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Abstract

The Industry 4.0 paradigm aims to bring real-time production data analytics, cloud computing,
and cyber-physical inter-connectivity to today’s industries. This evolution fosters network-based
use cases, such as remote-controlled mobile robots with stringent network latency requirements.
5G networks have become a promising technology for such use cases. However, 5G wireless
communication is affected by time-varying random delays, which impact the use-case’s relia-
bility, stability, and performance. Thus, there is an urgent need to design mechanisms to com-
pensate for these time-varying delays at the remote end. The delay estimation can be achieved
by leveraging the MEC framework on top of 5G (MEC-based 5G). Thus, this work presents a
novel architecture to exploit the radio network information provided by the MEC framework to
improve the performance of remote-controlled mobile robots leveraging 5G. This radio network
information is used to estimate the current network delays. Accordingly, these estimated delays
together with the delayed information sent by the robot are availed to the robot controller at the
remote end for compensation. Besides, the message-sequence flow between the different archi-
tecture components is analyzed in detail, and the modeling equations are described. Extensive
simulations prove the effectiveness of the proposed approach. Our approach is compared with
the network delay estimation based on the Kalman filter. An improvement of at least 55% and
33% in the tracking error and control effort, respectively, are observed for delay values ≥ 150ms.
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1. Introduction

The fourth industrial revolution (i.e., Industry 4.0) is envisioned to provide: increased au-
tomation, interconnectivity between physical devices and computers (cyber-physical systems),
and big data technologies to manufacturing industries and businesses [1]. These envisioned ca-
pabilities of Industry 4.0 have led to the creation and support of a myriad of use cases classified
with stringent latency, reliability, and availability requirements. Due to the strict network re-
quirements imposed by some of these use cases, 5G and some of its key enabling technologies
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(i.e., Multi-access Edge Computing (MEC) and Network Function Virtualization (NFV)) have
emerged as the fastest growing and most suitable solution in this arena [2, 3]. Furthermore, 5G,
when enabled with the MEC technology (henceforth referred to as MEC-based 5G), comes with
the availability of networking, computing, and real-time context information close to the edge of
the network (i.e., within the Radio Access Network (RAN)) and closer to the end-user physical
devices [4]. In addition, the MEC platform has been proposed to (i) reduce latency, (ii) improve
bandwidth, (iii) offload processing functions, and (iv) support scalability in industry 4.0 use cases
[5, 6]. Hence, this MEC paradigm has accelerated the deployment of remote-controlled indus-
try 4.0 use cases, whose control loops impose stringent latency requirements. The controller
components of these industry 4.0 use cases are located remotely from the physical devices. A
communication network is utilized for communicating between the physical devices and the re-
mote controllers. However, although there are enough reserved resources to accommodate the
communication of all devices with the remote controller, this communication network introduces
random network delays (i.e., jitter) affecting the system stability (since the stringent latency re-
quirements for the control loops are no longer satisfied). This could lead to performance degra-
dation and catastrophic effects depending on the considered remote-controlled industry 4.0 use
case. Hence, it is of paramount importance that these network delays introduced by the commu-
nication networks are accurately estimated and compensated for at the remote controller end for
such industry 4.0 use cases.

To address these requirements, the MEC platform offers a service called the Radio Network
Information (RNI) service [7, 8]. This MEC service can provide authorized MEC applications
with updated information about the prevailing radio network conditions (e.g., network delay,
packet loss, and packet discard rate). These authorized MEC applications could be remote-
controlled industry 4.0 use cases, for instance. Hence, they can use this up-to-date information
to dynamically adapt their operations at the remote controller end to maintain the system stability
and improve performance after changing conditions of the network. Furthermore, through the
MEC platform, these authorized industry 4.0 applications can also either consume or provide
specific services to other industry 4.0 applications [9].

This paper presents a 5G remote-controlled industry 4.0 use case leveraging the up-to-date
radio network delay information provided by the MEC RNI (MRNI) API [8] to improve its
path tracking performance in the presence of variable network delays. Specifically, we utilize a
remote-controlled Automated Guided Vehicle (AGV) use case over a MEC-based 5G network.
However, this up-to-date network delay estimation (NDE) data provided by the MRNI service
(henceforth referred to as “NDE-MRNI approach”) can also be exploited in other use cases.
Accordingly, in this article, considering the relevant key performance indicators (KPIs) for the
use case and the presence of random delays, we leverage the NDE-MRNI approach to estimate
these network delays at the remote end. Thus, the estimated network delays are utilized to
compute the actual current position of the AGV (since the received position information from
the AGV is outdated due to the network delays). The remote controller component employs this
updated position information to calculate the appropriate velocity commands to send to the AGV,
improving the use case’s path tracking performance.

To examine this NDE-MRNI approach, we implement a remote-controlled AGV use case
whose controller (in this case, the Master programmable logic controller (Master PLC)) is vir-
tualized and located remotely at the edge of the 5G network. On the other hand, the slave PLC
is located inside the physical AGV. The 5G network is utilized for communicating between the
virtualized Master PLC controller and the Slave PLC. This use case architecture is presented in
Fig. 1. From Fig. 1, the AGV utilizes the information generated by the slave PLC to send its
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Figure 1: Design of a 5G Remote-controlled AGV use case

current position (included in the sensor data) by means of its 5G network card to the remote
controller through the 5G network. Thus the remote controller generates the appropriate velocity
commands given the desired AGV path trajectory. These controller commands are sent to the
slave PLC component inside the AGV through the 5G network and applied by the actuators.
Besides, the work done in this paper is motivated by our work in [10], where we analyzed the
impact of random delays and packet losses on a remote-controlled AGV use case utilizing a real
private 5G network.

To the authors’ best knowledge, no studies focus on analyzing the effect of the NDE-MRNI
approach in improving the path tracking performance of remote-controlled AGV use cases,
henceforth, the significant contributions of this paper are manifold:

• Design and simulation of a model architecture for a 5G remote-controlled AGV use case,
whose controller components are virtualized and located at the edge of the 5G network.

• Augmenting of this architecture by (i) deploying the MEC platform to provide the MRNI
service, (ii) Exploiting the radio-access network delay information provided by the MRNI
service to estimate the current network delays (i.e., the NDE-MRNI approach) at the re-
mote end, and (iii) Leveraging these estimated network delays to update the AGV position
information and thus employing this updated position information to compute the appro-
priate velocity commands at the remote controller end. Besides, this phase involved iden-
tifying the relevant key performance indicators (KPIs) to assess the effectiveness of the
NDE-MRNI approach.

• Performance evaluation of this NDE-MRNI approach in improving the path tracking ca-
pabilities of the remote-controlled AGV use case, considering two different channel dis-
tributions and path trajectories. In addition, comparison of this performance improve-
ment against the optimal baseline NDE technique (i.e., Kalman filter) utilized in remote-
controlled AGV use cases.

The rest of this paper is organized as follows. Section 3 provides a description of the consid-
ered use case modeling. Section 4 describes the use case path tracking architecture when enabled
with the MRNI service. In addition, a detailed description of how the NDE-MRNI approach is
implemented is provided. Section 5 provides the different simulation approaches, including the
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baseline approach and settings considered to evaluate the performance of the NDE-MRNI ap-
proach. Section 6 presents and discusses the results from the several experiments carried out to
validate the NDE-MRNI approach under different simulation and channel parameters. Section
2 presents the related work. Finally, Section 7 provides a conclusion of this article while giving
some direction for future works.

2. Related Work

Network time delay has been cited as the primary issue affecting remote-controlled systems
that can lead to system instability and performance degradation [11]. To this end, several control
methods have been proposed to handle time-delay in these kinds of applications [11]: Passivity-
based, wave-variable-based, adaptive, robust, and neural network control approaches. However,
the stability analysis of most of these approaches is limited by one or more of the following: lack
of experimentation analysis (i.e., mainly numerical studies) due to controller algorithms’ com-
plexity [12] and constrained delays (i.e., either zero, constant, bounded, or limited random scope)
[13]. The work in this paper differs from these approaches by (i) maintaining a simple controller
algorithm and (ii) considering unconstrained time-varying network delays. On the other hand,
the authors in [14] consider the noisy characteristics of the round trip time (RTT) signals of
wireless communication channels (in particular, WiFi networks) to model and compensate for
the network delays experienced in remote-controlled AGVs. Henceforth to compensate for these
delays, they propose the Kalman filter approach to estimate the network delays and then com-
pensate for them at the controller end. In this article, we add to this contribution in the following
ways: (i) Leveraging a new approach in this arena, i.e., the NDE-MRNI approach to estimate
the network delays, (ii) Moreover; this NDE-MRNI approach does not require any modifica-
tions to the physical AGV, and (iii) Comparing the performance of this NDE-MRNI approach
(considering the relevant use case KPIs) with the Kalman filter approach proposed in previous
works.

Furthermore, on the one hand, the MEC technology has been cited as one of the critical
enablers of 5G; bringing the cloud environment to the edge of the network, with all the inherent
advantages of this kind of approach, for example, lower latency and radio network condition
context-awareness [15, 16, 17]. Moreover, Abbas et al. [18] identify the lack of context-aware
applications as one of the primary barriers affecting time-sensitive applications typical of industry
4.0 use cases. The authors propose that combining 5G networks (which can provide the context
information) and MEC technologies (capable of utilizing this context information) is the ultimate
solution for realizing and improving time-sensitive applications. On a similar note, the authors
in [19] evaluate the performance gains of context information availability in enhancing edge
robotics. They analyze the perks of context information provided via a WiFi network to an edge
application in improving robot motion through experimental analysis. However, as commented
by the authors, the proposed control algorithm is straightforward and unrealistic, i.e., It only
depends on the signal level of the received WiFi signal to decide the robot speeds. On the
other hand, this paper employs a practical controller algorithm to evaluate the efficacy of the
MEC-based approach (i.e., NDE-MRNI approach) in improving path tracking performance for
a 5G remote-controlled AGV use case affected by time-varying network delays. Lastly, the
authors in [20] apply reinforcement learning to control an autonomous guided vehicle from an
edge cloud through a wireless communication network affected by fading. The authors find the
optimal AGV speed that maintains system stability with reinforcement learning while reducing
the mission time to complete tasks. However, the authors only consider the DL channel error-and
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delay-prone and assume that the UL channel is error- and delay-free. Thus, the AGV commands
arrive at the remote controller instantaneously. However, in our paper, we consider both the DL
and UL delays and compensate for them at the remote controller end. In addition, apart from the
time taken KPI considered in this paper, we also examine two other critical use case KPIs, i.e.,
MAE and Control Effort, when evaluating the performance of the NDE-MRNI approach.

3. Use Case Modeling

This section presents an overview of the MEC framework, focusing on the relevant MEC
functionalities for our scenario. Furthermore, we provide the kinematic model and controller
algorithm for the considered AGV.

3.1. MEC Framework
Fig. 2 presents the block diagram of the functional entities of the MEC framework [7] utilized

in our scenario. From Fig. 2, we can see that this framework mainly comprises two levels,
i.e., the MEC system and host levels. The MEC system level is primarily composed of the
MEC orchestrator, maintaining an overall view of the MEC system. This MEC orchestrator is
in charge of selecting the appropriate MEC hosts to instantiate the MEC applications based on
the required network, compute, and storage resources. Furthermore, the MEC orchestrator is
responsible for instantiating and terminating these MEC applications by contacting the requisite
virtualized infrastructure manager (VIM). On the other hand, the MEC host-level consists of
the MEC hosts and their managers. In particular, the MEC host comprises (i) Virtualization
infrastructure; controlled by the VIM and is in charge of hosting the virtualized instances of the
MEC applications, (ii) MEC platform; responsible for providing the required functionalities for
MEC applications to discover, advertise, provide and consume the MEC services’ data, and (iii)
MEC applications; to consume and provide MEC services’ data from/to the MEC platform. The
MEC platform and the MEC application interact via the Mp1 reference point. Besides providing
specific service functionalities to authorized MEC applications, this Mp1 reference point is also
used for service registration, service discovery, and communication support. Moreover, the MEC
platform contacts the data plane of the virtualization infrastructure through the Mp2 reference
point to route traffic between the different MEC services and applications.

The MEC platform is controlled by the MEC platform manager, which is responsible for
monitoring the lifecycle of the MEC applications and communicating with the VIM to receive
performance statistics & fault records about the instantiated MEC applications and acts accord-
ingly. Moreover, the MEC platform provides the following services [7, 21]:

• MEC Radio Network Information (MRNI) Service: This service provides updated in-
formation about (i) The radio network conditions (e.g., delay, throughput, and packet dis-
card rate), (ii) User plane measurements and statistics, and (iii) UE context and their radio
access bearers, to authorized MEC applications [8]. This radio network information can be
used by authorized MEC applications to optimize their operations dynamically. Besides,
this MRNI service data can be provided at a specified granularity (i.e., per data radio bearer
(DRB) per UE, per DRB per cell, and at every specified period depending on the mobile
network operator). The authorized MEC applications can obtain the information about
the prevailing radio network conditions using the RNI application programming interface
(API) [8]. For this paper, the focus radio channel measurement is network delay; since
network delay is the most critical factor affecting remote-controlled use cases that leads
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Figure 2: Block diagram of the MEC framework focusing on the entities required for the considered remote-controlled
AGV use case

to system instability and performance degradation [11]. This MRNI service can provide
regular estimates of the average uplink (UL) and downlink (DL) delays experienced by the
remote-controlled AGV in a specified period. This period and the frequency at which these
delay measurements are provided is determined by the mobile network operator, depend-
ing on the agreed-upon service level agreement (SLA) with the use case vertical provider.
More information about how the MRNI service estimates the UL and DL delays can be
found in [21].

• MEC Location Service: This MEC service provides location-related information to au-
thorized MEC applications. For a specified MEC host, the location information can in-
clude: (i) location of all the served UEs by the radio node, and (ii) location of all the
associated radio nodes.

• MEC Bandwidth manager Service: With this service, specific traffic from and to autho-
rized MEC applications can be prioritized and allocated specific bandwidth.

Moreover, in this paper, we are only utilizing the MRNI service and not the other two MEC
services; since its the most relevant for the considered remote-controlled AGV use case. How-
ever, for more complex industry 4.0 use cases, the location and bandwidth manager MEC ser-
vices would also be very useful in improving performance. In addition, only the network delay
information was extracted from the MRNI service and not the packet loss or other radio network
conditions due to our work in [10]. In that article, we evaluated a remote-controlled AGV use
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case over 5G in the presence of random delays and packet losses. From those experiments, we
concluded that network delay has a notable impact on the use case performance, whereas for
packet losses ≤ 35%, the performance impact is negligible. Consequently, in this article, we
focus on assessing the improvement in path tracking due to utilizing the up-to-date network de-
lay information provided by the MRNI service in remote-controlled AGV use cases affected by
random network delays.

3.2. AGV MODELING
3.2.1. AGV Kinematic Model

The AGV considered in these experiments is a two-wheeled differential drive robot with a
caster wheel at the front for maneuverability purposes, as illustrated in Fig. 3. From Fig. 3, the
robot coordinate frame is defined by XR and YR, whereas XG and YG represent the global or world
coordinate frame and θ is the angle between the robot coordinate frame and the global coordinate
frame. The AGV position (pose) in the global coordinate frame is given by pose = (X,Y, θ).
Assuming that the robot is moving in the forward direction along the XR direction with a linear
velocity (v) and angular velocity (ω); the velocity components (ẋ, ẏ, and θ̇) of the robot in the
global coordinate frame in reference to Fig. 3 are given as follows [22]:

ẋ = vcos(θ) (1)

ẏ = vsin(θ) (2)

θ̇ = ω (3)

The AGV velocities, i.e., v and w, are found through measurements and are related to the
rotational wheel speeds of the AGV as follows:

v =
r
2

(ωR + ωL) (4)

ω =
r
l
(ωR − ωL) (5)

Where l is the wheelbase, i.e., the distance between the left (L) and right(R) AGV wheels,
and r represents the wheel radius as indicated in Fig. 3. ωL and ωR are the angular velocities of
the left and right wheel respectively.

Using matrix notation, we can re-write (1), (2), and (3) as (6), which represents the forward
kinematic model of a two-wheeled differential drive robot. It is crucial to note that this model
assumes that the velocity of the robot in the YR direction in the robot coordinate frame is zero,
and the robot is only moving forward in the XR direction.ẋẏ

θ̇

 =
cosθ 0
sinθ 0

0 1


[
v
ω

]
(6)

At any time instant, we can keep track of the robot’s position by applying numerical inte-
gration techniques to the kinematic model of the robot given in (6). In this case, the chosen
numerical integration technique is the second-order Runge-Kutta integration technique[23]. Ac-
cordingly, at a discrete time instant k, given the current pose posek = (xk, yk, θk) and the robot
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Figure 3: AGV Schema

control inputs (i.e., vk and ωk), after the elapse of a sampling period equal to ∆T , we can approx-
imate the AGV pose at time instant k+1, i.e., posek+1 = (xk+1, yk+1, θk+1) in the global coordinate
frame as: xk+1

yk+1
θk+1

 =
xk

yk

θk

 +
cos(θk + ωk ∗ ∆T/2) 0
sin(θk + ωk ∗ ∆T/2) 0

0 1


[
vk

ωk

]
∆T (7)

This process of continuous integration of the kinematic model of the robot based on the
knowledge of a fixed reference point and the issued control commands to localize the AGV po-
sition is called odometric localization or dead-reckoning. This dead-reckoning process is subject
to errors over time, which become significant over long distances. These errors are caused by
inaccurate calibration of the AGV parameters (for example, the wheel radius), wheel slippage,
and numerical integration errors. However, these errors can be significantly reduced by keeping
the AGV velocities low and periodically restarting the dead reckoning process based on a known
reference point [22].

3.2.2. AGV controller algorithm
In order to test the potency of the NDE-MRNI approach, for the AGV controller algorithm,

we chose the pure-pursuit algorithm due to its satisfactory performance, ease of implementation,
and widespread use [24, 25]. In addition, this controller was used by vehicles in the DARPA
Grand challenge [26] and the DARPA Urban challenge [27]. This geometric path tracking al-
gorithm works by calculating the curve’s curvature needed to move the AGV from its current
position to a defined future position along the desired path trajectory. This defined future po-
sition is also known as the look-ahead distance and is one of the main parameters of this con-
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troller. Hence, when provided with the current pose information and the appropriate look-ahead
distance, this controller computes the proper angular velocity commands to move the AGV along
the desired trajectory in the next sampling period.

4. LEVERAGING THE NDE-MRNI APPROACH IN REMOTE-CONTROLLED AGVs

This section presents the use case architecture when augmented with the relevant MEC ser-
vice (i.e., the MNRI service) to provide the NDE-MRNI approach. Furthermore, this section
details how this NDE-MRNI approach is designed and implemented in our scenario. In addition,
the message flows between the different use case components is also provided.

4.1. Augmented Use Case architecture with the NDE-MRNI Approach

The remote-controlled AGV use case design presented in Fig. 1 can be augmented with the
relevant MEC platform functionalities presented in Fig. 2 to improve its path tracking perfor-
mance in the presence of variable delays (i.e., jitter). Accordingly, the use case design and ar-
chitecture, when enabled with the MRNI service to avail the NDE-MRNI approach, is presented
in Fig. 4. On the one hand, the design comprises the physical AGV at the factory site. On the
other hand, the design comprises the MEC host at the network’s edge. The MEC host contains:
(i) the MEC platform, providing the MRNI service that offers the NDE-MRNI approach, and (ii)
the relevant MEC applications for the use case (i.e., NDE-MRNI consumer, Position predictor,
and the Master PLC vController). From Fig. 4, we notice that the virtualization infrastructure
component of the MEC host; in charge of hosting the virtualized instances of the relevant MEC
applications for the use case, has been omitted; this is because we are considering the simulated
use case architecture. Otherwise, this component is pivotal to the use case in the real scenario.

The 5G-RAN block represented by the DL and UL channels is responsible for the commu-
nication between the remote Master PLC vController and the physical AGV. The MRNI service
receives the UL and DL channel delay information from the 5G RAN block at the MEC host. The
MRNI service uses this delay information from the 5G RAN to provide the most up-to-date esti-
mates of the current UL and DL delay values (i.e., the NDE-MRNI approach). It is important to
note that the MEC platform is co-located with the 5G-RAN, so these network delay values from
the RAN are available almost instantaneously to the MEC platform and thus to the MRNI ser-
vice. On the other hand, the “NDE-MRNI consumer” MEC application registers and subscribes
to the MEC platform via the Mp1 reference point as a consumer of the data provided by the
NDE-MRNI approach. Once authorized by the MEC platform, this MEC application consumes
the NDE-MRNI data at every sampling instant and sends these data to the position predictor
MEC application. This position predictor application uses these data to compute an update of
the AGV pose (since the received AGV pose information is outdated due to the presence of UL
delays). After that, this component forwards this new estimated pose to the “Master PLC vCon-
troller” application. This MEC application employs this updated pose data to compute the new
AGV velocity commands for the current sampling period. These new velocity commands are
sent to the Slave PLC through the 5G network. However, these new velocity commands will also
experience another random delay (i.e., DL delay) before reaching the physical AGV. Finally,
the delayed velocity commands are received by the AGV and are in turn applied by the AGV
actuators.

Moreover, in the Master PLC vController component, the desired AGV path trajectory is
provided as a set of waypoints in the x and y directions. This controller component uses the
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Figure 4: Design and architecture of the Remote-Controlled AGV Use Case augmented with the NDE-MRNI approach

next target waypoint and the estimated pose (from the Position predictor component) to generate
the velocity commands of the AGV. Finally, to ensure that the AGV stops at the final waypoint,
we keep track of this “End-point.” Each time the distance to this point is less than a specified
threshold, the AGV stops.

Besides, this kind of design architecture has been proposed and leveraged for several other
network-controlled use cases [28, 29]. Our main contribution to this architecture is augmenting
the delay estimation with the NDE-MRNI approach of the MEC platform. Moreover, we use
simulations to test the potency of this NDE-MRNI approach, i.e., improving the path tracking of
remote-controlled AGV use cases experiencing random network delays; due to the ease of testing
different networking conditions with simulations. However, we plan to examine the presented
use case scenario using physical hardware and software in our future work.

4.2. Implementation of the NDE-MRNI approach and updated pose estimation for the considered
AGV Use Case

This section explains how the NDE-MRNI approach is implemented in our scenario. In
addition, we indicate how these data are utilized to update the pose estimation at the remote
end, hence improving the path tracking performance of the considered remote-controlled AGV
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use case. Besides, the message flow between the different use case architecture components
presented in Fig. 4 is illustrated in Fig. 5.

Figure 5: Message sequence flow in a remote-controlled AGV use case leveraging the NDE-MRNI approach

From Fig. 5, at the start, the Master PLC sends the previous velocity commands (i.e., from the
previous sampling instant) to (i) the position predictor component and (ii) the AGV through the
DL channel. The DL channel adds a random DL delay to the previous velocity commands. This
DL delay value is sent to the MRNI service by the RAN. Subsequently, the “NDE-MRNI con-
sumer” application requests for the DL delay value from the MRNI service of the MEC platform
via the Mp1 reference point. Upon receiving this request from the “NDE-MRNI consumer”, the
MRNI service computes an estimate of the current DL delay value. In our implementation sce-
nario, the MRNI service estimates the current DL delay value by utilizing the previously received
DL delay values as follows:

T̂k,DL = mean
{
Tk−1,DL,Tk−2,DL, ...,Tk−n,DL

}
(8)

where T̂k,DL represents the estimated DL delay at the current sampling instant k and Tk−n,DL

represents the received DL delay value at the previous nth sampling instant. The optimal value
of n i.e., the number of previously received delay samples to use to estimate the current delay
is determined through experimental trials. Finally, the MRNI service forwards this estimated
DL delay (i.e., T̂k,DL) to the “NDE-MRNI consumer” MEC application. This MEC application
forwards the estimated DL delay (i.e., T̂k,DL) to the position predictor component.
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As all these processes are ongoing, depending on the DL delay value, at every sampling
period, the AGV has either received the velocity commands that the Master PLC vController
sent, or it continues moving using the last received velocity commands. The AGV utilizes either
of these velocities at every sampling period to compute its current pose.

The AGV proceeds to send this pose information to the UL channel. The channel adds a
random UL delay and sends the delayed pose to the position predictor component after the delay
period has expired. Secondly, the previous UL delay data is sent to the MRNI service by the
RAN. The MRNI service receives this UL delay value and estimates the current UL delay (i.e.,
T̂k,UL); in our scenario, T̂k,UL was estimated using (9). This estimated UL delay is dispatched
upon request to the “NDE-MRNI consumer” application through the Mp1 reference point. This
MEC application forwards the received T̂k,UL to the position predictor component.

T̂k,UL = mean
{
Tk−1,UL,Tk−2,UL, ...,Tk−n,UL

}
(9)

where T̂k,UL represents the estimated UL delay at the current sampling instant k and Tk−n,UL

represents the received UL delay value at the previous nth sampling instant.
Furthermore, at the position predictor component, the previously received T̂k,DL is used to

estimate the current velocities of the AGV. These velocities are estimated by maintaining two
velocity buffers, i.e., vbu f f and ωbu f f at the position predictor component for the linear and an-
gular velocities, respectively. At every sampling instant, these buffers receive two inputs, i.e.,
the velocities (v(t) and ω(t)) sent by the Master PLC controller to the AGV and the previously
received T̂k,DL. In addition, these buffers also store the simulation time (t) at which these two
inputs are received. Henceforth, the AGV velocities at the current sampling instant are estimated
using (10) and (11):

v̂k = vbu f f (T̂k,DL) : R→ R (10)

ω̂k = ωbu f f (T̂k,DL) : R→ R (11)

where v̂k and ω̂k are the estimated linear and angular velocities, respectively. Whereas
vbu f f and ωbu f f are the buffers for the linear and angular velocities, respectively. Furthermore,
vbu f f (T̂k,DL) : R → R and ωbu f f (T̂k,DL) : R → R represent functions to estimate the velocities at
the current sampling instant k, by accessing the velocity buffers with the estimated current DL
delay (i.e., T̂k,DL) as the input. In our case, these buffers implement the following functions to
estimate v̂k and ω̂k respectively:

vbu f f (T̂k,DL) : R→ R = v(t − T̂k,DL) (12)

ωbu f f (T̂k,DL) : R→ R = ω(t − T̂k,DL) (13)

where t is the current simulation time.
Upon receiving the delayed AGV pose information, the position predictor component uses

(i) this delayed pose information (xd, yd, θd), (ii) the estimated UL delay value (T̂k,UL) from (9),
and (iii) the estimated velocity commands (from (10) and (11)) to estimate the current AGV
position using (14). It is important to note that (14) is the equivalent to (7) when all the estimated
values have been substituted correctly. Accordingly, this new estimated AGV position is sent to
the Master PLC vController. This component utilizes this value to compute the AGV velocity
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commands for the next sampling period, and the loop starts all over again. However, it is crucial
to note that these velocity commands sent by the remote controller to the AGV are not applied as-
is by the AGV but rather are limited by the maximum acceleration and deceleration in the AGV.
Additionally, with the NDE-MRNI approach, the AGV only needs to send the pose information
variable. 

x̂k

ŷk

θ̂k

 =
xd

yd

θd

 +

cos(θd + ω̂k ∗ T̂k,UL/2) 0
sin(θd + ω̂k ∗ T̂k,UL/2) 0

0 1


[
v̂k

ω̂k

]
T̂k,UL (14)

where (xd, yd, θd) is the delayed AGV pose, and the rest of the symbols are the same as earlier
defined.

Furthermore, we approximate the size of the messages exchanged between the different com-
ponents presented in Fig. 5, and the results are provided in Table 1. For messages (a), (b), (g),
and (h), the size was approximated in our previous work [10], where we captured the network
packets (utilizing the tcpdump[30] tool) sent from the Master PLC to the AGV and vice versa
leveraging a real-world 5G channel. The size of messages (d), (e), (j), and (k) is approximated by
employing the ETSI MEC sandbox environment [31]. By using the MRNI API service endpoints
[8], we send requests for layer 2 measurements (in this case, network delay) to this sandbox en-
vironment and receive responses. Accordingly, we analyze the sizes of the request and response
messages. The sizes of the remaining messages, i.e., (c), (f), (i), (l), and (m), were duly deduced.

Table 1: Approximate message sizes between the use case components presented in Fig. 5

Message number Headers size (Bytes) Body size (Bytes) Total size (Bytes)
(a) -> (b)
(Master PLC ->
DL channel -> AGV) 42 20 62

(g) -> (h)
(AGV -> UL channel ->
Position predictor) 42 20 62

(d), (j) 358 0 358
(e), (k) 213 1380 1593
(c), (i) <213 <1380 <1593
(f), (l) >213 1380 >1593
(m) 42 20 62

5. EXPERIMENT PREPARATION

This section discusses the assessed use case KPIs, and the additional simulation approaches
used to compare against the NDE-MRNI approach presented in this paper. Besides, the AGV
path trajectories used for the analysis are also presented. It is important to note that the design and
simulations of our experiments were implemented with MATLAB (version 2020b) and Simulink
software [32].

5.1. Evaluated Use Case KPIs

The following KPIs were examined to evaluate the performance of the NDE-MRNI approach:
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5.1.1. Mean Absolute Error (MAE)
This KPI was computed as the mean of the shortest distance between the received AGV

pose information and the desired AGV trajectory. In particular, for each received AGV pose
information, we compute the shortest distance between that point to each of the lines on the
desired AGV trajectory; and the minimum of these distances is the absolute error. In order to
make the best use of space, AGVs must travel as close as possible to the desired AGV trajectory,
i.e., the MAE KPI must be as low as possible. This allows optimizing the routes and the available
space when AGVs share the workspace with other AGVs, manned transport vehicles, or humans.

5.1.2. Time taken (tt)
This KPI is the total time taken by the AGV to complete the path trajectory in seconds(s). It

is computed as:

tt = Tend − Tstart (15)

where Tend is the time when the last AGV pose information variable is sent to the Master PLC,
and Tstart is the time when the first AGV pose variable is sent. In logistics, it is vital to reduce the
time taken KPI, i.e., the time needed to transport assets. If we reduce this KPI, we will transport
more assets in the same period. Thus, smaller values of the time taken KPI provides enormous
profitability and a shorter investment return.

5.1.3. Control Effort (Ce f f )
This KPI is the measure of how much energy the controller expends to move the AGV along

the desired path [33]. We computed this KPI using the controller output (i.e., the angular veloci-
ties output by the controller), and the average control effort was calculated as:

Ce f f =

√
1/(Tend − Tstart) ∗

∫ Tend

Tstart

Ω2
i dt (16)

where Ce f f is the control effort,Ωi is the output angular velocity by the controller at the sampling
instant i in rad/s. Whereas Tend − Tstart is the total time taken by the AGV to traverse the entire
AGV path trajectory in seconds(s). This total time is split into equal sampling instants, and each
sampling instant i has a corresponding output angular velocity. This KPI provides a measurement
of the mechanical components’ degradation speed. If we want to increase the lifecycle of the
AGVs, we need to keep the control effort KPI as low as possible. Furthermore, this KPI also
gives us information on the energy consumption by the AGV, i.e., the bigger the control effort
KPI, the larger the energy consumption by the AGV.

5.2. Additional Simulation Approaches

In our analysis, to evaluate the performance of the NDE-MRNI approach in improving path
tracking performance of a remote-controlled AGV use case, we also considered the following
simulation approaches:
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5.2.1. Baseline approach (NDE-Kalman filter)
At every sampling instant, the AGV calculates the total delay experienced in the loop in the

previous sampling instant (i.e., from the AGV to the remote controller and back to the AGV) on
top of the pose variable. This total delay is also known as the previous round trip time (RTT), is
computed by the AGV as:

τ̂k−1 = Tk−1,Ack − Tk−1,T x (17)

Where τ̂k−1 is the previous RTT, Tk−1,T x is the time the AGV sends the pose information variable,
and Tk−1,Ack is the time the AGV receives a response from the remote controller. Moreover, with
this information about the previous RTT, several approaches have been proposed to estimate the
current RTT. For this article, we focus on one such baseline approach, i.e., the Kalman filter
NDE approach, which has been shown to yield the most promising results compared to the other
baseline NDE approaches [14]. In addition, for these baseline approaches, to estimate the current
UL delay (T̂k,UL) and DL delay (T̂k,DL), as it is not possible to know the contribution of the UL
and DL delays to the RTT, a typical approach is to divide the estimated RTT by 2; which produces
less accurate results compared to the NDE-MRNI approach.

The Kalman filter approach is capable of providing optimal estimates when provided with
noisy input measurements [14]. Thus to employ the Kalman filter approach to estimate the
current RTT, we have to analyze the RTT signal of the 5G channel. To perform this analysis, we
set up several experiments to observe the actual RTT signals of the channel over a real private
5G network. From these tests, we noticed that the RTT signal of the 5G channel is smooth with
some high-frequency components with a shape approaching the Weibull and Gamma probability
distributions. As a result, the RTT signal of the 5G network can be modeled as a noisy signal, and
the Kalman filter can be used to provide optimal RTT estimates [34, 14]. Accordingly, the current
RTT (̂τk) was estimated by utilizing the Kalman filter algorithm implementation in Matlab [35].

Moreover, the Kalman filter parameters were chosen optimally through experiments. The
parameters that yielded the best results for our scenario were selected: the initial guess of the a
posteriori RTT estimate was set to 0 and the initial error covariance to 1. The measurement noise
covariance was fixed to 400, and the process noise covariance was set to 0.0001. It is impor-
tant to note here that the accuracy of the Kalman filter approach depends highly on these filter
parameters; conversely, this is not a concern for the NDE-MRNI approach. Besides, with the
Kalman filter approach, the AGV needs to send another information variable, i.e., the previous
RTT (̂τk−1) on top of the pose variable, in contrast, for the NDE-MRNI approach, the AGV needs
to send only the pose information variable.

Subsequently, this estimated RTT (̂τk) by the Kalman filter approach is used by the position
predictor component to estimate the current UL delay (T̂k,UL) and DL delay ((T̂k,DL)) as follows:

T̂k,DL =
τ̂k

2
, T̂k,UL =

τ̂k

2
(18)

where τ̂k is the estimated RTT at the current sampling instant k. Next, the estimated DL delay
(T̂k,DL) is used to estimate the current linear (̂vk) and angular velocities (ω̂k) using (10) and (11),
respectively. Finally, the estimated T̂k,UL, and velocities (̂vk and ω̂k) are employed to estimate the
current AGV position using (14). Finally, this new estimated pose variable is sent to the “Master
PLC vController” component, which uses it to compute the AGV velocity commands for the next
sampling period. This simulation scenario is the optimal state-of-the-art NDE approach used in
our experiments to compare with the NDE-MRNI approach.
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5.2.2. No network delay (Ideal-No delay)
This simulation scenario is the ideal case with no channel delays between the AGV and

the remote Master PLC vController in the MEC host. This simulation scenario is used as the
benchmark for all the other experiments.

5.2.3. No Network delay estimation (No-NDE)
In this case, there are channel delays (i.e., UL and DL delays) between the AGV and the

remote Master PLC vController; however, there is no network delay estimation carried out at the
MEC host. This scenario is used as the worst-case scenario, i.e., there are network delays, but no
network delay estimation approach is applied at the remote controller end.

5.2.4. Ideal Network delay estimation (NDE-Ideal)
For this setting, there are also channel delays between the AGV and the remote Master PLC

vController in the MEC host. However, in this scenario, the precise network delays (i.e., UL
and DL) experienced in the loop between the AGV and the Master PLC vController are used
to estimate the current pose of the AGV. This setting corresponds to the ideal or best-case NDE
scenario where the delay estimation is accurate at the remote controller end. Nonetheless, these
accurate network delay values are only attainable in simulation scenarios.

5.3. Assessed AGV Path Trajectories

To analyze the path tracking performance of the remote-controlled AGV use case with the
NDE-MRNI approach, we utilized two commonly used AGV path trajectories, i.e., 8-Shape and
the Irregular hexagon shape (Irr-hex-Shape) [14]. These two trajectories were chosen to test
the AGV maneuverability in a wide range of possible movement scenarios, i.e., straight lines
of different lengths, cyclic rotations, curves with variable bending radius, unexpected bends of
varying magnitudes in either direction (i.e., right and left). Besides, the 8-Shape trajectory is
one of the most used trajectories in industry factory settings [10, 36]. Conversely, the Irr-hex-
Shape (one of the many variations of the hexagon path trajectory) has been tested and widely
applied in path planning experimentation due to the hexagon shape being more representative of
natural curves typical of industry settings than square trajectories [14, 37, 38] . These two path
trajectories are presented in Fig. 6a and Fig. 6b, respectively. Moreover, the start and endpoints
of the AGV together with the movement direction have been indicated.

6. RESULTS AND DISCUSSION

This section presents and discusses the results from our experiments, comparing the path
tracking performance of the NDE-MRNI approach with the baseline NDE approach for remote-
controlled AGV use cases. In addition, to model the 5G channel delays, we considered two
probability distributions, i.e., Weibull [39] and Gamma [40] distributions, due to their widespread
use in modeling communication channel delays in remote-controlled systems [41, 42]. Moreover,
from our experiments, the results from the two-channel delay distributions were comparable;
henceforth, we only present the results from the Weibull distribution in this section. Furthermore,
for each distribution, we considered five network loads with mean delay values ranging from
50 ms to 150 ms in steps of 25 ms and standard deviations equal to 20% of the mean values. This
resulted in highly variable delays for each network load. It is crucial to note that the industrial
AGVs considered in these experiments are sensitive to much higher network delay values, i.e.,
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(a) 8-Shape trajectory

(b) Irr-hex-Shape trajectory

Figure 6: Considered AGV path trajectories, i.e., the 8-Shape and the Irr-hex-Shape, respectively

up to delays ≤ 50ms, these AGVs perform acceptably; hence, we begin our tests considering
network delay values ≥ 50 ms. However, some remote-controlled use cases are sensitive to much
lower network delay values. So to cater for such use cases, we have also tested the potency of
our proposed NDE-MRNI approach considering network delay values ≤ 50 ms and these results
are provided in section 6.3. Besides, we set the AGV linear velocity (v) to 1 m/s, the maximum
angular velocity (ω) as 1.3 rad/s, and the controller look-ahead distance parameter to 1.2 m.
These speeds are the standard in industrial applications [43].

In addition, for each of the KPI results presented henceforth, we carried out the simulations
30 times, and at each time, we varied the channel conditions. Thus, we computed the mean value
over the 30 simulations, and these are the results presented in our graphs. Besides, the 95%

xvii



confidence interval of the presented mean value over the 30 values for each KPI is also indicated.
Moreover, to evaluate the NDE-MRNI approach, we carried out two categories of experiments.
On the one hand, we conducted experiments to find the optimal value of n to provide the optimal
estimate of the current delays (i.e., T̂k,UL and T̂k,DL) for the NDE-MRNI approach. On the other
hand, given the most optimal value of n, we simulated the NDE-MRNI approach and compared
its path-tracking improvement for the use case (considering the relevant use case KPIs) against
other simulation approaches, mainly the baseline approach. The results from these two kinds of
tests are presented henceforth.

6.1. Optimal n parameter for the NDE-MRNI approach analysis results

To determine the optimal value of n (i.e., the number of previous delay samples; where
each previous delay sample value is the average delay in the last specified time interval (in our
case, this interval was set to 50ms)) to use in (8) and (9) for the estimation of T̂k,DL and T̂k,UL,
respectively, we performed the following tests:

• For each AGV path trajectory, considering the different delay values for a given channel
distribution, we implemented the NDE-MRNI approach by varying the value of n.

• We considered n = {1, 3, 5, 10, 20}, where each value of n represents the number of previ-
ous delay sample values used to estimate the current delays (i.e., T̂k,UL and T̂k,DL). From
our tests, these are the values of n that yield a noticeable difference in performance from
the previous n value.

• Thirdly, for each value of n, we ran the simulation 30 times and computed the MAE KPI
for each simulation. The results from these tests for each path trajectory are presented in
7a and 7b.

From 7, first, we notice that only results corresponding to 100ms, 125ms and 150ms delay
values have been presented; this is because for delay values < 100ms, for the NDE-MRNI ap-
proach, all values of n give similarly good performance. So, for comparison purposes, we only
present the results for delays ≥ 100ms. On the one hand, for the 8-Shape trajectory, we notice
a slight decrease in the MAE as n increases until n = 10. After n > 10, we do not notice any
further decrease in the MAE KPI. On the other hand, for the Irr-hex-Shape trajectory, we notice
a similar trend, i.e., a decrease in the MAE KPI as n increases, but this time, this decrease is
up to n = 5. In this case, for n ≥ 5, we have very similar performance for the MAE KPI, with
n = 5 and n = 10 giving slightly better results compared to n = 20. These results showed us that
using a higher number of previous delay samples to estimate the current network delay yields
better MAE KPI results; however, after n = 10 samples, there is no noticeable improvement in
the MAE KPI. Consequently, we chose the optimal value of n for both trajectories as 10; thus,
the KPI results presented for the NDE-MRNI approach are based on n = 10.

6.2. KPI results of the NDE-MRNI approach versus the other considered simulation approaches

The obtained KPI results for the NDE-MRNI approach compared to the different simulation
approaches presented in Section 5.2 are presented hereafter:
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(a) 8-Shape trajectory

(b) Irr-hex-Shape trajectory

Figure 7: Number of previous delay samples n used in the NDE-MRNI approach

6.2.1. Mean Absolute Error
The average MAE for each delay value is presented in Fig. 8, where we notice the following:

• Firstly, the MAE increases as the delay values increase, with the no NDE approach giving
the worst results.

• Secondly, we observe lower MAE values with the Kalman filter, NDE-MRNI, and Ideal
NDE approaches, with the latter two giving better reductions in the MAE for delay values
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≥ 100ms.

• Thirdly, the NDE-MRNI approach provides very similar results to the case with ideal NDE.

• Fourthly, the MAE at 50 ms delay is close to the ideal case with no delay. Therefore, we
can conclude that up to mean delays of 50 ms, all approaches give comparable results,
and the MAE is relatively low; hence, the remote-controlled AGV can move without any
problem.

However, as the mean delay values increase to 75 ms, the Kalman filter, NDE-MRNI ap-
proach, and Ideal NDE approaches give similar results and reduce the MAE by at least 6% com-
pared to the case with no NDE. At 100 ms, the NDE-MRNI performs better than the Kalman filter
approach with a net reduction in the MAE of 15% and 16% for the 8-Shape and Irr-hex-Shape
trajectories, respectively.

As the mean delay increases to 125ms, the decrease in the MAE by the NDE-MRNI ap-
proach is much higher, i.e., at least 33% & 28% for the 8-Shape and Irr-hex-Shape trajectories,
respectively, compared to the Kalman filter approach. Finally, at mean delays of 150 ms, this
improvement in the MAE by the NDE-MRNI approach is 59% and 55% for the 8-Shape and
Irr-hex-Shape trajectories, respectively compared to the Kalman filter approach.

6.2.2. Time taken
The average time taken by the AGV at each mean delay value is provided in Fig. 9. From

Fig. 9, we make the following remarks about this KPI:

• The KPI increases with the mean delay value, with the no NDE approach giving the worst
results.

• The mean time taken by the AGV is much less with the Kalman filter, NDE-MRNI ap-
proach, and Ideal NDE approaches, with the latter two giving slightly better results at
delay values ≥ 100 ms.

• The NDE-MRNI approach provides relatively similar results to the Ideal NDE approach.

• Furthermore, at a mean delay of 50 ms, the time taken by the AGV to traverse the path
trajectory is very close to the ideal case with no delay, with all approaches giving similar
results.

Till mean delays of 75 ms, all approaches give similar results. However, as the mean delay
increases to 100 ms, the Kalman filter, NDE-MRNI, and ideal NDE approaches give a slight
improvement in the time taken KPI of at least 1% relative to the no NDE approach. On the
other hand, at mean delays of 125 ms, the NDE-MRNI approach improves the time taken KPI
by at least 1.4% & 1% for the 8-Shape and Irr-hex-Shape trajectories, respectively, relative to the
Kalman filter NDE approach. Lastly, at mean delays of 150 ms, the improvement in this KPI by
the NDE-MRNI approach is more significant than the Kalman filter approach by 6% and 4% for
the 8-Shape and Irr-hex-Shape trajectories, respectively.

6.2.3. Control Effort
The mean control effort KPI is shown in Fig. 10, and we can make the following observations:
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(a) 8-Shape trajectory

(b) Irr-hex-Shape trajectory

Figure 8: Mean Absolute Error of the AGV’s movement when traversing the 8-Shape and Irr-hex-Shape trajectories

• This KPI grows linearly with the mean delay values for the no NDE and Kalman filter
approaches after delays ≥ 100ms.

• On the other hand, till mean delays of 100ms, this KPI is almost constant with the increase
in the mean delays for the NDE-MRNI and the ideal NDE approaches. In addition, these
two approaches give the best and yet comparable results, outperforming the Kalman filter
approach.

• The mean control effort at 50 ms is close to the ideal case, with all approaches providing
almost equivalent results. However, it is essential to note some slight decline in perfor-
mance for the NDE-Kalman filter approach at this delay value compared to the No-NDE
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(a) 8-Shape trajectory

(b) Irr-hex-Shape trajectory

Figure 9: Average time taken by the AGV when traversing the 8-Shape and Irr-hex-Shape trajectories

approach. This is due to the initial guesses of the Kalman filter’s error covariance and RTT
parameters. These initial guesses are utilized to determine the filter outputs at the initial
iteration and are updated in the successive iterations hence the improved performance as
the delay values increase. Nevertheless, our initial guesses are not so far off since the per-
formance decline is just 0.7% and 1.6% for the 8-Shape and the Irr-hex-Shape trajectories
compared to the No-NDE approach.

As the mean delay increases, the KPI improvement by the NDE-MRNI approach relative to
the Kalman filter approach considering the 8-Shape trajectory can be summarized as: (i) 4% at
75 ms, (ii) 9% at 100 ms, (iii) 19% at 125 ms, and (iv) 34% at 150 ms. Conversely, taking into
account the Irr-hex-Shape trajectory, this improvement can be quantified as follows: (i) 5% at

xxii



75 ms, (ii) 9% at 100 ms, (iii) 15% at 125 ms, and (iv) 33% at 150 ms.

(a) 8-Shape trajectory

(b) Irr-hex-Shape trajectory

Figure 10: Average Control effort considering the 8-Shape and Irr-hex-Shape trajectories

6.3. Additional KPI results for the NDE-MRNI approach considering much lower network de-
lays

As seen from the results presented in section 6.2, the remote-controlled AGV use case con-
sidered in this paper is sensitive to much higher network delays, i.e., for delays ≤ 50 ms, the
AGV performs acceptably. However, in this section, we wanted to test the efficacy of the pro-
posed NDE-MRNI approach when applied to use cases that are sensitive to much lower delays,
i.e., delays ≤ 50 ms. To emulate this scenario in our experiments, we increased the speed of the
AGV from 1 m/s to 2.5 m/s; this way, the effect of a slight increase in network delays has a
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higher impact on the path tracking performance of the AGV. Moreover, we employed a genetic
algorithm [44] to find the new optimal controller parameters for each considered path trajectory.
For the 8-Shape trajectory, the maximum angular velocity was tuned to 2.111346 rad/s, whereas
the look-ahead distance was tuned to 1.355904 m. Conversely, for the Irr-hex-Shape, the max-
imum angular velocity was set to 2.284065 rad/s, whereas the look-ahead distance was set to
1.471513 m.

In addition, similar to section 6.2, for each probability distribution, we examined five network
loads with mean delay values varying from 10 ms up to 50 ms in steps of 10 ms and standard
deviations equal to 20% of the mean delay values. This resulted into highly variable delays for
each network load. It is important to note that we did not evaluate average delay values < 10 ms
because, in AGV applications, we would need to go faster than 2.5 m/s to test the impact of such
low delay values. However, these speeds are generally not recommended for such applications
due to safety regulations. Accordingly, the results from these experiments are presented in the
following section.

6.3.1. Mean Absolute Error
From Fig. 11, on the one hand, we observe that even at lower delay values, the proposed

NDE-MRNI approach provides some performance improvement over the No-NDE approach for
delay values ≥ 20 ms. In particular, for the 8-Shape trajectory, this improvement can be quanti-
fied as:(i) 1.1% at 20 ms, (ii) 2.85% at 30 ms, (iii) 4% at 40 ms and (iv) 9% at 50 ms. Whereas,
for the Irr-hex-Shape trajectory, this improvement is slightly higher and can be approximated
as:(i) 4% at 20 ms, (ii) 7% at 30 ms, (iii) 10% at 40 ms and (iv) 9% at 50 ms. On the other hand,
both the proposed NDE-MRNI and NDE-Kalman filter approaches have similar performance
for the 8-Shape trajectory. However, for the Irr-hex-Shape trajectory, the proposed NDE-MRNI
approach provides slight improvements over the NDE-Kalman filter approach for mean delay
values ≥ 30 ms of (i) 2.3% at 30 ms, (ii) 3.5% at 40 ms and (iii) 4% at 50 ms.

6.3.2. Time taken
The average time taken by the AGV in this scenario is provided in Fig. 12, and we can

notice the following: for the 8-Shape trajectory, the improvement by the proposed NDE-MRNI
approach compared to the other approaches is minuscule. Conversely, for the Irr-hex-Shape
trajectory, this improvement compared to the No-NDE approach is more noticeable for mean
delay values ≥ 30 ms, i.e., 1% for 30 ms, 2% for 40 ms and 3% for 50 ms. Besides, the proposed
NDE-MRNI approach performs very similarly to the NDE-Kalman filter approach.

6.3.3. Control Effort
From Fig. 13, we notice that at mean delay values of 10 ms, all approaches give similar per-

formance. Furthermore, for the 8-Shape trajectory, we can observe some minimal performance
improvements over the No-NDE for delay values ≥ 30 ms of: (i) 1% for 30 ms, (ii) 2% for 40 ms
and (iii) 3.4% for 50 ms. On the other hand, for the Irr-hex-Shape, this performance improve-
ment is doubled compared to the 8-Shape trajectory. This improvement can be quantified as: (i)
2% for 20 ms, (ii) 4% for 30 ms, (iii) 5% for 40 ms and (iv) 6% for 50 ms.

Accordingly, the proposed NDE-MRNI approach can also be leveraged for use cases sensitive
to lower network delays and provide some performance improvements, especially regarding the
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(a) 8-Shape trajectory

(b) Irr-hex-Shape trajectory

Figure 11: Mean Absolute Error of the AGV’s movement when traversing the 8-Shape and Irr-hex-Shape trajectories

MAE and Control Effort KPIs. Moreover, even though the proposed NDE-MRNI approach pro-
vides very similar performance to the NDE-Kalman filter approach for such delay values, it is
crucial to note that the proposed NDE-MRNI approach does not require any modification to the
remote-controlled device. In contrast, the latter requires that the remote-controlled device peri-
odically sends the round-trip time variable depending on the use case configuration. Besides, the
accuracy of the NDE-Kalman filter approach depends heavily on the proper choice of the filter
parameters, whereas this is not a concern for the proposed NDE-MRNI approach.
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(a) 8-Shape trajectory

(b) Irr-hex-Shape trajectory

Figure 12: Average time taken by the AGV when traversing the 8-Shape and Irr-hex-Shape trajectories

7. Conclusion

This paper has augmented a remote-controlled AGV use case with the relevant MEC platform
service, i.e., the MRNI service, to provide the radio network delay information (i.e., the NDE-
MRNI approach). Subsequently, we have shown how this radio network delay information can
be leveraged by the considered use case to improve the path tracking performance in the presence
of random delays. Moreover, we have compared this performance improvement against the most
optimal baseline NDE approach considering the relevant use case KPIs. Our results show that
the NDE-MRNI approach outperforms the optimal baseline approach for delays ≥ 75 ms. In
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(a) 8-Shape trajectory

(b) Irr-hex-Shape trajectory

Figure 13: Average Control effort considering the 8-Shape and Irr-hex-Shape trajectories

addition, our experiments indicate that the proposed NDE-MRNI approach can be leveraged by
use cases sensitive to much lower delays, i.e., ≤ 50 ms, and provide performance enhancements
compared to the case without any delay compensation. Besides, our results indicate that, as the
delay values increase, the use case performance deteriorates rapidly without efficient network
delay estimation techniques like the NDE-MRNI approach and subsequent delay compensation
methods at the remote controller end.

In our future work, we plan to test the NDE-MRNI approach with the actual scenario com-
posed of a physical AGV, a MEC framework providing the relevant MEC service and applica-
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tions, and a private MEC-based 5G network. Furthermore, for this paper, only the pose informa-
tion was extracted from the sensor data; we plan to extract more information from the sensor data.
Accordingly, we plan to leverage these data to evaluate how the NDE-MRNI approach can be em-
ployed for obstacle avoidance in the remote-controlled AGV use case. Moreover, we also plan
on exploiting machine Learning algorithms to estimate the network delays in the NDE-MRNI
approach and compare it with the approach presented in this paper. In addition, to evaluate the
applicability of the proposed NDE-MRNI approach for ultra-low latency applications, we plan
to test this approach considering a robotic arms use case.
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