is shown to be ineffective in
practice [15, 67]. LLaMA [19] is a defense that improves RP
by combining it with link padding and packet delaying, but
this incurs traffic and loading-time overhead. Another defense
loads a decoy page each time the client wants to access a web-
site [49], but this defense performs worse than other defenses
such as adaptive padding (described below), with smaller pri-
vacy and larger overhead [30]. WalkieTalkie [69] improves this
idea by simulating the loading of sensitive and non-sensitive
pages altogether in a half-duplex mode. Other defenses are
proposed at the application layer. ALPaCA [19] is a server-
side defense that pads the content of a webpage to alter its
characteristics (in particular its size) without modifying how
it looks to the client. ALPaCA significantly improves privacy
(the accuracy of the attack is reduced to about 15%), but it in-
curs a traffic overhead of about 90% and a loading-time over-
head of more than 50%. In addition, as this defense needs to be
implemented at the server side, it might be difficult to deploy
in practice.

Other defenses are proposed: They do not try to make all
traces look exactly the same (by sending packets at constant
rate), rather aim at making the traces be statistically similar.
Traffic morphing [70] relies on padding and ensures that the
packet-size distribution is similar for all traces. This method
is not effective with Tor, which already sends packets with
a fixed size, and it is shown to be ineffective even when the
packet sizes are different [24, 30]. Adaptive padding (denoted
in this paper by AP) [60] employs a similar idea, but it works
on the inter-arrival times rather than on the packet sizes. It

relies on padding and tries to make all traces statistically simi-
lar and undistinguishable from each other by ensuring that the
distribution of the inter-arrival times is the same for all traces.
WTF-PAD [36] is an implementation of AP for WF attacks.

The above-mentioned defenses can be implemented along
with HyWF, the defense that we propose and that does not add
overhead, as shown in Section 8.

2.2 Privacy-Protecting Splitting Schemes

Splitting data between several non-colluding entities has been
proven to be a successful technique. Shamir [58] and Blak-
ley [10] first invented secret sharing in 1979, as a way to
protect information by sharing it between several partici-
pants. Since then, data-splitting schemes have been used in
many other contexts that include cloud oblivious storage [63],
privacy-protecting cloud computing [37], secure data dedupli-
cation [39], vehicular ad-hoc networks [54], and secure shar-
ing of personal health records [40], to name a few. Tor itself
relies on non-colluding entities (the guard and exit relays) to
maintain privacy. Message splitting between different paths is
theoretically studied in the context of mix networks [57]. Fi-
nally, traffic splitting in Tor is briefly studied by De la Cadena
et al. [23], in particular when the number of networks is greater
than two.

2.3 Multipath Routing

Multipath routing makes it possible to split the traffic among
several paths. It has recently gained popularity as a way to im-
prove performance [31, 52], including in Tor [8, 38, 56]. The
most popular solution is multipath TCP (MPTCP) [27, 28]
that we use for our implementation. Our solution can also
be implemented with other multipath solutions, e.g., multi-
path QUIC [22]. In hybrid networks with WiFi and cellu-
lar networks, MPTCP has been shown to improve through-
put [16, 53], reliability [42], and latency [29]. MPTCP is now
widely deployed [11]; in particular, all Apple operating sys-
tems (for phones and computers) now support MPTCP, and an
implementation exists for Linux-based devices [46].

3 System and Adversarial Model

3.1 System Model

We consider a Tor client who is multihomed, i.e., she has ac-
cess to multiple networks. In this paper, we consider that the
client uses two networks, which is by far the most frequent
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ISP 1
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ISP 1
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ISP 1
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home AP
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AP admin

ISP 2

Fig. 1. Different real-world examples of a multihomed client. The adversary can be a curious ISP (ISP1 and ISP2 in the figure) or the
curious administrator of a public WiFi access point (AP admin in the figure). Left: client with a smartphone connected to a WiFi access-
point (home or public) and to a cellular network. Center left: desktop computer connected to its home access-point with WiFi and to a
cellular network through a smartphone sharing its connection with USB. Center right: client with a dual-SIM smartphone connected to
two cellular networks with different ISPs. Right: client with a laptop connected to two WiFi access-points (home and public).

case in practice; our defense can easily be extended to more
networks which would further improve the protection against
WF attacks [23].

A widely available real-world example of a multi-homed
client is the case illustrated in Fig. 1 (left) of a client con-
nected to a WiFi access-point and to a cellular network with
a smartphone. Other real-world examples of a multihomed
client are presented in Fig. 1: A client with a desktop com-
puter or a laptop connected to a home network with WiFi
and to a cellular network through a smartphone sharing its
connection with USB (center left); a client with a dual-SIM
smartphone connected to two cellular networks with differ-
ent ISPs (center right); and a client with a laptop connected
to two access-points, home and public (right). Even though
multihoming might come at the price of having to pay for the
services of two ISPs, these real-world examples already cover
a large amount of users that have multihomed devices (e.g.,
tablets or smartphones) and have contracts with two ISPs (e.g.,
cellular and fixed access). Such users already exploit multi-
homing for enhanced performance and ubiquitous connectiv-
ity, and improved privacy is one additional benefit that they
can enjoy.

In this paper, we assume that both networks are cost-
equivalent, i.e., that the client does not wish to send less traffic
on one network. This may be the case in many practical sit-
uations (e.g., cellular access with flat fee and home access).
When this is not the case, our defense can still be applied with
a trade-off between cost and privacy. We briefly discuss this
trade-off in Section A.1 in Appendix. We also assume that the
delays incurred by the networks are of the same order of mag-
nitude, which is the dominant case (in particular, WiFi and
LTE have been shown to have similar latencies, with LTE in-
curring delays only 10% higher than WiFi on average [29]).

We assume that it is possible to decide on a packet-per-
packet basis, in both directions, through which network traf-
fic is sent. The client connects to Tor through a multipath-

compatible Tor bridge, as depicted in Fig. 2 (MP bridge).
In our evaluation, the client and the Tor bridge use MPTCP,
the most popular multipath solution. This approach with a
Tor bridge has been widely employed by previous WF de-
fenses [14, 36, 69]. With this architecture, the client defends
against all adversaries located before the first Tor node, e.g.,
the client’s local ISP.2 It does not require modifying Tor nor
the application, and MPTCP or any other out-of-the-box mul-
tipath solution can be employed between the client and the
bridge. The multipath solution can be implemented as a plug-
gable transport (PT) [2]. In addition to sending traffic on mul-
tiple paths, the PT mechanism must also hide that the traffic
is using a multipath solution by encrypting the MPTCP packet
and encapsulating it in a single-path TCP packet,3 thus hiding
the MPTCP fields (e.g., sequence number).

The above architecture adds some complexity to the sys-
tem implementation, as multipath needs to be used until the
multipath bridge, but such complexity is transparent to the
users and the applications. Indeed, multihoming is imple-
mented at the transport layer (e.g., with MPTCP) through
a dedicated multipath scheduler (implemented in the client’s
phone or laptop and in the bridge). It does not disrupt the op-
eration of the higher layers (i.e., the application).

3.2 Adversarial Model

We consider a scenario where the client wants to protect
against curious adversaries snooping on her traffic in order to

2 The client can also use multiple paths in Tor, similarly as Conflux [8]
that uses multipath to improve the performance of Tor. This enables the
client to defend in addition against adversaries located within the Tor net-
work, such as curious Tor guard nodes. This would require modifying the
Tor software at the client and exit node.
3 The detailed implementation of the encapsulation and encryption
scheme is left as an engineering issue that is not addressed by this paper.
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client MP bridge

Tor network

Web

Fig. 2. Model where the client is multihomed, with two different adversaries, and connects to a multipath-compatible Tor bridge (MP
bridge), typically located in another country.

know which website she accesses. Similarly as with the vast
majority of WF defenses [14, 19, 36, 69], we assume that the
curious adversaries are local. They can be an ISP, an entity that
controls the ISP (e.g., a state) or the curious administrator of
a public WiFi access-point. The adversaries are passive, i.e.,
they do not modify the transmissions. Because the client uses
Tor and a PT mechanism as described in Section 3.1, the ad-
versaries are able to observe only the timestamp and direction
of the packets. The observable metadata for one website access
is called a trace.

The key assumption that we make is that the adversaries
are not able to correlate the traffic sent through one network
and the traffic sent at the same time through the other network,
i.e., they cannot reconstruct the original trace. In particular, a
single adversary cannot snoop on the two networks at the same
time. This happens when the client connects to the Internet by
using two technologies and an adversary can snoop on a single
technology (e.g., when the adversary is the curious administra-
tor of a WiFi access-point). This also happens when the adver-
saries are different ISPs, which is an important use case: For
example, it has been revealed that in the USA, ISPs sell the In-
ternet browsing records to marketers [4], which is cited as one
reason for using the Tor network [3]. Browsing records can
typically be inferred by WF attacks. To be protected against
such attacks, the client can use two different ISPs, e.g., she
uses two technologies (wired or wireless) with two different
ISPs, or she connects to two ISPs with the same technology
(see the examples of Fig. 1).

We consequently assume that there is one adversary per
network. In most cases, the two adversaries do not collude and
are consequently unable to reconstruct the original trace. Even
if the client uses the same ISP for her connections to the two
networks with different medium access technologies (e.g., mo-
bile and WiFi),4 or if an external entity (e.g., a state or a state-

4 Note that the client must be connected to two different networks. If she
is connected to the same home router, even with two different technologies
(e.g., WiFi and Ethernet, WiFi and power-line communication, two WiFi
connections in the 2.4 GHz and 5 GHz band, etc.), the ISP will see a single
trace and will be able to apply existing efficient attacks.

controlled entity) can make the two adversaries (e.g., two lo-
cal ISPs) collude, for example, in a repressive country under
censorship, it would also prove difficult and challenging to re-
construct the original trace from the two different traces, for
the following reasons. First, when a device is multihomed, it
has two different identifiers for the two ISPs (different IP and
MAC addresses), and it can be non-trivial to associate the two
identifiers with a same device.5 Second, the infrastructures for
the two different ISPs or for the two medium-access technolo-
gies of the same ISP are necessarily different, which means
that the paths taken by the packets are distinct: Even if the col-
luding ISPs are able to associate the two identifiers of a device,
the reconstruction of the original trace cannot be achieved syn-
chronously but is necessarily asynchronous. Consequently, the
traces for each ISP would need to be stored to be reconstructed
later, i.e., the two ISPs would need to store all the per-packet
metadata sent through their network for all users they want
to attack, until they can reconstruct the complete traces. This
would incur significant practical difficulties and storage over-
head. Third, the two ISPs should be tightly synchronized in
order to reconstruct the trace,6 which would also be challeng-
ing in practice; also, different paths would necessarily mean
different latencies and packet ordering, which would make the
attack much more difficult to perform. In contrast, when the
client uses a single ISP, the attack can be performed on-the-
fly along the single path, hence there is no need for storage
and synchronization. Hence, in repressive countries where the
state is known to spy on the users and can force ISPs to col-
lude, spying on a client who uses two different ISPs would be
much more difficult, if at all possible, as specific tools would
need to be devised to correlate the different traces.

5 It is trivial if the client is registered with the ISPs under the same name,
but this is not always the case, e.g., if she uses a friend’s Internet access.
6 To prevent the ISPs from using the TCP timestamp field, which would
enable them to reconstruct the traces without being synchronized, the TCP
timestamp option should be disabled; because the TCP timestamp op-
tion is negotiated during the TCP handshake between the hosts [12], it
is enough if the PT disables it.
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In a direct consequence of our hypothesis, an adversary
can only use the partial trace sent through a single network to
infer the website. In the following, we consequently consider
a single adversary that tries to infer the website that a client
visits by observing the traffic sent through a single network.

We also make the following assumptions that, extensively
made in the literature [15, 32, 49, 59, 66, 67], all favor the
adversary:
Page Load Parsing: The adversary is able to detect the be-
ginning and the end of different website accesses. We discuss
further this question in Section 7.
No Background Traffic: The adversary is able to distinguish
one trace for a specific website access from other packets sent
by other applications or for the access of another website. This
can prove challenging in practice, because multiple applica-
tions might be used simultaneously.
Replicability: The adversary is able to train its machine-
learning model under the same conditions as the client. In
practice, the trace that an adversary wants to classify is not ob-
tained with the same method as the traces used for training the
machine-learning model (e.g., they do not use the same device,
the device is not at the same distance of the WiFi access-point
and the cellular base-station, etc.).

Failing to verify one of these three assumptions has been
shown to have negative effect on the attack [20, 35]. This
means that the reported accuracy of the attacks against the de-
fenses that we propose, HyWF and HyWF-AP, is a conserva-
tive value and that in a practical scenario, it is very likely that
our defenses would achieve better privacy.

4 Data and Methodology

4.1 Datasets

Wang: The primary dataset are traces gathered in 2014 by
Wang et al. [66]. This dataset, denoted by Wang, has been ex-
tensively used in the literature [6, 30, 48, 66, 68]. It contains
90 different traces for each of 100 monitored websites (the
total number of monitored traces is nmon = 9,000), and one
trace for each of nunmon = 9,000 unmonitored websites. The
monitored websites come from a list of websites blocked in
China, the United Kingdom, and Saudi Arabia. The unmoni-
tored websites are drawn from Alexa’s top 10,000 list. There is
no intersection between the monitored and unmonitored web-
sites. 6,000 of the monitored and 6,000 of the unmonitored
websites are randomly chosen as the training set, i.e., the set
of traces used by the adversary to train the machine-learning
model; the remaining 3,000 monitored and 3,000 unmonitored

are used as our testing set, i.e., the set of traces used to test the
accuracy of the attack.
Hayes: To verify that our conclusions can be generalized
to different datasets, we also use the dataset gathered in 2016
by Hayes et al. [30]. This dataset is denoted by Hayes. It
contains 100 different traces for 85 monitored websites (i.e.,
nmon = 8,500), and one trace for 100,207 unmonitored web-
sites. 55 of the monitored websites are the 55 top Alexa web-
sites and the remaining 30 monitored websites are 30 popu-
lar Tor hidden services. The unmonitored websites are drawn
from Alexa’s top list, excluding the top 55. There is no in-
tersection between the monitored and unmonitored websites.
The training set always contains two-thirds of the monitored
traces, i.e., 5,667 monitored traces, and the testing set contains
the remaining third of the monitored traces. For the unmoni-
tored traces, the Hayes dataset is tried in two scenarios: with
nunmon = nmon = 8,500 (because we have nunmon = nmon in
the Wang dataset), and two-thirds of them in the training
set and one third in the testing set; and, similarly as what is
done by Hayes et al. [30], with all the unmonitored websites
(nunmon = 100,207), and 5% of them in the training set (i.e.,
5,010) and 95% of them in the testing set.
DF: Finally, to evaluate our defense against the DF attack [62],
we use the dataset provided by the authors, denoted by DF. It
consists of 1,000 traces for 95 monitored websites of the top
Alexa’s top 100 list and 40,716 unmonitored websites of the
Alexa’s top 50,000 list (excluding the top 100). The authors of
DF have kept only the first 5000 packets of each trace, which
means that some traces are truncated. The truncated traces rep-
resent however only 8% of the traces, and we do not expect this
to impact significantly the results. Two-thirds of the traces are
used as the training set, one-sixth as the validation set (used by
the DF algorithm) and one-sixth as the testing set.

The raw traces of these datasets are hereafter called orig-
inal traces. When a defense is applied on an original trace
(packets are split between the two networks and/or dummy
packets are inserted), the resulting trace is called protected.

4.2 Methodology and Experiments

We assume that the adversary knows the defense (i.e., it knows
the splitting scheme used by the client and by the proxy) and is
able to train a machine learning model on protected traces. In
practice, an adversary does not know whether a specific trace
is protected (sent through two networks) or not (sent through
a single network). Hence we assume that it knows that the
client has the possibility to use two networks, but that it does
not know if the client is actually using one or two networks.
We will show that this assumption does not weaken the adver-
sary, as the performance of the WF attacks remains extremely
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close to that obtained if the adversary knows beforehand that
the trace is protected (in other words, the adversary is able to
train a model that distinguishes protected traces from original
traces).

To evaluate the attacks, we use the true positive rate (TPR)
as one accuracy measure, defined as the probability that a mon-
itored website is classified as the correct monitored website.
The lower the TPR is, the more secure the scheme is. We do
both closed-world and open-world experiments.
Closed-world: In the closed-world experiments, the adver-
sary tries to predict which website is visited out of the differ-
ent monitored websites. Only the monitored websites are used
for both training and testing.
Open-world: In the more practical open-world experiments,
the adversary tries to predict whether the client visits a moni-
tored or an unmonitored website, and if it is a monitored web-
site, which one it is. It is important to measure if the adversary
makes a prediction error when observing the trace of an un-
monitored website: In addition to using the TPR, we use the
false positive rate (FPR) as a second accuracy measure, de-
fined as the probability that an unmonitored website is incor-
rectly classified as a monitored website. The higher the FPR
is, the more secure the scheme is.

5 Designing HyWF, a Defense
without Overhead

We first study defenses with no overhead: No packet is added
to the trace (i.e., no link padding) and no packet is delayed by
the client. The only choice that the client and the proxy make
is about how packets are split between the two networks. In
this section, we evaluate our design decisions in the closed-
world experiment with the primary dataset (Wang) and against
the k-fingerprinting attack. This attack is chosen because it is
found to be the most efficient attack among k-NN, CUMUL,
and k-fingerprinting, three attacks that run on commodity ma-
chines. We will evaluate our defense more broadly in Sec-
tion 6, in particular against the DF attack that is more complex
to carry out. For all attacks, we try different hyper-parameter
values (e.g., number of trees for k-fingerprinting) and report
the best results. In this section, we want to compare our de-
fense to AP [36, 60] because it is the defense that, found to
offer good trade-off between privacy and performance [30], is
currently being considered for addition to the Tor project [5].
In Section 6, we compare HyWF with WalkieTalkie [69], an-
other state-of-the-art defense.

As opposed to AP, the schemes described in this section
do not incur any traffic overhead and do not require statistics
on the traces. With the Wang dataset in the closed-world ex-

periment, AP reduces the TPR of the k-fingerprinting attack
to around 40% (see Section 8 for details on AP). Our goal is
to achieve at least the same accuracy. We first show that off-
the-shelf schedulers do not achieve this goal. We then show
that a random splitting scheme can achieve a level of privacy
equivalent to that of AP.

5.1 Off-the-Shelf Schedulers

5.1.1 Split Outgoing and Incoming Traffic

The first solution, appealing due to the simplicity of its im-
plementation, is to divide outgoing and incoming traffic, and
to send the former through one network, and the latter through
the other network. With the Wang dataset, this means that 90%
of the traffic (the incoming traffic) is sent through one net-
work, and 10% (the outgoing traffic) through the other. Such a
scheme reduces to 67% the TPR of the attack against the net-
work through which the incoming traffic is sent, and to 55%
against the network through which the outgoing traffic is sent.
Even though the privacy improvement is significant, this does
not achieve our goal to reach the level of privacy offered by
AP. Consequently, we move to schemes where both networks
can be used for both incoming and outgoing traffic.

5.1.2 Round-Robin Scheduler

The simplest multipath scheduler is a round-robin scheduler
(a scheduler that sends packets alternatively through the two
networks). This scheduler is, for example, proposed in the de-
fault Linux kernel MPTCP implementation [47]. The number
of consecutive packets sent through one network can be tuned
and is denoted by ncons ∈ N. But for all values of ncons, the
TPR of the attack is almost not reduced, compared to the base-
line, going from 91% to at best 85% (the results are shown in
Fig. 13 in Appendix). This is because with the round-robin
scheduler, the splitting scheme is deterministic, and the adver-
sary is able to learn the characteristics of the protected traces.
To increase the level of privacy to the desired goal, off-the-
shelf deterministic schedulers are not sufficient. We now study
the use of a random splitting strategy.

5.2 Fixed Splitting Probability

As mentioned earlier, we assume that the client wants the same
level of privacy in the two networks, i.e., she sends the same
average amount of traffic through both networks. In Appendix,
we discuss the case where she sends a smaller fraction of her
traffic through one of the networks, e.g., because this network
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is more costly (this naturally degrades privacy in the other net-
work).

We first study the simplest random splitting strategy: For
each packet, the client and the proxy randomly send it through
Network 1 (with probability p = 0.5) or through Network 2
(with probability 1− p = 0.5). The accuracy of this very sim-
ple strategy depends heavily on the assumption made for the
adversary. If the adversary does not know that the client is us-
ing a second network (i.e., it learns a model only on original
traces), the TPR of the attack is reduced to virtually 0 (around
3%, whereas random guessing gives an accuracy of 1%). But
this corresponds to a very weak adversary, hence is too opti-
mistic. If the adversary knows that a second network is used
(i.e., it learns a model on protected traces), then the TPR of the
attack is again high (around 80%). More importantly, if the ad-
versary learns a model with both protected and original traces
(it only knows that the client has the possibility to use two net-
works, but it does not know if the client is actually using one
or two networks), the accuracy is also around 80% for pro-
tected traces and around 90% for original traces. This means
that the adversary is able to learn if the traces are protected or
not. Clearly, this simple random strategy is insufficient.

5.3 One Probability per Website Access

Alternatively, the client and the proxy can employ the follow-
ing more complex defense: At the beginning of a website ac-
cess, they choose a probability p uniformly at random in [0, 1],
and for this website access, they send packets with probabil-
ity p through Network 1 and with probability 1 − p through
Network 2. This means that for each access of a website, the
splitting probability is different. In particular, two different ac-
cesses of a same website will look different. On average along
all website accesses, 50% of the traffic is sent through each
network.

The probability used by the client and by the proxy are
different, because they are chosen independently; they are re-
spectively denoted by pc and pp. The adversary has no access
to pc or pp, chosen locally for each website access. We as-
sume, however, that it knows the strategy (i.e., that p is cho-
sen uniformly in [0, 1]) and it is able to train a model on traces
protected with this strategy, i.e., to devise an attack that specif-
ically targets a multipath defense with random splitting proba-
bility: With the nor = 6,000 traces in the training set of original
traces, the adversary can build a larger training set of npr pro-
tected traces by computing several times the protected trace
of any original trace (the protected trace is different each time
because pc and pp are different each time). Because we as-
sume that the adversary does not know if a trace is protected
or not, it must train a model with a training set that consists
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Fig. 3. Performance of the attack on original traces and traces
protected with the splitting scheme described in Section 5.3, for
different sizes of the training set. Closed-world experiment, Wang
dataset, ncons = 1.

of both protected and original traces. We evaluate the effect of
the defense when the adversary tries to attack original traces
and when it tries to attack protected traces.
Effect of the Scheme on Original Traces: We start by
studying the effect of the defense for an attack against orig-
inal traces. The results are shown in Fig. 3 (Orig. traces) for
different values of npr; for every npr, the attack is repeated
five times: The results might be different for each attack be-
cause the splitting probability p are different. Consequently,
the traces in both the training set and the testing set are dif-
ferent. We present averaged results with a bar indicating the
standard deviation. Adding more protected traces in the train-
ing set and using only the nor = 6,000 original traces tends to
decrease the accuracy (plain blue line). However, this comes
only from the fact that adding more protected traces biases
the training set towards the protected traces, hence reduces
the accuracy for the original traces. If the training set con-
tains as many original traces as the number of protected traces
(nor = npr, dashed orange line), then the accuracy stays very
close to the baseline. Note that, as opposed to the protected
traces for which protecting the original trace gives a differ-
ent result each time, adding each original trace several times
does not add any information (as the trace is always the same)
but only removes the bias towards protected traces. Because
we assume that the adversary does not know whether a trace
is protected or not and needs to be able to attack both pro-
tected and original traces, we use (unless specified otherwise)
nor = npr.
Effect of the Scheme on Protected Traces: We then study the
effect of the defense on protected traces. The results are shown
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Fig. 4. Performance of the attack on traces protected with the
splitting scheme described in Section 5.4, for different values of
the average number of consecutive packets ncons. Closed-world
experiment, Wang dataset.

in Fig. 3 (Prot. traces) in three scenarios: when only protected
traces are used to train the model (nor = 0); when the 6,000
original traces are used once to train the model along with
the protected traces (nor = 6,000); and, to remove the bias to-
wards protected traces, when the number of original traces is
the same as the number of protected traces (nor = npr). As ex-
pected, adding several protected traces for each original trace
in the training set helps the adversary: The TPR increases from
37.9±0.8% when they are not repeated to 45.8±0.8% when
they are repeated seven times. This is because adding several
protected traces per original trace enables the attack to implic-
itly infer the splitting probability p used for one website ac-
cess, because it becomes more likely that a protected trace for
the same website exists in the training set with a splitting prob-
ability close to that used for the website access. But the TPR
plateaus once nor reaches 36,000/42,000. We also note again
that the TPR of the attack is similar when the adversary knows
beforehand that the trace is protected (nor = 0) and when the
adversary does not know it (nor = npr): The adversary is able
to distinguish protected traces from original traces.

5.4 Consecutive Packets to One Network

Fig. 3 also shows that this random splitting scheme does not
attain our goal of reaching a TPR of the attack below 40%. We
next show that the number of consecutive packets sent through
one network has an impact on the TPR of the attack. We try
two different settings. In the first setting, a number ncons ∈ N
is fixed in advance for all traces; when one network is chosen
randomly for sending one packet, the source sends ncons pack-
ets through this network, before choosing again randomly one
of the two networks. In the second setting, the average num-
ber of consecutive packets ncons ∈ N is fixed in advance for
all traces; when one network is chosen randomly, the source
draws randomly a number c ∈ N from a geometric distribution
with average ncons, and sends c packets through this network,

before choosing again randomly one of the two networks and
drawing a new value c. Intuitively, choosing a geometric distri-
bution makes it much more difficult for an adversary to predict
when the flow switches path (the geometric distribution is the
only memoryless discrete-valued distribution). Note that ncons

is the average number of consecutive packets sent each time a
network is chosen. The average number of consecutive packets
per network for an entire trace is different and depends on p:
If p is close to 1, then the probability that Network 1 is cho-
sen several times in a row will be high, and the average num-
ber of consecutive packets in Network 1 will be larger than in
Network 2. The results are shown in Fig. 4. Sending consecu-
tive packets through each network improves the privacy of the
defense scheme (it decreases the TPR of the attack). As ex-
pected, choosing randomly the number of consecutive packets
to send (second scheme, with a geometric distribution) further
improves privacy. In Section 6.2, we evaluate further the effect
of ncons.

Repeating several times the same trace with different
splitting probabilities enables the attacker to implicitly esti-
mate the splitting probability p. We also verify that our scheme
is robust against an attack that would specifically target our
defense by trying to explicitly estimate p. This attack relies
on the fact that sending consecutive packets through one net-
work causes longer inter-packet delays on the other network. If
long delays happen only during the utilization of the other net-
work, then it is possible to estimate p by counting the average
number n of consecutive packets for which the inter-packet
delay d is below some threshold T : The expectation of n is
ncons/(1 − p), hence an estimation of p is (n − ncons)/n. We
add to the features of k-fingerprinting the estimated value of
p for different values of T . Specifically, T = α ∗ davg where
davg is the average inter-packet delay. In Table 1, we show the
TPR of k-fingerprinting for different values of α (α = 1/3
and α = 3 were also tried with similar results, not shown for
clarity’s sake); when all p for all α are added in the feature set;
and when no p is added to the feature set (same attack as for
Figure 4). The attack is repeated five times and we show the
average TPR. The results show that our defense remains robust
against such an attack; the TPR for all values of α is within the
standard deviation of the value without the estimated p (36.9%
± 0.8%).

Table 1. Performance (TPR) of k-fingerprinting where an esti-
mation of the splitting probability p is added to the feature set, for
different values of α. Closed-world experiment, Wang dataset,
npr = 42,000.

α 1/4 1/2 1 2 4 all none
37.2% 37.4% 36.4% 37.2% 36.4% 36.9% 36.9%
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Fig. 5. Performance of the k-fingerprinting attack against HyWF,
for different sizes of the training set. Closed-world experiment,
Wang dataset.

5.5 Definition of HyWF

The scheme defined in Section 5.4 achieves our goal of reach-
ing a level of privacy equivalent to that of AP. It choses a split-
ting probability uniformly at random for each website access
and uses a number of consecutive packets drawn from a geo-
metric distribution with average ncons = 20. The TPR of the
attack against this scheme is shown in Figure 5 as a function
of npr. With npr = 120,000, it is decreased to 36.9±0.8%, i.e.,
it performs even a bit better than AP. We denote this scheme
by HyWF. Algorithm 1 presents the pseudo-code for HyWF.

Algorithm 1 Pseudo-code of HyWF. G0, Unif and Bern de-
note, respectively, the geometric, uniform and Bernoulli distri-
butions.
ncons = 20
for each website access do

Draw p from Unif ([0, 1])
n← 0, c← 0
for each packet do

n← n+ 1
if n > c then

Draw c from G0 (1/ncons) and i from Bern (p)
n← 0

end if
Send packet through Network i

end for
end for

6 Evaluation of HyWF

We now broadly evaluate HyWF with different WF attacks and
different datasets, and with open-world experiments. We also
compare HyWF with other state-of-the-art defenses.

6.1 Different WF Attacks

In the results presented above, we show only the high-
est accuracy among the attacks k-NN [66], CUMUL [48],
and k-fingerprinting [30]. The best results against protected
traces among these three attacks are always obtained with
k-fingerprinting. In Table 2, we also show the results obtained
with the two other attacks, k-NN and CUMUL. Each attack
is repeated five times and Table 2 also presents the standard
deviation. The first line of the table (Orig.) corresponds to the
case nor = 6,000 and npr = 0 (the model is trained only on the
original traces). We also show the results with a model trained
on original and protected traces for an attack against original
traces (second line) and protected traces (third line); we com-
pute the TPR for different values nor = npr between 6,000 and
42,000 and keep the best result. For HyWF, k-fingerprinting
yields results significantly better than the other three attacks.
Note in particular that with k-NN and CUMUL, the perfor-
mance of the model that works for both protected and original
traces (an assumption that is necessary for a practical attack)
is decreased even when attacking original traces. Because it
uses only the cumulative sum of the packet sizes as features,
CUMUL has already been shown to perform less well than
k-fingerprinting (that uses more diverse features) when attack-
ing protected traces [30]. k-NN has already been shown to per-
form less well than k-fingerprinting and better than CUMUL
against protected traces [30], which is consistent with our re-
sults.

We then evaluate our defense against DF [62], one of the
most recent WF attack. It uses deep learning to break WF
defenses. This attack is shown to present better performance
against state-of-the-art defenses than the other three attacks
k-fingerprinting, k-NN, and CUMUL; in particular, it achieves
around 90% accuracy against AP. Using deep learning makes
it also much more computationally intensive than the other de-
fenses; in particular, DF requires the use of GPUs and can-
not run on commodity machines. We use a 48-core machine
with 4 GPUs and 256 GB of RAM. Fig. 6 shows the perfor-
mance of DF against HyWF, where npr is increased by apply-
ing HyWF several times, as explained in Section 5.3. We first
note that DF performs better than k-fingerprinting and reaches

Table 2. Performance (TPR) of different attacks with a model
learned on original traces (Orig. traces), and with a model learned
on original traces and traces protected with HyWF. Closed-world
experiment, Wang dataset.

k-fingerprinting [30] k-NN [66] CUMUL [48]
Orig. 90.7±0.3% 91.0±0.3% 90.2±0.6%
HyWF, orig. 90.8±0.3% 82.6±1.9% 75.9±1.3%
HyWF, prot. 36.3±0.6% 15.3±1.7% 12.4±0.4%
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about 49% of accuracy. HyWF however continues to provide a
much better privacy than AP, against which DF achieves 90%
accuracy [62]. We also note that DF requires several hundred
thousand of protected traces in the training set, i.e., many more
than k-fingerprinting and the other attacks. This means that DF
is much more complex to perform: In addition to requiring a
much more powerful machine, it runs in about 14 hours against
the knn dataset, whereas k-fingerprinting requires about an
hour.

k-fingerprinting was used when we needed to evaluate a
wide range of design parameters. In the remainder of the pa-
per, we show results for DF (the most efficient attack), unless
specified otherwise.

6.2 Different Experiments and Datasets

Impact of ncons: In Section 5.4, we evaluated the impact
of the average number of consecutive packets ncons with
the Wang dataset in the closed-world experiment and with
k-fingerprinting. Similarly, with other datasets, in both the
closed- and open-world experiments, and against DF, the ef-
fect of variations of ncons is small as long as ncons is in the
range 10-40 (see Fig. 16 and Fig. 17 in Appendix). This is an
important feature for the generalization of HyWF, as it means
that the parameter ncons does not need to be fine tuned for a
specific dataset.

HyWF in the Open-world Experiment: We obtained the
above results with the Wang dataset in the closed-world exper-
iment. We now study open-world experiments (a scenario that
is more practical than closed-world experiments) with both the
Wang and DF datasets. The two datasets are described in Sec-
tion 4.1. The performance achieved by HyWF is reported in
Fig. 7, where we show the ROC curve for HyWF and un-
defended data for Wang and DF datasets with the DF attack
(k-fingerprinting against HyWF is also shown for compari-
son). Protecting the traces with HyWF decreases significantly
the TPR and/or increases the FPR. Overall, HyWF signifi-
cantly improves privacy in the open-world experiment without
adding any traffic overhead.

6.3 Comparison with other Defenses

We also compare HyWF against two other defenses, AP, al-
ready used as a comparison earlier, and WalkieTalkie [69], a
defense that incurs both loading-time and traffic overhead, but
that has been shown to provide significant privacy improve-
ments [62].
Closed-world: For the closed-world setting, we show the traf-
fic overhead (T.ov.), the loading-time overhead (LT.ov.) and
the TPR of the DF attack in (Table 3). We see that HyWF
achieves a performance similar to or even slightly better than
WalkieTalkie in terms of TPR. But WalkieTalkie incurs a much
higher overhead in terms of traffic and loading-time. We also
study the top-N prediction, in which the attack is successful
if the correct website is among the N highest probabilities.
Using only the top-1 prediction ignores cases where the ad-
versary confuses pages with only a small set of others [41].
WalkieTalkie has been shown to perform badly against top-2
prediction [62], which we also show in Figure 8 (the real web-
site is virtually always among the top-2 websites predicted by
DF). In contrast, HyWF performs much better against top-N
prediction. This means the HyWF confuses the adversary sig-
nificantly more than WalkieTalkie, with which the adversary is
able to know with very high probability that the visited website
is one of only two websites.
Open-world: For the open-world setting, we compare the
ROC curves of HyWF, AP and WalkieTalkie (W-T) in Fig. 7.
We see that HyWF significantly outperforms AP, and has a

Table 3. Performance of HyWF, AP, and WalkieTalkie. Closed-
world experiment, DF, DF dataset.

T.ov. LT.ov. TPR
HyWF 0% 0% 48.6%
AP 64% 0% 90.7%
WalkieTalkie 31% 34% 49.7%
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TPR similar to that of WalkieTalkie. WalkieTalkie, however,
has a higher FPR, because it simulates loading one sensitive
and one non-sensitive page at the same time, which means
that the adversary easily confuses sensitive and non-sensitive
pages. However, similarly as what we showed for the closed-
world experiment, WalkieTalkie is less efficient against top-2
prediction: In the open-world setting, we compute the number
of times for which the adversary, when attacking a true sen-
sitive page, tagged the correct sensitive webpage as the most
probable one (even when the attack decides for a non-sensitive
page for the top-1 prediction). For WalkieTalkie, this number
is 67.2%; for HyWF, it is only 36.0%.

Note in addition that, as opposed to AP and WalkieTalkie,
HyWF achieves such a performance without adding any
traffic and loading-time overhead, or requiring any a priori
knowledge (traces statistics for AP, database of sensitive/non-
sensitive pages for WalkieTalkie). In addition, as we show in
Section 8, HyWF can be combined with any existing defense
relying on padding and packet delaying, which can only fur-
ther improve privacy.

6.4 Complexity of the Attacks against
HyWF

To increase the accuracy of the attack against HyWF by im-
plicitly inferring the splitting probability, the protected traces
are repeated several times in the training set. Adding more
traces increases the TPR of the attack, but it also significantly
increases the complexity of the learning phase of the model.
k-fingerprinting: In the closed-world experiment, the run-
ning time necessary to carry the k-fingerprinting attack in-
creases linearly and reaches more than one hour (see Fig. 14
in Appendix). In contrast, when attacking only original traces
(npr = 0, i.e., when the client uses a single network), perform-
ing the attack requires only 8 minutes. In the open-world ex-
periment, there are twice more original and protected traces,
and the running time of the attack is further increased. It

grows linearly from 45 minutes with npr = 0 to 589 minutes
with npr = 60,000 (each trace is repeated five times). When
npr > 36,000, a commodity machine with 8 GB of RAM can-
not learn the model anymore, because it requires too much
memory.
DF: As already mentioned, DF is more computationally inten-
sive than k-fingerprinting, and this is even more true against
HyWF, as the dataset needs to be much larger. Against un-
defended data, DF reaches an accuracy of more than 90% in
about 30 minutes; against HyWF, it requires 14 hours to reach
an accuracy of less than 50%.

7 Implementation of HyWF

In this section, we describe a proof-of-concept implementation
of HyWF and evaluate its performance in terms of privacy and
potential loading-time overhead due to the use of multipath—
by design, HyWF adds no traffic overhead.

7.1 Architecture and Setup

To protect against a local adversary with an easily deployable
solution, we use an architecture with a Tor bridge, as the one
already presented in Fig. 2. This approach is easy to deploy by
installing standard (i.e., unmodified) Tor solutions, along with
modified MPTCP modules that implement HyWF scheduling.

Our testbed (illustrated in Fig. 12 in the Appendix) con-
sists of two machines, one acting as the client and one as the
bridge, both of them physically connected to the DMZ of one
of our institutions to ensure a proper connectivity to the Tor
network. Both machines are Intel-based PCs equipped with an
i7-6700 (3.4 GHz) CPU and 16 GB of RAM, running Ubuntu
18.04. They are connected using two independent paths, P1
and P2, each path consisting on a different WiFi 802.11g net-
work operating on a different and non-overlapping channel.
The WiFi interfaces are Asus USB-n10 nano devices, with
the bridge also acting as the WiFi Access Point for both net-
works. To emulate realistic scenarios where the bridge can be
located “far away” from the client, we introduce an extra de-
lay between the communication interfaces of the server and
the bridge application, by using the Linux tc command. More
specifically, following typical round trip time (RTT) figures,7

we added an extra random RTT, uniformly distributed between
40 ms and 80 ms. The distribution is similar for both paths, i.e.,
we assume that both networks have similar delays. The bridge

7 See e.g., https://wondernetwork.com/pings.

https://wondernetwork.com/pings
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is connected to the Tor network via an independent Fast Eth-
ernet interface, and both the client and the bridge are provided
with an additional control interface to control the execution of
the experiments.

To ensure repeatability and ease of scripting together with
realistic web browsing, all the resources were requested via a
Splash lightweight web browser. The Tor software provides an
HTTP proxy in order for Splash to request resources through
the Tor network. Both the client and the bridge run MPTCP
v.0.9.1 and Tor v.0.3.3. To implement HyWF, we leave unmod-
ified the Tor software and implement a novel MPTCP sched-
uler that follows the splitting scheme described in Section 5.5
(details on the implementation can be found in Section A.2 in
the Appendix). Our proof-of-concept implementation chooses
a new splitting probability p for each new MPTCP connec-
tion, which requires to keep some per-connection state (as part
of our future work we plan to test other mechanisms, e.g., it
has been shown that it is possible to efficiently split different
website accesses by using a time-based splitting with a fixed
threshold of 1 second [68]).

7.2 Experimental Evaluation

7.2.1 Privacy

We gather traces from 100 different websites and use them to
carry out a closed-world evaluation of HyWF. These traces are
obtained in different scenarios: with single-path TCP (shown
as reference), MPTCP with round-robin scheduler (denoted by
RR), MPTCP with default scheduler (denoted by DEF) and
HyWF scheduler. This dataset is denoted by exp.8 In Table 4,
we show the TPR and the top-2 prediction (as defined in Sec-
tion 6.3) of the DF attack for the different scenarios. For mul-
tipath algorithms, we show the maximum TPR over the two
paths.

Table 4. Performance of HyWF with exp dataset. Closed-world
experiment, DF attack, exp dataset.

scenario TPR top-2 TPR
single-path TCP 93.4% 97.4%
MPTCP RR 89.6% 94.7%
MPTCP DEF 84.2% 90.9%
HyWF, npr,r = 10,000 44.2% 50.8%
HyWF, npr,r = 20,000 49.2% 54.4%
HyWF, npr,r = 30,000 48.7% 53.8%
HyWF, npr,r = 30,000, npr,s = 1e6 40.5% 46.9%

8 Dataset available at https://github.com/sebhenri/HyWF_dataset.git.

For HyWF, we present results for different numbers npr,r

of experimentally-obtained traces. The traces for each scenario
are obtained in batches of 10,000 traces: when npr,r = 30,000,
the traces are obtained in three batches. First, note that off-the-
shelf MPTCP schedulers do not bring any significant gain in
terms of privacy. For RR, this is because packets are split de-
terministically between the two paths (the accuracy of the at-
tack against the other path is similar). For the default MPTCP
scheduler, this is because the scheduler aims at minimizing the
RTT and typically sends most of the traffic on a single path, the
path with the lowest RTT (the accuracy of the attack against
the other path is extremely low, around 2%).

The results also confirm that HyWF, in contrast, offers
a significant privacy gain. As opposed to the simulations
of Sections 5 and 6, increasing the number of traces from
npr,r = 20,000 to npr,r = 30,000 does not improve the ac-
curacy of the attack. This is confirmed with k-fingerprinting,
with which the TPR stays constant from npr,r = 10,000 to
npr,r = 30,000, at around 36%. This is because, as opposed
to simulated data, network conditions change between batches,
which reduces the accuracy of the attack. This data staleness
was already observed before [35] and is confirmed in our case
when we try to attack data from one batch by training on an-
other batch gathered at two weeks interval: the TPR is only
12.6%. Note that we also observe data staleness for single-
path TCP, but it is much less significant (85.3% when attack-
ing one batch with data trained on another batch, vs. 93.4%).
To increase the number of instances without having to run new
experiments that are prone to data staleness, we evaluate a sce-
nario where npr,s = 1e6 traces are added in the training set by
simulating HyWF from the single-path TCP experiments; the
testing set always consists only of real multipath traces. This
does not help improving the accuracy of the attack, and even
degrades it.

Overall, real experiments are close to the simulation re-
sults and confirm that HyWF significantly improves privacy.
In addition, we have shown in Sections 5 and 6 that to be effec-
tive, the attack requires training on a dataset much larger than
with single-path. But getting this large dataset is challenging
in practice because of data staleness [35].

7.2.2 Performance

We now analyze whether such gains in privacy come at some
cost in terms of performance. By design, HyWF does not
add any traffic overhead, as it only splits packets between
two paths. We consider two performance metrics to express
loading-time overhead and user experience: the time-to-last-
byte (TTLB) and the time-to-first-byte (TTFB). The former
gives the loading time of the website, and the latter corre-

https://github.com/sebhenri/HyWF_dataset.git
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Fig. 9. Box-and-whisker plots of the TTFB (left) and TTLB (right) for single-path TCP (TCP) and different configurations of MPTCP: de-
fault scheduler (DEF), round-robin (RR) and our proposal (HyWF). exp dataset with 10,000 traces per scenario.

sponds to the time elapsed between the first SYN of the ini-
tial TCP connection and the first incoming TCP segment with
user-plane data.

As benchmarks for comparison, we consider the follow-
ing four transport schemes: (i) single-path TCP, (ii) MPTCP
over P1 and P2 with the default MPTCP scheduler (DEF),
and (iii) MPTCP over P1 and P2 with a round-robin MPTCP
scheduler (RR). We analyze performance for each of these
schemes and compare it against our approach (MPTCP over
P1 and P2 with our scheduler HyWF).

In Fig. 9 we show the performance results using box-and-
whisker plots to represent all values collected for each scheme.
We show the TTFB on the left and the TTLB on the right. We
conclude from these results that multipath and HyWF have no
impact on the loading-time performance: the TTFB and TTLB
values are very close for all schemes. Since HyWF does not
add any traffic overhead, but simply splits the packets between
two paths, we conclude that it is possible to devise an effi-
cient defense against WF attacks, without incurring any per-
formance overhead.

8 Combining HyWF with other
Defenses

We now show that HyWF is compatible with other defenses
against WF. To improve privacy, the client can employ link
padding, i.e., insert dummy packets to confuse the adversary.
Because it does not see the content of the packets, the adver-
sary is not able to distinguish real packets from dummy pack-
ets. She can also delay some packets, which cause loading-
time overhead but enables her to shape the traffic to con-
fuse the adversary. Link padding and packet delaying are the
methods used by the virtually all existing defenses (see Sec-
tion 2.1.2). Here, we evaluate HyWF with AP [36, 60], be-
cause it is the defense that is under consideration for addition
to Tor if link padding were to be implemented [5], and with

WalkieTalkie [69], that has been shown to provide significant
privacy improvements [62]. Despite their limitations (traffic
and/or loading-time overhead, requirement to know the dis-
tribution of inter-arrival times or a database of sensitive/non-
sensitive webpages), AP and Walkie-Talkie are able to im-
prove privacy when only one network is available, and we want
to evaluate the privacy gains offered when they are used along
with HyWF, the defense that we describe in Section 5.5.

8.1 Designing HyWF-AP and HyWF-WT

8.1.1 HyWF-AP

As mentioned in Section 2.1.2, AP works on ensuring that the
distribution of the inter-arrival times is the same for all traces.
The packets are never delayed, i.e., there is no loading-time
overhead. The goal of AP is to disrupt statistically unlikely
delays between packets. In particular, if an unusually large
gap between two packets is found, AP adds dummy pack-
ets to hide this large gap and to prevent it from being used
as a distinguishing feature. Because the authors notice that
bursts of packets play an important role in identifying web-
sites, AP mimics bursts of packets when filling the gaps. De-
tails on AP can be found in the related literature [36, 60]. In
this paper, we use the implementation of AP for WF, provided
by Juarez et al. [36]. With AP, both the client and the proxy
use as a parameter some probability distribution for the inter-
arrival times. Here, we use the default normal distribution pro-
vided by Juarez et al. with their code. Packets are split between
the two networks (by following the strategy described in Sec-
tion 5.5) after the AP is added to the original trace.

8.1.2 HyWF-WT

WalkieTalkie [69] is based on two main mechanisms: half-
duplex mode, which means that the client sends requests only
when all previous requests have been satisfied; and decoy
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experiment, DF dataset.

page, in which two pages are loaded at the same time to hide
which page is accessed. To reduce overhead, WalkieTalkie
only simulates loading two pages at the same time by group-
ing bursts of packets together. In the closed-world scenario, it
loads two pages of the 100 websites under study; in the open-
world scenario, it loads one sensitive and one non-sensitive
page. The decoy page is chosen to minimize the overhead.
This defense consequently requires access to a database of
websites. Packets are split between the two networks after
WalkieTalkie is added to the original trace.

8.2 Evaluation of HyWF-AP and
HyWF-WT

In this section, we evaluate HyWF-AP and HyWF-WT, for
both closed-world and open-world, with the DF attack and the
DF dataset. The number of protected traces in the training set
is always npr = 800,000.

8.2.1 Closed World

In Table 5, we show the TPR and the top-2 TPR of HyWF-AP
and HyWF-WT. For reference, we also show the performance
of HyWF, AP and WalkieTalkie alone.

For the same overhead, combining HyWF with state-of-
the-art defenses significantly improves privacy: The TPR goes
from around 50% with HyWF and WalkieTalkie (and more

Table 5. Performance of HyWF combined with other defenses.
Closed-world experiment, DF, DF dataset.

T.ov. LT.ov. TPR top-2 TPR
HyWF 0% 0% 48.6% 57.3%
AP 64% 0% 90.7% 94.1%
WalkieTalkie 31% 34% 49.7% 99.5%
HyWF-AP 64% 0% 30.6% 40.0%
HyWF-WT 31% 34% 27.6% 54.7%

than 90% with AP) to 30% or less. It is interesting to note that
HyWF-WT has a lower TPR than HyWF-AP, which is in line
with the fact that WalkieTalkie performs better than AP; how-
ever, we have seen in Section 6.3 that WalkieTalkie performs
badly against top-2 prediction, and we see in Table 5 that for
this metric, HyWF-AP performs better than HyWF-WT.

8.2.2 Open World

Finally, we evaluate HyWF-AP and HyWF-WT against the DF
attack in the open-world setting. The ROC curve for these two
novel defenses as well as for HyWF, AP, WalkieTalkie and
undefended data is shown in Fig. 10. The results show that
combining AP and WalkieTalkie with HyWF significantly in-
creases privacy without incurring a performance cost. This is
further confirmed by looking at the top-2 prediction, as defined
in Section 6.3 in the open-world case: AP and WalkieTalkie
both perform quite badly for this measure (respectively, 88.5%
and 67.2%). In contrast, this measure is reduced to 14.4% for
HyWF-WT, and to 25.6% for HyWF-AP. This shows that by
splitting traffic between two networks, HyWF can be com-
bined with other state-of-the-art defenses, and that doing so
further improves privacy.

9 Conclusion

We have presented HyWF, a novel defense against website fin-
gerprinting attacks. HyWF exploits multihoming and multi-
path to split the traffic between two networks. We have shown
that a high level of privacy cannot be reached with off-the-shelf
multipath schedulers. He have designed an algorithm based on
random splitting that achieves a privacy similar to that of state-
of-the-art defenses—without any traffic overhead. We have
presented a proof-of-concept implementation of HyWF and
showed that it does not add any significant loading-time over-
head. HyWF is compatible with other defenses that rely on link
padding or randomized pipelining. Combining HyWF with an-
other defense further improves privacy. We have illustrated
this by introducing and evaluating HyWF-AP and HyWF-WT,
two extensions of HyWF with, respectively, adaptive padding
and WalkieTalkie defenses. HyWF-AP and HyWF-WT de-
crease significantly the accuracy of the website-fingerprinting
attacks, and they do better than all state-of-the-art defenses.
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A Appendix

A.1 Asymmetric Networks

We evaluate the scenario where the client wants to send a
smaller fraction ps < 0.5 of her traffic through one of the net-
works (denoted by Network 1), for example because this net-
work is more costly (e.g., WiFi is typically cheaper to use than
cellular). We evaluate the same splitting scheme as HyWF, ex-
cept that p is chosen uniformly at random in [0, 2ps], so that
the average value of p along all traces is ps. Fig. 11 shows the
TPR of the attack against Network 1 and Network 2 as a func-
tion of ps. We observe that the relationship between cost (i.e.,
amount of data sent on the costly network) and privacy is lin-
ear, which makes it simple for a client to decide how to make
the trade-off between the two.

A.2 HyWF Scheduler

Our HyWF scheduler builds on the round-robin scheduler
provided with the MPTCP implementation and configured
with the full-mesh mode of operation. With this mode,
MPTCP generates one subflow for each IP address pair
(source, destination). Therefore, we set up some iptables
rules to ensure that only the two subflows corresponding to
the two links of Fig. 12 are available (this is queried with the
mptcp_rr_is_available method). Instead of operating
in “bursts” of segments, i.e., picking one of the paths at ran-
dom with probabilities p for Link 1 and (1−p) for Link 2, then
drawing the consecutive numbers of segments from a geomet-
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Fig. 11. Performance of the attack when the client sends a frac-
tion ps of its traffic through Network 1, for different values of ps.
Closed-world experiment, Wang dataset.
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Fig. 12. Testbed deployed, with two wireless networks connecting
the client (Tor proxy) and the Tor bridge.

ric distribution with average ncons, we operate for simplicity on
a segment-by-segment basis and use the following algorithm,
equivalent to that described in Algorithm 1. When c is drawn
from a geometric distribution, this algorithm forms a two-state
Markov chain, and it is equivalent to do the following for each
packet: When the last packet was sent through Network 1, the
packet is sent through Network 2 with probability (1−p)/ncons

and through Network 1 with probability 1 − (1 − p)/ncons;
when the last packet was sent through Network 2, the packet is
sent through Network 1 with probability p/ncons and through
Network 2 with probability 1−p/ncons. We code this algorithm
inside the mptcp_write_xmit method. More specifically,
the next_segment method returns a pointer to the next link
to use, which is determined based on the last link used (stored
in a *sock pointer inside an mptcp_cb structure) as fol-
lows:
• If the last segment was transmitted over Link 1, the next

segment is transmitted over the same link with probability 1−
(1− p)/ncons, and over Link 2 with probability (1− p)/ncons

• If the last segment was transmitted over Link 2, the next
segment is transmitted over the same link with probability 1−
p/ncons, and over Link 1 with probability p/ncons.

The parameters ncons and p are also stored in the
mptcp_cb structure, with p randomly chosen on a per-
download basis. Due to the kernel programming con-
straints (in particular, the lack of float variables), p is
chosen as a random integer in the range [0, 255] using
the get_random_bytes() function with an unsigned
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char. The algorithm is then updated accordingly. Finally, we
follow recommendations to improve latency with MPTCP [17,
72] and we disable the idle restart functionality and the Na-
gle algorithm (net.ipv4.tcp_low_latency= 1 and
net.ipv4.tcp_slow_start_after_idle= 0).

A.3 Additional Tables and Figures
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Fig. 13. Performance of the attack on traces protected with a
round-robin scheme, for different values of the number of con-
secutive packets ncons. Closed-world experiment, Wang dataset.
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Fig. 14. Running time to perform the attack, for different sizes
of the training set. Experimental values are in blue; the or-
ange dashed line is the linear fit. Closed-world experiment,
k-fingerprinting attack against HyWF with Wang dataset.
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Fig. 15. Performance of the attack on original traces and traces
protected with HyWF, for different sizes of the training set. Closed-
world experiment, Wang dataset.
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Fig. 16. Performance of the attack on traces protected with the
splitting scheme described in Section 5.4, for different values of
the average number of consecutive packets ncons. Open-world
experiment, Hayes dataset.
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Fig. 17. Performance of the attack on traces protected with the
splitting scheme described in Section 5.4, for different values of
the average number of consecutive packets ncons and a geometric
distribution. Closed-world experiment, Wang and DF datasets, DF
attack (npr = 300,000).
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