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Abstract
The fifth-generation (5G) of mobile networks is designed to accommodate
different types of use cases, each of them with different and stringent
requirements and key performance indicators (KPIs). To support the
optimization of the network performance and validation of the KPIs, there
exists the necessity of a flexible and efficient monitoring system, capable of
realizing multi-site and multi-stakeholder scenarios. Nevertheless, for the
evolution from 5G to 6G, the network is envisioned as a user-driven,
distributed Cloud computing system where the resource pool is foreseen to
integrate the participating users. In this paper, we present a distributed
monitoring architecture for Beyond 5G multi-site platforms, where different
stakeholders share the resource pool in a distributed environment. Taking
advantage of the usage of publish-subscribe mechanisms adapted to the
Edge, the developed lightweight monitoring solution can manage large
amounts of real-time traffic generated by the applications located in the
resource pool. We assess the performance of the implemented paradigm,
revealing some interesting insights about the platform, such as the effect
caused by the throughput of monitoring data in performance parameters
such as the latency and packet loss, or the presence of a saturation effect
due to software limitations that impacts in the performance of the system
under specific conditions. In the end, the performance evaluation process
has confirmed that the Monitoring platform suits the requirements of the
proposed scenarios, being capable of handling similar workloads in real 5G
and Beyond 5G scenarios, then discussing how the architecture could be
mapped to these real scenarios.

Keywords: monitoring; data collection; 5G experimental validation; 5G trials;
5G multi-site platform; publish-subscribe paradigm; Beyond 5G networks

1 Introduction
The evolution of mobile networks from 2G to 4G generations was mainly focused on pro-
viding a better quality of experience to end users, by increasing the bandwidth offered by
the network at the radio link segment. However, 5G networks, together with their expected
evolution in what is currently known as Beyond 5G networks, have a broader target, shift-
ing traditional communication networks to a new generation mobile network that embraces
other business sectors.
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In the case of 5G, the authors of [2] have reported the service requirements expected
by verticals, which is the terminology used by 5G to define these business sectors moving
to 5G as the main transport infrastructure. Due to the stringent and different requirements
imposed by all these potential verticals deploying their services on top of 5G networks, the
most important standard development organizations (SDOs) tackling the 5G standardisa-
tion, like the 3GPP, have introduced the concept of Network Slicing [3], which provides
multiple isolated logical networks from a single physical one.

In this approach, each logical network may support a particular type of 5G service; e.g.,
enhanced mobile broadband (eMBB), massive machine-type communications (mMTC) or
ultra-reliable and low latency communications (URLLC). As a matter of fact, 5G telecom-
munication operators have to design their networks to support all these services and to
guarantee that the KPIs demanded by their verticals are satisfied. Beyond 5G networks are
also required to enable network deployments that support diverse demands through net-
work slicing.

Triggered by the complexity and novelty of 5G, several research initiatives have started
to gather an understanding of the envisioned features of these types of networks. Focusing
on the analysis of the achievement of the KPIs aforementioned, a Monitoring service is
desired for collecting all the related metrics generated by the different elements involved
in a 5G scenario, in order to feed such data to specific components that checks the KPIs’
fulfillment, or also enabling new workflows like the optimization of network performance.

This paper presents a Monitoring framework designed to be flexible enough to provide an
adaptable platform that could fit and scale in different network deployments. Apart from
covering use cases related to the 5G service types commented before, this platform also
intends to anticipate new requirements that Beyond 5G networks may impose, such as
efficient resource utilization or real-time traffic processing.

The rest of the paper is organized as follows:
• Section 2 briefly presents some references to related work in terms of Monitoring

platforms deployed in 5G or Edge scenarios, including the monitoring parameters
and methods, and having also standardization in mind.

• Section 3 describes the Monitoring architecture, which has been designed as a
scalable, reliable, low-latency, distributed, multi-source data aggregation and re-
configurable architecture.

• Section 4 justifies and details an implementation model to deploy the proposed ar-
chitecture, based on the publish-subscribe paradigm. It also presents and example of
how a real 5G use case can be monitored by this platform.

• Section 5 validates such implementation against a set of requirements imposed, also
extending the analysis to check the viability of deploying this platform in Edge en-
vironments.

• Section 6 summarizes the results and the main conclusions extracted from the per-
formance evaluation process.

• Finally, Section 7 concludes the paper and presents our future work.
The main novelty of this paper, compared to the work already presented in [1], is as

follows:
• This extension provides a full section covering the related work to this Monitoring

architecture (Section 2, which allows to justify the decision of using the publish-
subscribe paradigm for the implementation and validation of the Monitoring system
presented.
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• The implementation of the Monitoring platform (Section 4) has been reviewed to
cover the multi-site scenarios. As most important contributions in this section, (i) the
Data Collection Manager component is now included within the so-called Multi-
Broker Cluster, an entity which also contains the different Site Brokers deployed
per site. Moreover, (ii) the information model defining the topics handled by this
Multi-Broker Cluster has been extended with the distinction between data topics and
signalling topics. And finally, (iii) some examples of 5G components monitored by
this Monitoring platform have been also presented in a new subsection (Section 4).

• Regarding the performance evaluation process followed in this extension, the testbed
used for the test executed has been improved by using Kubernetes to easily deploy
the Dockerized environment that composes the testbed. Furthermore, the testbed has
been updated to enable the evaluation of multi-site, multi-broker scenarios.

• The multi-topic experiments for a single-broker configuration (Section 5.3.2) has
been extended by including an evaluation of the monitoring parameters under study
when limiting the computing resources used. This is summarized in Figure 8, and it
has been included to justify the introduction of this platform in Beyond 5G scenarios.

• A new subsection related to multi-broker experiments (Section 5.4) has been in-
cluded, covering all the tests involving multiple sites.

2 Related Work
The monitoring parameters considered as base to build this Monitoring platform are the
eight parameters proposed by the ITU-R as key capabilities of IMT-2020 [4], which are:
peak data rate, user experienced data rate, latency, mobility, connection density, energy
efficiency, spectrum efficiency and area traffic capacity. Apart from these infrastructure-
related KPIs, other KPIs related to the use cases deployed in 5G networks can be also
considered, which are different for each application considered.

The purpose of the Monitoring platform proposed in this paper is to monitor all these
infrastructure and application metrics and KPIs with a system based on a publish-subscribe
mechanism to collect and distribute the monitoring data through the platform. In this way,
as long as the components generating the metrics are able to provide the data to this system,
these metrics and their corresponding KPIs can be monitored consequently.

In terms of monitoring methods applied for 5G networks, there is not a specific paradigm
defined in standards to be followed in real deployments. Apart from the publish-subscribe
mechanism, the push or pull monitoring architectures can also apply to 5G monitoring
systems. In the first case, monitoring data is sent to a central collector, and in the second
option, this central collector is in charge of requesting the metrics. In both cases, a set of
APIs are required to acquire monitoring data or expose it [5].

Moreover, the related work in terms of Monitoring platforms designed and provisioned
for 5G and Beyond 5G networks can be grouped in three main categories, according to the
environment in which the system presented in this paper has been involved.

First of all, (i) this Monitoring platform has been designed and implemented within the
scope of an European project related to the research on 5G networks: 5G EVE [6] [7].
This project is deploying a validation 5G multi-site platform, involving four main facilities
located in Spain, Italy, France, and Greece, where verticals and other projects can execute
extensive trials. After an initial phase where verticals have provided their requirements (re-
ported in [8]), the project presented in [9] the proposed architecture and the main innovation
areas addressed, including the KPI Framework for performance diagnosis.
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While a number of other 5G projects (European and International) have addressed mon-
itoring functionalities, limited work in this context have addressed the publish-subscribe
paradigm, a messaging pattern which can be commonly found in the communication be-
tween distributed systems. This paradigm was the option selected by 5G EVE to implement
its Monitoring architecture, and this idea was also considered in the 5GROWTH project,
integrating some ideas and concepts present in the 5G EVE Monitoring platform the so-
called Vertical-oriented Monitoring System (5Gr-VoMS) [10], which is an extension of the
monitoring solution already proposed in the 5G-TRANSFORMER project [5].

Another context that is present in these environments (ii) is standardization. In order
to integrate monitoring and data collection features in the mobile network architecture,
3GPP and other SDOs are working in data analytics frameworks that take advantage of the
collection of monitoring data related to the network infrastructure in order to enable the
autonomous and efficient control, management and orchestration of mobile networks. In
this working line, 3GPP has incorporated the Network Data Analytics Function (NWDAF)
[11] and the Management Data Analytics Function (MDAF) [12] for 5G networks.

Other organizations, such as the O-RAN alliance, also contemplates similar components
in their architectures [13], and ETSI has also defined comparable assisting elements within
the Industry Specification Groups (ISGs) on Experiential Networked Intelligence (ENI)
and Zero touch network & Service Management (ZSM) [14]. Moreover, open-source ini-
tiatives such as ONAP [15] are also including data analytics into their architecture. All
these ongoing efforts are, however, at an early stage, so that the integration of the monitor-
ing architecture presented in this paper, already tested and validated, may be useful to steer
the work of these initiatives.

And finally (iii) , moving to Beyond 5G networks, requiring flexible scenarios that may
be probably oriented to Edge environments, there are already several proposals that include
the definition of a publish-subscribe mechanism to distribute data between different entities
in Edge-based deployments. This is the case of [16] or [17], although they are mostly
focused on IoT and pure Edge platforms, not including 5G communications. There are also
other proposals not related to the publish-subscribe system, such as [18], which analyzes
the optimal placement and scaling of monitoring functions in multi-access Edge computing
(MEC) environments, but it does not consider multi-site nor multi-stakeholder scenarios,
which is a feature that characterizes the solution presented in this paper.

In summary, while substantial work has been conducted to design publish-subscribe plat-
forms in distributed systems, and to devise Monitoring solutions specific for Beyond 5G
systems, the key novelty of our approach is to bring the publish-subscribe paradigm into
a Beyond 5G Monitoring platform, and to implement and evaluate experimentally the per-
formance of the platform devised.

3 Monitoring Architecture Overview
A 5G scenario based on multiple sites, with heterogeneous components generating useful
data that is likely to be monitored, relies on a flexible and distributed Monitoring service in
charge of collecting that monitoring data and distributing it to specific entities that obtain
insights about the behaviour of these components. In this sense, a general-purpose Monitor-
ing architecture is desired, so that it can fit in this kind of multi-stakeholder environments.

To start with the definition of this Monitoring architecture, the main characteristics to be
envisioned by the Monitoring service have been extracted from a thorough analysis of the
5G EVE infrastructure and service requirements [8]. These are the following:



Perez et al. Page 5 of 26

Broker System

Proprietary
interfaces

5G EVE 
metrics

Legend

MEF

EPC
VNF1

MEF

UE1

MEF

Intra-site broker system

VNF2

MEF

PNF1

Monitoring/Results collection/KPI tools

Intra-site broker 

system

MEF MEF

Ext. 

mon. 

tools

MEF

Metrics aggregation

Site 1 Site n

Metrics 

Mgmt.

Inter-site broker system

Figure 1 Monitoring metrics architecture.

1 The Monitoring distribution architecture must support multi-site network deploy-
ments involving distant sites.

2 The platform must deal with use cases that may generate monitoring data in the order
of gigabytes.

3 Monitoring data has to be available to the verticals after the execution of the use case
has concluded, estimating a retention time of at least 2 weeks.

4 Redundancy is needed to offer a fault-tolerant system.
5 The architecture must be flexible enough to accommodate a wide variety of elements

to be monitored.
6 The support of some pre-processing techniques (e.g., translation across formats) may

be needed for an efficient subsequent processing.
7 The collected metrics may be used and post-processed by a KPI Validation Frame-

work[1], which can also distribute the calculated KPIs’ values from a specific set of
metrics using this platform.

These features result in the architecture for the collection, distribution and pre-processing
of monitoring data presented in Figure 1, which satisfies all the requirements described
above.

In this general-purpose architecture, two sets of components can be distinguished:
• In dark blue, some elements of the infrastructure to be monitored, included here for

the sake of completeness, and which may be user equipment devices (UEs), (4G or
5G) radio antennas, physical network functions (PNFs), virtual network functions
(VNF), or other components such as external monitoring tools which may provide
monitoring data to the Monitoring platform.

• In light blue, the elements that compose the Monitoring platform itself, which will
be presented next by following a bottom-up/west-east approach.

The first component of the architecture to be described is the Metrics Management en-
tity, whose main role is to properly configure the other components of the architecture,

[1]This framework is out of the scope of this paper.
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providing the configuration of the necessary data service function chains in order to enable
metrics to be gathered, filtered, normalized and relayed to upper layers in the architecture
to be further processed.

The component of the architecture directly connected to each element of the infrastruc-
ture is the Metrics Extractor Function (MEF), which takes care of extracting and translat-
ing (if required) the metrics generated by a heterogeneous set of infrastructure components.
This module should be flexible enough to be integrated in different environments, from on-
premises deployments to more agile facilities such as Edge environments.

Consequently, in order to be able to provide monitoring data to the Monitoring system, a
MEF must be integrated within the infrastructure component. In the proposed architecture,
it is assumed that there is a one-to-one logical relationship between a particular MEF and its
monitored infrastructure component, although this may be implemented in different ways,
mainly depending if it is fully, partially or not integrated in the monitored components,
as presented in Figure 1. This is aligned with the distributed nature of the Monitoring
system; considering that, if a new element from the infrastructure of the 5G site needs to
be monitored, it is just required the provision of a MEF. Moreover, as MEFs are intended
to be lightweight software modules, they can be easily deployed and distributed along the
infrastructure.

This modular design allows to have a dedicated MEFs per infrastructure device, which
satisfies the requirement (5) explained before. This way, it would be possible to implement
dedicated MEFs to handle any kind of proprietary interfaces (dotted red lines in Figure
1). Then, the Metrics Management entity instructs each MEF to extract metrics from its
monitored component and to make them available to the upper layer (i.e., the Broker system,
which will be described next).

It is important to remark that all these metrics have to follow an homogeneous format
(e.g., the one defined in [19]) to satisfy constraint (6) presented before. This might require
a translation from a proprietary or different standard formats to the one used by the Moni-
toring platform, in order to handle all the messages received from the MEFs in an unified
way.

The monitoring data is then received by the Broker system, which is in charge of storing
and distributing not only the metrics obtained from different sites, but also the KPIs’ values
generated in upper layers. For accomplishing requirement (1), two brokering levels have
been defined:

• The Intra-site broker, deployed per site, whose role is to eventually harmonize the
metrics’ format to provide data in an unified way, preserving the data privacy of each
site. By doing this, the distribution and extension of the architecture is achieved: as
long as a 5G site is able to deploy a new Intra-site broker, collecting the monitoring
data and providing it to upper layers, that 5G site could be then monitored.

• The Inter-site broker, which is the central component of the Broker system, aggre-
gating all the monitoring data received from each Intra-site broker to:

– Aggregate metrics through the Metrics aggregation component, generating
new metrics automatically based on those provided by the MEFs. For exam-
ple, a given function may receive the instantaneous transmission rate at a given
network interface every second, to then compute the mean rate in a ten seconds
window. More complex functions may estimate the average rate between two
points in a defined window time.
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Figure 2 Component chain that implements the general Monitoring metrics architecture.

– Directly provide them to the different tools grouped in the Monitoring/Results
collection/KPI tools entity, which is the entity consuming metrics from the
Metrics aggregation or the Inter-site broker system, laying the ground for a set
of value-added additional components that range from the KPI Framework for
performance diagnosis already mentioned, which allows to fulfill requirement
(7), to more complex modules such as data analytics platforms, SLA enforce-
ment mechanisms or data visualization services, which can be fed from the
monitoring data provided by the system.

Although the Inter-site system is a centralized entity in the architecture, this does not
mean that the whole architecture is centralized itself. In fact, there can be as many Intra-
site broker entities as 5G monitored sites, and there can also be as many MEFs as monitored
elements within a site, being both of them the distributed units within the Monitoring plat-
form, as explained before.

Finally, in order to satisfy requirements (2), (3) and (4), the Metrics Management entity is
the responsible for properly configuring all levels of the broker system in a per-deployment
basis, also enabling the necessary security mechanisms to ensure that only the actors be-
longing to a given network deployment can manage the monitored data of their deployment
and not others.

4 Implementation Based on the Publish-Subscribe Paradigm

4.1 Detailed Platform
Taking into account the general-purpose Monitoring architecture described in Section 3,
this Section proposes a specific implementation of this design. The cornerstone of this
platform is the publish-subscribe messaging pattern, providing a distributed system with
parallel data processing capabilities which allows to meet the requirements imposed to
the Monitoring platform. As a result, this implementation results in the composition of a
specific component chain, depicted in Figure 2.

Thanks to the integration of the publish-subscribe messaging pattern, a multipoint-to-
multipoint monitoring data flow is enabled, which is closer to a big data pipeline rather
than to a classic relational database model, as a massive volume of data is pushed from site
facilities without a specific format, which is not suitable to be stored in a relational model
[20].

Following the above, the Broker system is mapped into a set of publish-subscribe queues,
starting from local queues deployed in each site facility (Intra-site broker) that aggregate
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metrics to the Interworking publish-subscribe queue (Inter-site broker), which provides a
transparent and seamless access to metrics’ and KPIs’ values from all sites to components
from upper layers. In Figure 2, each Intra-site broker is represented by a Site Broker entity,
and the Inter-site broker, together with the Metrics Management service, are implemented
by the Data Collection Manager component in the implemented architecture.

All the Site Brokers and the Data Collection Manager are based on Apache Kafka [21], an
open-source, industry-proven publish-subscribe tool that manages data pipes and forwards
the published data to the different components subscribed, providing a higher maximum
sustainable throughput than other broker-based message-oriented middleware technologies
[22]. Moreover, it also implements several useful functionalities related to data transforma-
tion and normalization (Kafka Streams), security (Kafka ACL) or data persistence (Kafka
Store), among others [23]. This makes Kafka an optimal solution for data-movement, fre-
quently adopted as pipe to different processing systems [24].

This hierarchical architecture can be encompassed with the so-called Multi-Broker Clus-
ter. In this way, the Site Brokers located in each site replicate the data received towards the
Data Collection Manager, which is in charge of providing the data that come from different
sources to the entities interested in consuming that data. This feature allows to deploy small
processes in the sites that only gather monitoring data and forward it to upper layers of the
platform, being then aligned with Edge’s philosophy. In fact, this kind of publish-subscribe
architecture has been already used in different approaches to transport messages in Edge
platforms, as commented in Section 2.

The information model that defines the different topics that are handled by the Multi-
Broker Cluster in a concurrent way is described in the so-called Topic framework proposal
[23]. In that way, each topic is designed to manage a specific set of data (mainly related to
a single metric or KPI to be monitored) that will be different to the data consumed by the
other topics, enabling dataset isolation.

There are two main types of topics defined in the Topic framework, which are:
• Data topics, where each of them transports the values of the metric or KPI they

refer to, followed by some meta information that may be useful for other modules.
In particular, this information corresponds to the homogeneous format mentioned in
Section 3, which specifies the fields that the message containing the data related to
the metrics’ and KPIs’ values to be handled by the Monitoring platform must have.

• Signalling topics, used to deliver the name of data topics related to each metric or
KPI to be monitored for a given network deployment. This is a function that fits in the
scope of the Metrics Management service, which automates the process of creation
and deletion of topics.

The components that interact with the Multi-Broker Cluster can be classified as pub-
lishers and subscribers, depending on whether they produce data to the publish-subscribe
platform or they consume it. This distinction allows to simplify the workflow during the
execution of a given use case, as subscribers only need to be subscribed to the topics related
to the metrics and KPIs they want to consume data from (i.e., the ones used in the use case),
and then, when a publisher produces data to these topics, the information is automatically
delivered to the subscribers that are listening to the topics.

The main component which performs the metrics’ data publishing operation is the Data
Shipper, playing the role of the MEF component from the general architecture, and whose
objective is to execute the log-to-metric operation that transforms the heterogeneous, raw
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logs obtained from components and collection tools into metrics with a common, homoge-
neous format. These data shippers can be placed within each component as a lightweight
software (ranging from general-purpose solutions already developed and packaged like
Beats [25] to more complex solutions programmed for specific-purpose cases) or can be
deployed in a separated server, but in both cases, they must be connected to the Multi-
Broker Cluster with a logical connection. Again, this flexibility allows the Data Shippers
to be deployed in a wide variety of environments, from Edge to Cloud.

Moreover, the KPI Validation Framework tools also contain publishers providing KPIs
related to a given set of metrics received from the Multi-Broker Cluster after being pub-
lished by specific Data Shippers, which means that these KPI tools also implement a sub-
scriber for each metric to be consumed.

Finally, the Data Collection and Storage-Data Visualization component performs the
expected functionalities provided by the Monitoring/Results collection entities with a so-
lution based on the Elastic (ELK) Stack [26] [27]. This component receives the metrics’
and KPIs’ values through a specific subscriber for each metric and KPI, and it is separated
logically in two main blocks [28] [29]:

• The Data Collection and Storage component, which collects each of the subscribed
components metrics and KPIs, through Logstash, from the Elastic Stack, and pro-
vides data persistence, searching and filtering capabilities (related to the Metrics ag-
gregation functionality from the general architecture) for obtaining the useful data to
be monitored during the operation of the system thanks to Elasticsearch, also from
the Elastic Stack.

• The Data Visualization component, in charge of enabling the monitoring of the
progress of the deployment in terms of that monitoring data displayed through
Kibana from the Elastic Stack. For this purpose, a set of dashboards are created
for each deployment, presenting the graphs related to each metric or KPI monitored.

4.2 Example of a Monitored 5G Service
To complete the description of the implementation of the Monitoring platform, an ex-

ample of a given 5G use case monitored by this system is presented. The full description
of this 5G pilot, executed in the 5TONIC laboratory[30], is reported in [31], but the main
aspects related to the execution of one of its use cases will be presented below for the sake
of completeness.

In particular, this pilot refers to experiential tourism through 360-degree video and virtual
reality, which uses both technologies to transform the experience of participants in events,
conventions, presentations or meetings, amplifying their participation and improving their
interactions.

The high-level implementation of the use case related to this pilot, which involves the
upstream video distribution from user equipments to a service deployed in a public Cloud,
using a 4G/5G network to distribute the traffic, is presented in Figure 3.

In this use case, a high-quality video feed is ingested locally in the UE, which connects
to the CPE via Wi-Fi. The CPE is 4G/5G-capable and can connect to LTE or 5G SA RAN,
both based on Ericsson technology. Once the connection is established, data is sent through
radio to the 5G EPC, which forwards the traffic to the public Cloud in which the video
processing server is located.
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Figure 3 Monitoring of the upstream throughput in a 5G use case (adapted from [31]).

Moreover, a set of probes implemented by Ericsson in 5TONIC laboratory are deployed
in key points of the network, in order to measure different network metrics such as the la-
tency or the jitter. Then, a Data Shipper gets these metrics and calculate the corresponding
upstream throughput values, which are sent to the Monitoring system. This demonstrates
the flexibility of the Monitoring platform to monitor network metrics that can be captures
from different points of the network architecture.

In preliminary tests, the results reported an uplink throughput of the 5G network with
peaks near 60 Mbps, verifying a good performance and user perception of the video when
demanding a video upload bitrate of 25 Mbps.
5 Performance Evaluation
To assess and validate the proposed Monitoring framework implementation, the testing
process described below has been followed, based on the application of a top-down ap-
proach. In particular, it is based on the execution of specific experiments monitored by the
Monitoring platform, where an experiment is an emulation of a given network deployment,
characterized by parameters like the bandwidth consumed.

As a result, the purpose of the performance evaluation process presented is to character-
ize the Monitoring platform itself in terms of several performance parameters, which are
related to the resource consumption of the components from the Monitoring platform, and
the latency and packet loss experienced by the experiments deployed, obtaining these two
last parameters from a given throughput in the system. These performance parameters are
well explained in Section 5.2.

So, the idea of this performance evaluation process is not related to present how the
Monitoring platform is capable of monitoring a given 5G service and show the results
obtained for each monitored metric (which has been already presented in Section 4, but
it is a load testing process to check if the designed and implemented Monitoring platform
is capable of handling a given amount of monitoring data (in terms of throughput and
number of topics running in the platform, i.e., a certain number of metrics managed by the
Monitoring platform simultaneously), emulating real 5G use cases with a synthetic data
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rate and a specific number of topics running in the platform. This would help to eventually
size the Monitoring platform (in terms of number of servers, their hardware requirements,
throughput to be handled, etc.) for a given deployment in 5G or Beyond 5G scenarios.

In this way, this performance evaluation process starts with single-broker experiments
to characterize the platform in terms of several performance parameters, and finishes with
multi-broker experiments to check the impact of having the two brokering levels de-
scribed in Section 3.

It has to be mentioned that, although the results are component-sensitive, because specific
components with specific requirements and specific values of design parameters have been
used, the procedure followed to do the test is not component-sensitive, but it is a general-
purpose methodology that can be applied to other type of components.

5.1 System Assumptions
The definition of the system under test (SUT) parameters is related to the 5G EVE multi-
site platform’s operation, where a set of network deployments derived from the different
use cases defined in the project may be running simultaneously at a specific time, sharing
all the computing and network resources provided by both the 5G EVE platform and the
site facilities.

As a first approach to the evaluation, the following assumptions were made:
• The Monitoring platform must be prepared to deal with extreme conditions, such as

the simultaneous execution of a considerable amount of use cases. As the 5G EVE
project initially proposes the validation of six specific use cases [8], the execution
of a deployment from each use case at the same time can be taken as the worst case
study to validate, resulting in six simultaneous deployments (i.e., experiments) to be
handled by the Monitoring platform.

• Each experiment can define a different number of metrics and KPIs to be collected
and monitored during the execution of the use case, depending on vertical’s needs.
For this evaluation process, as these metrics can be extracted from different sources
(e.g., UEs, VNFs, PNFs, etc.), and each source may have several related metrics
or KPIs, it can be assumed that each experiment will require the monitoring of an
average of 20 parameters. Furthermore, as each monitored parameter has a topic
assigned for the transport and delivery of their corresponding collected data, each
experiment on average will create 20 topics in the Monitoring platform. As a result,
the maximum number of topics[2] created in the platform would be 20× 6 = 120 in
this case.

• The size and the publication rate of the messages containing the values of metric or
KPI managed by the Monitoring platform depend on the nature of the data trans-
ported. As a result, four different alternatives have been considered for the tests:

– 100 B and 1 KB messages for data traffic (i.e., numeric or string values), rep-
resenting the 80% of all the monitoring traffic (40% for each case). The publi-
cation rate for both options is set to 1000 messages/s.

– 100 KB and 1 MB messages for multimedia traffic (i.e., images or video
frames), which would be the remaining 20% (10% for each case). The pub-
lication rate for both cases is less than the data traffic one, as the received

[2]This figure does not include the signalling topics presented in Section 4, whose footprint is not significant
compared to these data topics.
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throughput almost never reached that value due to the message size, with
10 messages/s for 100 KB messages and 1 message/s for 1 MB messages.

The percentages have been selected assuming that most of the data will be small-side
messages, but also considering that there may be larger messages, mainly related to
multimedia data. As a result of the figures selected for each kind of message, this
results in a concurrent publication rate of approximately 102,4 Mbps per experiment.

• Another important parameter related to the publishers is the message batch size,
which controls the amount of messages to collect before sending messages to the
Multi-Broker Cluster, and which was set to 1 after validating that higher values of
this parameter cause worse results in terms of latency.

• The selected values of publication rate for each message size are also coherent for
the subsequent calculation of the disk size estimation for each broker node, which is
computed as D = s× r × t× f/b, where s is the message size, r is the publication
rate, t is the retention time (at least 2 weeks, as discussed in Section 3), and f and
b are both the replication factor and the number of brokers in the system, typically
f = b − 1, this leading to a value slightly below 100 TB, which is an estimation of
the expected amount of data handled in the project.

5.2 Testbed Setup
The testbed used for the evaluation of the architecture consists on a set of Ubuntu Server
16.04 virtual machines (VMs) [32] deployed in a server located in the 5G EVE Spanish site
facility, 5TONIC, using Proxmox [33] as virtualization environment, and K3s (a lightweight
Kubernetes distribution) [34] to orchestrate the containerized components[3] deployed in
each VM. This server is equipped with 40 Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz
and 128 GB RAM. The distribution of components in each VM can be seen in Figure 4.

The proposed scenario intends to simulate the monitoring and data collection process of
the metrics and KPIs related to a set of network deployments. The components deployed
in each VM are the following:

• Kubernetes Worker node VMs: each Kubernetes worker emulates a site, including
Data Shippers for publishing monitoring data in a Site Broker, based on Apache
Kafka, that replicates the data towards the Data Collection Manager, placed in the
Kubernetes Master node. Regarding the Data Shippers, this role is played by two
components:

– Sangrenel [36], which is a Kafka cluster load testing tool that allows to con-
figure parameters such as the message/batch sizing and other settings, writing
messages to a specific topic and obtaining, as output, the input message rate
(used for calculating the Input/Output (I/O) message rate, i.e., the received
throughput divided by the publication rate) or the batch write latency (i.e.,
time spent until receiving an ACK message from the broker), which are some
of the performance parameters under study, being dumped every second.

– A Python-based Timestamp generator [37], used exclusively in multi-broker
experiments. It sends messages with timestamps embedded that are eventually
received by a Latency calculator component, based on Node.js[4] [39], which

[3]The images of these components can be found in [35].
[4]This programming language has been used in order to make use of Kafka’s KIP-392 feature, to receive data
from the closest replica [38].
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Figure 4 Testbed architecture.

takes the timestamps and calculates the so-called broker latency, i.e., time
spent between the publication of data and its reception in an entity subscribed
to the Site Broker. In fact, this component can be associated to the KPI Valida-
tion Framework tools, as it calculates the latency (KPI) based on timestamps
(metric).

• Kubernetes Master node VM: in this server, the Data Collection Manager, Data
Collection and Storage and Data Visualization components from Figure 2 have
been implemented with a solution based on Apache Kafka and the Elastic Stack.
A ZooKeeper [40] instance is also running to coordinate the Kafka cluster, and there
is also another instance of the Latency calculator deployed here to calculate the end-
to-end latency KPI, this being the time spent between the publication of data in a
given site and its reception in an entity subscribed to the Data Collection Manager
(so that data has been previously replicated from the Site Broker).

For monitoring the resource consumption of each container (focusing on the CPU con-
sumption), Docker [41] native tools (e.g. docker stats) have been used.

5.3 Single-Broker Experiments
For these experiments, only one Kafka broker is required, so the testbed depicted in Fig-
ure 4 can be simplified by only using one Kubernetes Worker node with just a Sangrenel
container directly connected to that Kafka broker, represented with the dark blue line that
connects both components in the testbed diagram.
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5.3.1 Experiments with One Topic
To start with the performance analysis of the Monitoring platform, experiments with only
one topic created were performed, checking that the system operates correctly and consis-
tently for each message size and publication rate proposed in Section 5.1 without limit of
resources, and also with the objective of defining the minimum set of computing resources
(RAM and vCPU) for the most critical components of the architecture.

In this set of tests, some of the assumptions from the system characterization were
confirmed, e.g., the poor results for multimedia traffic when its publication rate is 1000
messages/s, where the I/O message rate falls from 1 (obtained when the reduced publica-
tion rate is used) to 1/4 in the best-case scenario, or that the optimal value for the message
batch size parameter is 1 for all types of traffic, as increases in their order of magnitude
cause exactly the same increase in the order of magnitude of latency. For example, for a
100 B message size, the batch write latency goes from 0,8 ms with a message batch size
of 1 to 500 ms, where the message batch size is 1000.

Apart from that, it was also observed that the resource consumption in the components
of the Monitoring architecture is CPU-intensive for the most critical components of the
platform, which are Kafka, Logstash and Elasticsearch, leaving the RAM to work as buffer
and cache before persisting data to disk. As a consequence, this fact facilitates the sizing
of these components, as the RAM value can be fixed with a specific value (in this case,
with 2 GB of RAM is enough for working properly during the testing process), whereas
the CPU value is the only variable term.

In terms of CPU, for a single-topic experiment, Logstash is the most critical component,
with a consumption that ranges from 100 to 200%, requiring 4 vCPU in order not to degrade
the performance. However, the CPU consumption in Kafka and Elasticsearch stays below
100% for all types of traffic, so 1 vCPU for both of them should be enough to cover single-
topic experiments. However, in multi-topic experiments, which will be studied next, Kafka
becomes the most critical component with a noticeable increase in its CPU consumption,
whereas Logstash and Elasticsearch approximately maintain the same consumption profile.

5.3.2 Experiments with Multiple Topics
In multi-topic experiments, the distribution of performance parameter values between top-
ics of the same type (i.e., that handle the same type of data, message size and publication
rate) in a given experiment is expected to be uniform in general conditions, where there are
no more priority topics than others.

This assumption is confirmed in Figure 5 for the batch write latency analysis in one ex-
periment with multiple topics, according to the per-network deployment topic distribution
described in Section 5.1. As a result, this confirmed assumption is used in subsequent tests
for accumulating and averaging the values obtained from performance parameters in topics
of the same type, as if they were a single topic, which allows to simplify the performance
analysis. Moreover, in Figure 5, it can be also observed that latency is higher in larger
message traffic, also increasing the deviation of the results, as seen in the longer 95% con-
fidence interval estimated for multimedia traffic, for example. This reflects that smaller
messages result in better and more precise values of latency.

Continuing with the different tests carried out related to multi-topic experiments, they
aim at evaluating two design parameters that causes variations in the Monitoring platform’s
workload: (i) the number of topics created and running in the system as concurrent pro-
cesses, due to the execution of simultaneous deployments, and (ii) the total throughput
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Figure 5 Batch write latency distribution in a network deployment with 20 topics.

received by the Monitoring system, calculated as the sum of all input message rates re-
ceived from each topic.

However, a variation in any of these design parameters may cause different effects in
the system in terms of CPU consumption or performance that must be characterized, also
checking if the superposition property can be applied when both parameters are modified
simultaneously. For doing this, the study was divided in two parts:

1 A first analysis where one of the design parameters is modified while the other one
stays fixed.

2 A final test including the modification of both parameters at the same time, checking
if the superposition of individual effects is present.

Part (1) is presented in Figure 6, where the CPU consumption and the batch write la-
tency related to 100 B aggregated data traffic[5] are evaluated for different examples of
experiments:

• On the left side, the number of experiment is fixed in 1, whereas the total throughput
is modified, using the theoretical input message rate as upper limit (i.e., 102,4 Mbps)
and dividing it by values between 1 and 6.

• On the right side, the number of experiments is variable, ranging from 1 to 6, but the
total throughput for all deployments is conserved, which is achieved by dividing the
message rate aforementioned by the number of experiments deployed.

In both cases, it is observed that the batch write latency does not vary when modifying
one of the design parameters, and it is also true for the I/O message rate, which tends to
1. However, in the first case, when the total throughput becomes higher, the Kafka CPU
consumption increases with a trend that seems exponential, but in the second case, the
CPU consumption also remains constant in average.

As a result, while the total throughput has an effect in the Kafka CPU consumption with
an exponential tendency, the number of network deployments (i.e., the number of topics
in the system) does not seem to influence the system performance, as long as the total

[5]This size is used in the rest of the analysis because it presents a lower value of latency with a tighter 95%
confidence interval, according to Figure 5.
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Figure 6 CPU consumption and batch write latency evolution for 100 B data traffic in different
experiments.

throughput is conserved when there is an increase in the number of topics, taking care of
specifying correctly the publication rate in order not to exceed the system limits. However,
this is true while the system is not saturated. When this happens, the effect is similar to the
one shown in Figure 7, related to the part (2) of the study aforementioned.

Here, when the number of network deployments increases, the total throughput is also
higher, and in fact, it can be noticed that message loss is present from two experiments
deployed, as the I/O message rate is nearly 0,8 (so 20% of the messages are lost), and
falling until less than 0,4 in the case of four experiments deployed simultaneously, value
that remains constant even if more experiments are deployed (these experiments have not
been included in Figure 7 just to present the saturation process with more detail).

The evolution of the CPU consumption in Kafka is also stopped due to this saturation
state, as well as the latency starts to present variations as it is calculated based on the
messages that are eventually received.

In fact, these results are quite aligned with the outcomes from [42], where it was reported
that Kafka throughput depends linearly on the number of topics, reaching a hard limit at
some specific point. According to this study, when there is only one Kafka replica, the limit
is reached for around 15.000-20.000 messages/s, value which is close to these results, as
one experiment in our testbed means around 16.000 messages/s and a second deployment
causes a loss of performance, since that limit, which should be between 16.000 and 32.000
messages per second, is exceeded.

This issue related to effects caused by resources’ saturation must be also taken into ac-
count in order to introduce these CPU-bound components in Edge environments, where
the number of physical and virtual resources allocated to execute these workloads are quite
limited. In this way, apart from having a theoretical limit imposed by the technology it-
self, the amount of resources can also have an impact on performance in case of sizing the
platform wrongly, provoking a loss of performance even before reaching the hard limit.

To reflect the impact on performance caused by the limitation on computing resources
(i.e., vCPU allocation in the Kafka container), Figure 8 presents the evaluation of both the
batch write latency (top subplots) and the I/O message rate (bottom subplots), for 100 B
data traffic, in two situations:
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Figure 7 CPU consumption and I/O message rate evolution for 100 B data traffic in different
experiments.

• First of all, assuming that a full experiment is being executed in the platform (i.e.,
a total throughput of 102,4 Mbps is received by Kafka), the vCPUs assigned to the
Kafka container was modified from 1 to 6 (the two graphs on the left in Figure 8);
checking that, from 5 vCPU, the values obtained for the performance parameters
become reasonably good and stable.

• However, on a scenario where the Site Broker is placed in the Edge, a high resource
allocation cannot be guaranteed. For this reason, a new set of tests in which the vCPU
allocation was fixed to 1 vCPU, then varying the throughput received by Kafka,
was carried out (the two graphs on the right in Figure 8). The values used for the
throughput vary between the 100% and the 10% of the throughput related to an
experiment (i.e., 102,4 Mbps). The results reflect that, although the latency does not
improve when a lower throughput is received, this is not the case for the I/O message
rate, which improves every time that throughput is reduced until reaching a value of
1 when the throughput is reduced to the 10%.

Consequently, to move to an Edge environment, it is crucial to limit the resource alloca-
tion, but also the throughput received by the Monitoring platform, in order to avoid packet
loss. This issue should not be a problem in Edge environments, assuming that most use
cases deployed in this kind of scenarios will prioritize the ability to support a large number
of connections rather than guaranteeing a certain value of latency or bandwidth; as happens
in IoT, for example. Therefore, the higher values of latency, compared to the ideal scenario
in which there are no problems related to resource consumption (70 ms vs. 10 ms, approx-
imately), should not be a problem while the throughput is kept at a reasonable value. In this
case, this limit can be set to 10 Mbps.

5.3.3 System Scalability Validation
To avoid the saturation effect presented in Figures 7 and 8, the direct solution is to build
mechanisms and processes that allow system scalability, mainly oriented to the applica-
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Figure 8 Effect of saturation in performance parameters when limiting Kafka vCPU allocated in
different experiments.

tion of horizontal and/or vertical scaling processes depending on the current status of the
platform.

For this evaluation process, a preliminary vertical scaling system for the central com-
ponent of this Monitoring platform is proposed (i.e., no new instances are added, but the
computing resources attached to the available instance are increased or decreased depend-
ing on the workload), based on the results obtained in the previous tests as training data,
used to refine the different cases that can occur in terms of resource consumption (mainly
related to CPU) and performance evaluation (mainly based on the batch write latency and
the I/O message rate), and the conditions related to each case that trigger the system scale
process.

Figure 9 presents an example of vertical scaling for one experiment deployed in the
platform. In this case, the Kafka container is scaled by increasing its vCPU assignment
until the system is able to handle the workload received without saturating, decision that
depends on different parameters, such as, e.g., the current CPU consumption, the delay to
compute a KPI or some other performance variable.

Note that, in this case, for illustrative purposes, an upscale is only triggered when a CPU
is fully occupied for relatively long periods of times, this resulting in a relatively high
convergence time (around one minute) of the I/O message rate, but more “agile” schemes
could be easily implemented if needed.

5.4 Multi-Broker Experiments
Finally, the scalability of the full distributed, multi-site platform, as built in the testbed
already presented in Figure 4, will be evaluated in terms of the performance parameters al-
ready presented in Section 5.2 and the CPU consumption of the Data Collection Manager’s
Kafka broker, whose computing resources will not be limited. On the other hand, the Site
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Figure 9 I/O message rate evolution in an experiment with vertical scaling mechanisms enabled.

Brokers will be limited to 1 vCPU, taking the value already tested in the tests presented in
Figure 8.

In this case, the meaning of experiment will be a bit different. This way, each experiment
instantiated in multi-broker experiments will be executed in a particular Kubernetes Worker
node (so, for six experiments, six Kubernetes Worker nodes will be required), sending
monitoring data to the corresponding Site Broker at 10% of the total throughput calculated
in Section 5.1 (i.e., 10,24 Mbps), which is the throughput hard limit to avoid saturation, as
stated in Figure 8.

5.4.1 Impact on Latency
The first performance parameter to be evaluated is the latency, in the different acceptations
that were defined in Section 5.2: the batch write latency, the broker latency and the end-to-
end latency. The values obtained during the execution of experiments, from one to six, for
100 B data traffic, can be seen in Figure 10. Here, a similar effect than the one obtained in
Figure 5 can be observed: the results obtained in each site are similar for each case, so that
performance data can be also aggregated in future analysis.

Moreover, the same tendency in latency values than observed in Figure 8 can be seen also
here: the latency does not vary even though the total throughput received by the Monitoring
platform increases due to the creation of new experiments.

Furthermore, the results[6] obtained for each type of latency are consistent with the defi-
nition of each of them: it is expected that the batch write latency (the darker colour for each
case) would give the lowest value (approx. 70–80 ms), as it only implies the reception of
the ACK from the Site Broker. The next one would be the broker latency (the colour of
“intermediate” darkness in the graph), in which the Site Broker has also to deliver the data
to a subscriber, but it can be checked that this does not cause a great impact on latency, as
it is increased to nearly 120 ms in the worst case. And finally, the highest value on latency
(approx. 2,5–2,6 seconds) is obtained for the end-to-end latency (the lighter colour in the
[6]Note that these results have been obtained in a virtualized scenario, in which the latency between virtual ma-
chines and containers is negligible. In a real scenario, the delay introduced by each of the path components must
be also take into account.
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Figure 10 Evolution of the three types of latency in multi-broker experiments.

graph), due to the replication operation performed between each Site Broker and the Data
Collection Manager and also the delivery to the corresponding subscriber. This value can
be assumed in Edge environments for the reasons aforementioned.

5.4.2 Impact on CPU Consumption and Packet Loss Ratio
Finally, the impact on the I/O message rate in the multi-broker experiments is the same
than experienced in single-broker experiments with CPU limitation (reflected in Figure
8), where the packet loss increases with the increase of the total throughput received in the
platform. This effect can be seen in Figure 11, where the performance results from different
brokers have been aggregated due to the results obtained in Section 5.4.1.

It can be observed that I/O message rate falls to nearly 0.65 when the six experiments are
being executed concurrently, meaning a total throughput received of around 60 Mbps. This
result, compared to the case observed in Figure 8 with a single broker, with 1 vCPU, con-
suming 65,54 Mbps (the I/O message rate was less than 0.3), implies that the distribution
of the total throughput between several Site Brokers improves the results.

Moreover, the CPU consumption in Data Collection Manager’s Kafka broker also in-
creases with each experiment, but in a less rate, reaching the 110% of vCPU consumption
for six experiments. Consequently, although the core of the Monitoring platform is intended
to be executed in environments without limit of computing resources, this final result may
allow the deployment of some components of this core (e.g., the Data Collection Man-
ager) on the Edge; as long as the total throughput, again, does not exceed a specific limit
that causes saturation (60 Mbps in this case).

6 Results and Discussion
The performance evaluation process performed on Section 5 have revealed some interesting
insights related to the Monitoring architecture. The first one is that the distribution of the
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Figure 11 Evolution of Data Collection Manager CPU consumption and I/O message rate in
multi-broker experiments.

performance parameter values in topics of the same type is uniform in both single-broker
and multi-broker configurations, allowing the aggregation of the performance values ob-
tained for each topic of the same type and, as a result, simplifying the study of the overall
system.

In single-broker experiments, it has been also detected that the total throughput is the
parameter that can cause the greatest impact on system performance, with two different
possibilities: while the system has enough free resources to work, the CPU consumption
tends to increase exponentially, keeping batch write latency and I/O message rate constant.
However, when the system is saturated, which seems to happen for a total throughput be-
tween 16.000 and 32.000 packets per second, this exponential growth is stopped and the
I/O message rate fails below 0,4 in the worst case.

After detecting this, the analysis of the performance parameters when the computing
resources allocated (i.e., the vCPU) are limited revealed that the system can reach the sat-
uration state even before that the theoretical limit aforementioned. This constraint can be
regulated with the modification of the total throughput injected in the platform, allow-
ing to increase the I/O message rate by reducing the throughput, while maintaining lower
resource’s usage and a practically constant latency. This is particularly important in the
transition towards more flexible deployment such as Edge-based environments, in which
resource’s consumption is a crucial issue to be tackled. Furthermore, these results were used
to build a preliminary vertical scaling mechanism, which calculates how many resources
are needed for a given workload.

Finally, in multi-broker experiments, the impact of instantiating several network deploy-
ments, consequently involving the joint activity of different Kafka brokers, was evaluated,
checking that the latency, in its different variants, remains also constant, being then the
I/O message rate the performance parameter to be optimized by adjusting again the total
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throughput received by the platform, issue that should be easy to solve in Edge environ-
ments, where latency and bandwidth are not as important as a flexible deployment of solu-
tions to ensure a lower consumption, allowing the connectivity of a huge set of devices to
a given platform.

7 Conclusions and Future Research
This paper has presented a modular Monitoring architecture, flexible enough to easily ac-
commodate to different network deployments. Moreover, an implementation based on the
publish-subscribe paradigm has been also proposed, confirming that is able to manage real,
complex network deployments in both single-broker and multi-broker configurations. Fi-
nally, based on the results obtained after this performance evaluation process, it has been
confirmed that this Monitoring platform would be able to scale in multi-site scenarios,
enabling also lightweight deployments oriented to Edge and Beyond 5G deployments.

Despite this, a saturation effect due to a software limitation related to the technology
used (i.e., Kafka) has been also presented in the performance evaluation process. This does
not imply that the Monitoring system becomes unrealistic; in fact, this saturation effect is
a predictable behaviour, as it has been already described in previous work from the state
of the art [42]. This problem can be solved from different points of view; for example,
by applying scaling techniques to better size the platform. As presented in Section 5.3.3,
when using simple vertical scaling techniques (which does not make a great impact in
terms of using additional resources), the performance of the system improves considerably,
preventing the Monitoring platform for losing performance due to this software limitation.
Another example could be to change the technology used, but as reflected in the state of
the art [22], Kafka is the best tool related to publish-subscribe mechanisms.

As a consequence of these results obtained during the evaluation process, several topics
for future research can be defined. Some of them, which were declared in the work that is
the base of this research [1], have already been analyzed and fulfilled; such as the execution
of real network deployments in the Monitoring platform [43] [31] or the enhanced imple-
mentation of the Monitoring platform, which is available in the 5G EVE Github repository
[44].

However, there are still some pending issues to be studied in the medium term that would
enable the improvement of the platform in terms of performance; for example, the usage of
artificial intelligence (AI) and machine learning (ML) techniques in order to improve the
system scalability process, thus being able to allocate new compute resources based on the
information extracted and analyzed from the network.

Another topic to have in mind is the alignment with standardization efforts; not only in
the terms explained in [1], where some gaps detected in 3GPP standards were presented,
trying to fit the Monitoring platform in them, but also having in mind other initiatives, such
as the ETSI-NFV platform for the management and orchestration of network functions
deployed in a given infrastructure. In that case, the Monitoring platform may help in the
collection of metrics from different sources (infrastructure, VNFs, etc.) to easily deliver
them to the entities interested in that data; for example, data analytics components, linking
with the integration of AI and ML technologies aforementioned.

Finally, even though the system has been validated in a testbed that uses some technolo-
gies which are oriented to Edge environments, such as K3s, also extracting some useful
conclusions related to these scenarios in Section 5, it is true that a real implementation that
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operates in Edge environments is still missed, but the components needed to perform that
deployment have already been developed and are publicly available [35], so it would be just
a matter of finding a proper use case that may need this functionality in order to perform
and test the integration in a real case.

Methods/Experimental
Although the performance evaluation process is fully detailed in Section 5, some guidelines
related to this procedure will be summarized below.

In this research work, the Monitoring platform presented in this study implements a so-
lution based on the publish-subscribe paradigm, which is analyzed in different types of de-
ployments, ranging from single-broker network deployments, in which only the first level
of brokering of the architecture is tested, to multi-broker deployments, where the full clus-
terized solution is evaluated.

To do this, some performance metrics related to latency and packet loss are analyzed,
together with the resource consumption of some of the components of the platform. These
parameters can be extracted by using specialized tools and Linux commands during the
execution of the use cases.

Each deployment (called “experiment” in terms of the performance evaluation process)
involves the injection of a workload at a given data rate in the Monitoring platform. The
duration of the experiments can be controlled by using scripts designed for that purpose.
In general terms, each experiment lasts 5 minutes, and the data obtained for each perfor-
mance parameter can be analyzed by using statistical measures like the mean, variance and
standard deviation.
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Figure Title and Legend
• Figure 1: Monitoring metrics architecture. This figure presents the general architecture of the Monitoring

framework proposed in this paper, highlighting the main building blocks that compose this system.
• Figure 2: Component chain that implements the general Monitoring metrics architecture. In this case,

this figure reflects the translation of the general Monitoring framework to an implementation based on the
publish-subscribe paradigm, including the components that compose this architecture.

• Figure 3: Monitoring of the upstream throughput in a 5G use case (adapted from [31]). This is an
example of a 5G use case being monitored by the Monitoring platform proposed in this paper. In this
example, a set of monitoring probes are deployed in some parts of the 5G network, measuring network
metrics such as latency and jitter to obtain the upstream throughput, which is the final metric monitored by
the system.

• Figure 4: Testbed architecture. The testbed used for the performance evaluation process is presented in
this figure. All the components have been deployed in a Dockerized environment managed by K3s, a
lightweight Kubernetes distribution.

• Figure 5: Batch write latency distribution in a network deployment with 20 topics. This graph present
the batch write latency distribution in a multiple-topic network deployment (20 topics), confirming the
assumption that the distribution of the values of this performance parameter between topics of the same type
is uniform.

• Figure 6: CPU consumption and batch write latency evolution for 100 B data traffic in different
experiments. This graph presents the CPU consumption and batch write latency evolution for 100 B data
traffic in two types of experiments: (i) on the left side, the number of experiments deployed is fixed while the
throughput is variable, and (ii) on the right side, whereas the throughput is fixed, the number of experiments
deployed is variable.

• Figure 7: CPU consumption and I/O message rate evolution for 100 B data traffic in different
experiments. In this graph, it is presented the CPU consumption and I/O message rate evolution for 100 B
data traffic when both the number of experiments deployed and the total throughput are variable, showing the
impact of the saturation effect experienced in Kafka.

• Figure 8: Effect of saturation in performance parameters when limiting Kafka vCPU allocated in
different experiments. This graph extends the previous one to show the evolution of the performance
parameters under study when limiting the vCPU resources attached to the Kafka container. On the top, the
batch write latency evolution (together with the CPU consumption) is presented, and on the bottom, it is
showed the evolution of the I/O message rate (including again the CPU consumption). On the left side, the
graphs presented are related to a fixed throughput but a variable number of vCPUs, and the opposite for the
graphs on the right side.

• Figure 9: I/O message rate evolution in an experiment with vertical scaling mechanisms enabled. In
this case, the I/O message rate evolution when executing an experiment with limited vCPU assignment in
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Kafka is presented, showing how the system vertically scales the Kafka container to assign more vCPU
resources to finally achieve a I/O message rate near 1.

• Figure 10: Evolution of the three types of latency in multi-broker experiments. In this case, the three
types of latency under study (i.e., batch write latency, broker latency and end-to-end latency) are evaluated in
multi-broker experiments (from 1 to 6 brokers deployed), showing that the latency evolution remains uniform
when increasing the number of brokers.

• Figure 11: Evolution of Data Collection Manager CPU consumption and I/O message rate in
multi-broker experiments. Finally, this graph shows the evolution of the CPU consumption and I/O message
rate in the Data Collection Manager in multi-broker experiments. This result, compared to the case observed
in Figure 8, implies that the distribution of the total throughput between several brokers improves the results.


