
A Monitoring Framework for Multi-Site
5G Platforms

Ramon Perez∗†, Jaime Garcia-Reinoso†, Aitor Zabala∗, Pablo Serrano†, Albert Banchs†‡
∗Telcaria Ideas, Spain †Universidad Carlos III de Madrid, Spain ‡IMDEA Networks Institute, Spain

Abstract—The fifth generation (5G) of mobile networks will
have to accommodate different types of use cases, each of them
with different and stringent requirements and key performance
indicators (KPIs). To support this, apart from novel technolo-
gies such as network slicing or artificial intelligence, 5G will
require a flexible and efficient monitoring system. The collected
metrics serve to optimize the performance of the network,
and to confirm the achievement of the KPIs. Furthermore, in
the envisioned multi-site, multi-stakeholder scenarios, having a
common monitoring system is even more critical for an efficient
optimization and service provisioning. In this paper, we present a
Monitoring architecture for the distribution and consumption of
metrics and KPIs for 5G multi-site platforms, where different
verticals from different stakeholders are implemented over a
shared infrastructure. We also assess the performance of the
implemented publish-subscribe paradigm, to confirm that it
suits the requirements of these scenarios, and discuss how the
architecture could be mapped to other 5G scenarios.

Keywords— Monitoring, data collection, 5G experimental valida-
tion, 5G trials, 5G multi-site platform, publish-subscribe paradigm

I. INTRODUCTION

The main idea behind Network Slicing [1] is the ability to
define multiple isolated logical networks from a single physical one.
Moreover, each logical network may support a particular type of
service: low latency, high bit rate, massive number of terminals,
etc. 5G telecommunication operators have to design their networks
to support all these services and, what is even more important, to
guarantee that the Key Performance Indicators (KPIs) demanded by
their verticals are satisfied. In this aspect, monitoring of network
metrics is crucial to guarantee all Service Level Agreements (SLAs)
between operators and users.

Triggered by the complexity and novelty of 5G, several research
initiatives have started to gather an understanding of the envisioned
features of these types of networks. 5G EVE1 is a European project
that is deploying a validation 5G multi-site platform, involving
four main facilities located in Spain, Italy, France, and Greece,
where verticals and other projects can execute extensive trials. After
an initial phase where verticals have provided their requirements
(reported in [2]), the project presented the proposed architecture and
the main innovation areas addressed (including the KPI Framework
for performance diagnosis) in [3]2.

One of the main components of this architecture related to the
aforementioned innovative topics is the Monitoring service, which is
intended to collect all the metrics generated by the different elements
(e.g., VNFs, PNFs or infrastructure’s components) involved in an
experiment to show their evolution over time to the experimenter,
and to feed such data to the KPI Validation Framework.

This paper presents the Monitoring framework defined by the 5G
EVE project, which has been designed to be flexible enough to

1https://www.5g-eve.eu/
2More information about the 5G EVE project regarding the platform

description, architecture and experimentation workflow can be found in [4][5].

be implemented in other projects as well as by telecommunication
operators within the scope of advanced 5G networks. The rest of the
paper is organized as follows:

• Section II describes the Monitoring architecture, which has been
designed as a scalable, reliable, low-latency, distributed, multi-
source data aggregation and re-configurable architecture.

• Section III justifies and details the implementation selected by
5G EVE to instantiate the proposed architecture, based on the
publish-subscribe paradigm.

• Section IV validates such implementation against the require-
ments imposed to the Monitoring architecture from the 5G EVE
project specifications.

• Finally, Section V concludes the paper and presents our future
work.

II. MONITORING ARCHITECTURE OVERVIEW

A thorough analysis of the infrastructure and service requirements
(reported in [2]) results in the following characteristics to be offered
by the Monitoring service: (1) the Monitoring distribution architecture
must support multi-site experiments involving distant sites; (2) the
platform must deal with experiments that may generate monitoring
data in the order of gigabytes; (3) that data has to be available
to experimenters after the experiment has concluded (estimating a
retention time of at least 2 weeks); (4) redundancy is needed to offer
a fault-tolerant system; (5) the architecture must be flexible enough
to accommodate a wide variety of elements to be monitored; (6)
supporting some pre-processing techniques (e.g., translation across
formats) may be needed for an efficient subsequent processing; and
(7) collected metrics may be used and post-processed by a KPI
Validation Framework, which can also distribute the calculated KPIs’
and results’ values from a specific set of metrics using this platform.

Figure 1 presents, in light blue, the proposed architecture for
the collection, distribution and pre-processing of monitoring data
that satisfies all the requirements described above. The figure also
includes in dark blue some elements of the experiment infrastructure
to be monitored, included here for the sake of completeness, and
which may be physical devices like User Equipment devices (UEs),
monitoring tools, (4G or 5G) radio antennas, Physical Network
Function (PNF) components or Virtual Network Function (VNF)
components. Next, all elements of the architecture will be presented
following a bottom-up/west-east approach.

The first component of the architecture is the Metrics Manage-
ment entity, whose main role is to properly configure the other
components of the architecture, providing the configuration of the
necessary data service function chains in order to enable metrics to
be gathered, filtered, normalized and relayed to upper layers in the
architecture to be further processed. The exact configuration of each
component is out of the scope of this paper.

The component of the architecture directly connected to each
experiment infrastructure is the Metrics Extractor Function (MEF),
which takes care of extracting and translating (if required) the metrics
generated by a heterogeneous set of infrastructure components. In
the proposed architecture, it is assumed that there is a one-to-one
logical relationship between a particular MEF and its monitored



Fig. 1. Monitoring metrics architecture.

infrastructure component, although this may be implemented in
different ways, mainly depending on if it is fully, partially or not
integrated in the monitored components, as presented in Fig. 1. How
to implement the MEF for each case is out of the scope of this paper.

This modular design allows to have dedicated MEFs per infrastruc-
ture device, which satisfies the architecture requirement (5) explained
above. This way, it would be possible to implement dedicated MEFs
to handle any kind of proprietary interfaces (dotted red lines in
Fig. 1). Then, the Metrics Management entity instructs each MEF
to extract certain metrics from its monitored component and to make
them available to the upper layer. It is important to remark that all
metrics produced by MEFs have to follow the 5G EVE format to
satisfy constraint (6) presented before.

The Broker system is in charge of storing and distributing not
only the metrics obtained from different sites, but also the KPIs’
and results’ values generated in upper layers. For accomplishing
requirement (1), two brokering levels have been defined: the Intra-
site broker, deployed per site, whose role is to eventually harmonize
the metrics’ format to provide data in an unified way, preserving
the data privacy of each site, and the Inter-site broker, which
interconnects all sites together to both aggregate metrics through
the Metrics aggregation component, generating new metrics based
on those provided by the MEFs, and directly provide them to the
different tools grouped in the Monitoring/Results collection/KPI
tools entity, which lays the ground for a set of value-added additional
components that range from the KPI Framework for performance
diagnosis already presented, which allows to fulfill requirement (7),
to more complex modules such as data analytics platforms, SLA
enforcement mechanisms or data visualisation services, which can
be fed from the monitoring data provided by the system. Finally, the
Metrics Management entity is the responsible for properly configur-
ing all levels of the broker system in a per-experiment basis, in order
to satisfy requirements (2), (3) and (4).

III. IMPLEMENTATION: THE PUBLISH-SUBSCRIBE
PARADIGM

The instantiation of the Monitoring architecture presented in Sec-
tion II over the 5G EVE architecture [4] [5] results in the composition
of a specific component chain, depicted in Figure 2. The cornerstone
of this chain is the publish-subscribe messaging pattern, providing
a distributed system with parallel data processing capabilities which
allows to meet the requirements imposed to the Monitoring platform.
This paradigm suits the multipoint-to-multipoint monitoring data flow
of the 5G EVE project, closer to a big data pipeline rather than to
a classic relational database model, as a massive volume of data is
pushed from site facilities without a specific format, which is not
suitable to be stored in a relational model [6].

Fig. 2. Component chain that implements the general Monitoring metrics
architecture in the 5G EVE platform.

Following the above, the Broker system is mapped into a set
of publish-subscribe queues, starting from local queues deployed
in each site facility (Intra-site broker) that aggregate metrics to
the Interworking publish-subscribe queue (Inter-site broker), which
provides a transparent and seamless access to metrics’, KPIs’ and
results’ values from all sites to components from upper layers.
These queues, together with the Metrics Management service, are
implemented by the Data Collection Manager component in 5G
EVE architecture, based on Apache Kafka3, an open-source, industry-
proven publish-subscribe tool that manages data pipes and forwards
the published data to the different components subscribed, providing
a higher maximum sustainable throughput than other broker-based
message-oriented middleware technologies [7]. This makes Kafka an
optimal solution for data-movement, frequently adopted as pipe to
different processing systems [8].

The information model which defines the different data that is
handled by the Data Collection Manager in a concurrent way is
described in the so-called Topic framework proposal [9]. In that way,
each topic is designed to manage a specific set of data (mainly related
to a single metric, KPI or result to be monitored) that will be different
to the data consumed by the other topics, enabling dataset isolation.

The components that interact with the Data Collection Manager
can be classified as publishers and subscribers. The main compo-
nent which performs the metrics’ data publishing operation is the
Data shipper, playing the role of the MEF component from the
general architecture, and whose objective is to execute the log-to-
metric operation that transforms the heterogeneous, raw logs obtained
from components and collection tools into metrics with a common,
homogeneous format. These data shippers can be placed within
each component as a lightweight software (ranging from general-
purpose solutions already developed and packaged like Beats4 to
more complex solutions programmed for specific-purpose cases) or
can be in a separated server, but in both cases, they must be connected
to the Data Collection Manager with a logical connection.

Moreover, the KPI Validation Framework tools also contain
publishers providing KPIs and results related to a given set of metrics
received from the Data Collection Manager after being published
by specific Data shippers, which means that these KPI tools also
implement a subscriber for each metric to be consumed.

Finally, the Experiment Monitoring and Maintenance and Results
Collection tool performs the expected functionalities provided by the
Monitoring/Results collection entities with a solution based on the
Elastic (ELK) Stack5 [10]. It is separated in two main blocks [11]:
(i) the Data Collection and Storage component, which collects the
metrics, KPIs and results to which this component is subscribed
and provides data persistence, searching and filtering (related to
the Metrics aggregation functionality from the general architecture)
capabilities for obtaining the useful data to be monitored during the

3https://kafka.apache.org/
4https://www.elastic.co/beats
5https://www.elastic.co/products/



experiment, and (ii) the Data Visualization component, in charge of
enabling the monitoring of the progress of the experiment in terms
of that data displayed.

IV. PERFORMANCE EVALUATION

To assess and validate the proposed Monitoring framework im-
plementation, we have followed the testing process described below,
based on the application of a top-down approach.

A. System assumptions
As a first approach to the evaluation, the following assumptions

were made. First, although the Monitoring platform should deal with
the simultaneous execution of a considerable amount of experiments,
the initial set of use cases defined in 5G EVE is six [2], this being the
number of simultaneous experiments to be handled. Each experiment
can define a different number of metrics, KPIs and results to be
collected and monitored during the experiment execution, depending
on vertical’s needs. For this evaluation process, we assume that each
experiment will require the monitoring of 20 parameters. In this way,
each experiment requires the creation of 20 topics in the Monitoring
platform.

The size of the message containing the values of metric, KPI or
result managed by the Monitoring platform depends on the nature of
the data transported. As a result, different sizes and their frequency
have been defined for the tests, with four possible alternatives: 100
B and 1 KB messages for data traffic (i.e., numeric or string values),
representing the 80% of all the monitoring traffic (40% for each
case), and 100 KB and 1 MB messages for multimedia traffic (i.e.,
images or video frames), which would be the remaining 20% (10%
for each case). The percentages have been selected assuming that
most of the data will be small-side messages, which are the ones
that fit best in this kind of platforms, but also considering that there
may be larger messages, mainly related to multimedia data. The
Data shipper’s publication rate is set to 1000 messages/s for data
traffic, but reduced for each case of multimedia traffic, as the received
throughput almost never reached that value due to the message size,
defining 10 messages/s for 100 KB messages and 1 message/s for
1 MB messages, which results in a concurrent publication rate of
approximately 102,4 Mbps per experiment.

The rates for each message size are aligned with the disk size
estimation for each broker node, which is computed as D = s ∗ r ∗
t ∗ f/b, where s is the message size, r is the publication rate, t is
the retention time (at least 2 weeks, as discussed in Section II), and
f and b are both the replication factor and the number of brokers
in the system, typically f = b − 1, this leading to a value slightly
below 100TB, which is an estimation of the expected amount of data
handled in the project.

B. Testbed setup
The testbed used for the evaluation of the architecture consists on

two Virtual Machines (VMs) deployed in a host located in the 5G
EVE Spanish site facility, 5TONIC6, using Proxmox7 as virtualization
environment. This host is equipped with 40 Intel(R) Xeon(R) CPU
E5-2630 v4 at 2.20GHz and 128 GB RAM.

The proposed scenario intends to simulate the monitoring and data
collection process of the metrics, KPIs and results related to a set of
experiments executed in the Spanish site facility, with only one VNF
(VM#1) publishing the monitoring data in the 5G EVE Monitoring
architecture (VM#2). The characteristics and software deployed in
each VM, both based on Ubuntu Server 16.04 and executed with 16
virtual CPU cores and 32 GB of RAM, are the following:

• VM#1: data publishers are emulated with Sangrenel8, which
is a Kafka cluster load testing tool that allows to configure

6https://www.5tonic.org/
7https://www.proxmox.com/en/
8https://github.com/jamiealquiza/sangrenel

parameters such as the message/batch sizing and other settings,
writing messages to a specific topic and obtaining, as output,
the input message rate or the batch write latency, which are
the performance parameters under study, being dumped every
second.

• VM#2: for emulating the 5G EVE Monitoring architecture, a
Dockerized9 environment for testing the 5G EVE Monitoring
and Data Collection tools10 has been used, implementing the
Data Collection Manager, Data Collection and Storage and
Data Visualization components from Fig. 2 with a solution
based on Apache Kafka and the Elastic Stack. For monitoring
the resource consumption of each container, Docker native tools
(e.g. docker stats) have been used.

C. Experiments with one topic
To start with the performance analysis of the Monitoring platform,

experiments with only one topic created were performed, checking
that the system operates correctly and consistently for each message
size and publication rate proposed in Section IV-A without limit
of resources, and also with the objective of defining the minimum
set of computing resources (RAM and vCPU) for the most critical
components of the architecture.

It was observed that the resource consumption in the components
of the Monitoring architecture is CPU-intensive for the most crit-
ical components of the platform, which are Kafka, Logstash and
Elasticsearch, leaving the RAM for working as buffer and cache
before saving data to disk. As a consequence, this fact facilitates the
sizing of these components, as the RAM value can be fixed with a
specific value (in this case, with 2 GB of RAM is enough for working
properly during the testing process), whereas the CPU value is the
only variable term.

In terms of CPU, for a single-topic experiment, Logstash is the
most critical component, with a consumption that ranges from 100 to
200%, needing 4 vCPU in order not to lose performance. However,
the CPU consumption in Kafka and Elasticsearch stays below 100%
for all types of traffic, so 1 vCPU for both of them should be
enough to cover single-topic experiments. However, in multi-topic
experiments, which will be studied next, Kafka becomes the most
critical component with a noticeable increase in its CPU consumption,
whereas Logstash and Elasticsearch approximately maintain the same
consumption profile.

D. Multi-topic experiments
In multi-topic experiments, the distribution of performance param-

eter values between topics of the same type (i.e., that handle the same
type of data, message size and publication rate) in a given experiment
is expected to be uniform in general conditions, where there are no
more priority topics than others. This assumption is confirmed in
Figure 3 for the batch write latency analysis in one experiment with
multiple topics, according to the per-experiment topic distribution
described in Section IV-A. As a result, this confirmed assumption is
used in subsequent tests for accumulating and averaging the values
obtained from performance parameters in topics of the same type, as
if they were a single topic, which allows to simplify the performance
analysis.

The different tests related to the performance impact assessment
for simultaneous multi-topic experiments aim at evaluating two
design parameters that causes variations in the Monitoring platform’s
workload: the number of topics created and running in the system
as concurrent processes and the total throughput received by the
Monitoring system, calculated as the sum of all input message rates
received for each topic. However, a variation in any of these design
parameters may cause different effects in the system in terms of
CPU consumption or performance that must be characterized, also

9https://www.docker.com/
10https://github.com/5GEVE/5geve-wp4-monitoring-dockerized-env



Fig. 3. Batch write latency distribution in one experiment with 20 topics.

Fig. 4. CPU consumption and batch write latency evolution for 100 B data
traffic in different experiments, modifying a different design parameter in each
case whereas the other one remains fixed.

checking if the superposition property can be applied when both
parameters are modified simultaneously. This study was divided in
two parts: (i) a first analysis where one of the design parameters is
modified while the other one stays fixed, and (ii) a final test including
the modification of both parameters at the same time, checking if the
superposition of individual effects is present.

Case (i) is presented in Figure 4, where the CPU consumption and
the batch write latency related to 100 B aggregated data traffic11 are
evaluated for different examples of experiments. On the left side, the
number of experiment is fixed in 1, whereas the total throughput is
modified, using the theoretical input message rate as upper limit (i.e.,
102,4 Mbps) and dividing it by values between 1 and 6. However, on
the right side, the number of experiments is variable, ranging from
1 to 6, but the total throughput for all experiments is conserved,
which is achieved by dividing the message rate aforementioned by
the number of experiments deployed.

In both cases, it is observed that the batch write latency does not
vary when modifying one of the design parameters, and it is also true
for the I/O message rate (i.e., the received throughput divided by the
publication rate), which tends to 1. However, in the first case, when
the total throughput increases its value, the Kafka CPU consumption
increases with a trend that seems exponential, but in the second case,
the CPU consumption also remains constant in average.

As a result, while the total throughput has an effect in the Kafka
CPU consumption with an exponential tendency, the number of
experiments (i.e., the number of topics in the system) does not seem

11This size is used in the rest of the analysis because it presents a lower
value of latency with a tighter 95% confidence interval, according to Fig. 3

Fig. 5. CPU consumption and I/O message rate evolution for 100 B data
traffic in different experiments, modifying both number of experiments and
total throughput in all cases.

to influence the system performance, as long as the total throughput
is conserved when there is an increase in the number of topics,
taking care of specifying correctly the publication rate in order not
to exceed the system limits. However, this is true while the system
is not saturated. When this happens, the effect is similar to the one
shown in Figure 5, related to the case (ii).

Here, when the number of experiments increases, the total through-
put is also higher, and in fact, it can be noticed that message loss is
present from two experiments deployed, as the I/O message rate is
nearly 0,8 (so the 20% of messages are lost), and falling until less
than 0,4 in the case of four experiments deployed simultaneously,
value that remains constant even if more experiments are deployed
(these experiments have not been included in Fig. 5 just to present
the saturation process with more detail). The evolution of the CPU
consumption in Kafka is also stopped due to this saturation state, as
well as the latency starts to present variations as it is calculated based
on the messages that are eventually received.

These results are quite aligned with the outcomes from [12], where
it was reported that Kafka throughput depends linearly on the number
of topics, reaching a hard limit at some specific point. According to
this study, when there is only one Kafka replica, the limit is reached
for around 15000-20000 packets per second, value which is close to
our results, as one experiment in our testbed means around 16000
messages per second and the deployment of a second experiment
causes a loss of performance, since that limit, which should be
between 16000 and 32000 messages per second, is exceeded.

E. System scalability validation
The direct solution to avoid this saturation effect is to build mech-

anisms and processes that allow system scalability, mainly oriented
to the application of horizontal and/or vertical scaling processes
depending on the current status of the platform.

For this evaluation process, a preliminary vertical scaling system
for this Monitoring platform is proposed, based on the results
obtained in the previous tests as training data, used to refine the
different cases that can occur in terms of resource consumption
(mainly related to CPU) and performance evaluation (mainly based on
the batch write latency and the I/O message rate), and the conditions
related to each case that trigger the system scale process.

Figure 6 presents an example of vertical scaling for one experiment
deployed in the platform. In this case, the Kafka container is scaled
by increasing its vCPU assignment until the system is able to handle



Fig. 6. Evolution of the I/O message rate related to 100 B data traffic in one
experiment when vertical scaling mechanisms are enabled.

the workload received without saturating, decision that depends on
different parameters, such as, e.g., the current CPU consumption, the
delay to compute a KPI or some other performance variable. In our
case, for illustrative purposes we trigger an upscale only when a CPU
is fully occupied for relatively long periods of times, but more “agile”
schemes could be easily implemented.

V. CONCLUSIONS AND FUTURE RESEARCH

To conclude, the results of section IV have revealed some interest-
ing insights related to the Monitoring architecture. The first one is that
the distribution of the performance parameter values in topics of the
same type is uniform, allowing the aggregation of the performance
values obtained for each topic of the same type.

It has been also detected that the total throughput is the parameter
that can cause the greatest impact on system performance, with two
different possibilities: while the system has enough free resources to
work, the CPU consumption tends to increase exponentially, keeping
batch write latency and I/O message rate constant. However, when
the system is saturated, which seems to happen for a total throughput
between 16000 and 32000 packets per second, this exponential
growth is stopped and the I/O message rate fails below 0,4% in the
worst case. To solve this, a preliminary vertical scaling mechanism
has been also proposed, which calculates how many resources are
needed for a given workload.

As a consequence of these results obtained during the evaluation
process, many topics for future research can be defined. First of all,
knowing that the evaluation process presented in Section IV is based
on synthetic data, it is expected to repeat the experiments with real
values in order to confirm the results obtained, also checking what
kind of monitoring traffic is more important for each experiment for
fully characterizing each possible experiment. These real monitoring
data may come from the different vertical industries involved in the
5G EVE project or from other European projects that are intended
to use the 5G EVE platform for validating 5G pilots.

Other future research topics are related to the architecture itself.
In fact, the current implemented architecture is based on a very
basic Dockerized environment, where no component has been built
in a clustering or redundant configuration for improving the overall
performance of the system. In that way, it is intended to include these
kind of techniques to make the Monitoring platform evolve, orienting
it towards real production environments. Moreover, this may allow
the introduction of horizontal scaling processes, complementary to
the current implementation of the vertical scaling system proposed,
with the objective of composing a better integrated scaling system of
the Monitoring platform that may also include AI and ML techniques
for improving the decision-making process.

Furthermore, this framework can also be useful for filling specific
gaps declared in 3GPP standards for certain 5G value-added func-
tionalities, so that it can be easily integrated as a complementary
module in those cases, with the goal of evolving the Monitoring

platform towards a multipurpose framework. Some examples detected
and under tracking are the following: (i) service exposure for Network
Functions’ (NFs) Service-based interfaces (SBIs) in the 5G Core
Control Plane based on publish-subscribe mechanisms [13], (ii) data
collection framework for data retrieval from Application Functions
(AFs) to be processed by the Network Data Analytics Functionality
(NWDAF) for enabling Network Automation processes [14], or (iii)
inclusion of the publish-subscribe messaging pattern in the com-
munication between management service producers and consumers
in a Management and Orchestration (MANO) architecture, being
an approach similar to the use of the "subscribe-notify" paradigm
proposed in [15].

ACKNOWLEDGEMENTS

This work was partly funded by the European Commission under
the European Union’s Horizon 2020 program - grant agreement
number 815074 (5G EVE project). The paper solely reflects the views
of the authors. The Commission is not responsible for the contents
of this paper or any use made thereof.

REFERENCES

[1] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5G: Survey and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 94–100, 2017.

[2] 5G-EVE, “Requirements definition and analysis from participant
vertical industries,” Deliverable D1.1, Oct. 2018. [Online]. Available:
https://zenodo.org/record/3530391#.XjqwxDJKhIY

[3] ——, “5G EVE end to end reference architecture for vertical industries
and core applications,” Deliverable D1.3, Dec. 2019. [Online].
Available: https://zenodo.org/record/3628333#.XjqwxDJKhIY

[4] M. Gupta, R. Legouable, M. M. Rosello, M. Cecchi, J. R. Alonso,
M. Lorenzo, E. Kosmatos, M. R. Boldi, and G. Carrozzo, “The 5G
EVE End-to-End 5G Facility for Extensive Trials,” in 2019 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops).
IEEE, 2019, pp. 1–5.

[5] J. Garcia-Reinoso, M. M. Roselló, E. Kosmatos, G. Landi, G. Bernini,
R. Legouable, L. M. Contreras, M. Lorenzo, K. Trichias, and M. Gupta,
“The 5G EVE Multi-site Experimental Architecture and Experimenta-
tion Workflow,” in 2019 IEEE 2nd 5G World Forum (5GWF). IEEE,
2019, pp. 335–340.

[6] 5G-EVE, “Interworking Reference Model,” Deliverable D3.2, Jun. 2019.
[Online]. Available: https://zenodo.org/record/3625689#.XjqwpjJKhIY

[7] P. Sommer, F. Schellroth, M. Fischer, and J. Schlechtendahl, “Message-
oriented Middleware for Industrial Production Systems,” in 2018 IEEE
14th International Conference on Automation Science and Engineering
(CASE), Munich, 2018, pp. 1217–1223.

[8] L. Magnoni, “Modern Messaging for Distributed Sytems,” Journal of
Physics: Conference Series, vol. 608, p. 012038, May 2015.

[9] 5G-EVE, “First implementation of the interworking reference model,”
Deliverable D3.3, Oct. 2019. [Online]. Available: https://zenodo.org/
record/3628179#.Xjta48tKg5k

[10] ——, “Experimentation tools and VNF repository,” Deliverable D4.1,
Oct. 2019. [Online]. Available: https://zenodo.org/record/3628201#
.XjqxUDJKhIY

[11] ——, “First version of the experimental portal and service handbook,”
Deliverable D4.2, Dec. 2019. [Online]. Available: https://zenodo.org/
record/3628316#.XjqxVzJKhIY

[12] P. Dobbelaere and K. S. Esmaili, “Kafka versus RabbitMQ: A Compar-
ative Study of Two Industry Reference Publish/Subscribe Implementa-
tions: Industry Paper,” in Proceedings of the 11th ACM International
Conference on Distributed and Event-Based Systems, ser. DEBS ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
227–238.

[13] 3GPP, “System architecture for the 5G System (5GS),”
TS 23.501, v16.3.0, Sep. 2019. [Online]. Available: https:
//www.3gpp.org/DynaReport/23501.htm

[14] ——, “Study of Enablers for Network Automation for 5G,” TR
23.791, v16.2.0, Jun 2019. [Online]. Available: https://www.3gpp.org/
DynaReport/23791.htm

[15] ——, “Management and orchestration; Architecture framework,” TS
28.533, v16.2.0, Dec. 2019. [Online]. Available: https://www.3gpp.org/
DynaReport/28533.htm


