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Abstract—The softwarization of mobile networks enables an
efficient use of resources, by dynamically scaling and re-assigning
them following variations in demand. Given that the activation of
additional servers is not immediate, scaling up resources should
anticipate traffic demands to prevent service disruption. At the
same time, the activation of more servers than strictly necessary
results in a waste of resources, and thus should be avoided. Given
the stringent reliability requirements of 5G applications (up to 6
nines) and the fallible nature of servers, finding the right trade-off
between efficiency and service disruption is particularly critical.
In this paper, we analyze a generic auto-scaling mechanism
for communication services, used to de(activate) servers in a
cluster, based on occupation thresholds. We model the impact
of the activation delay and the finite lifetime of the servers
on performance, in terms of power consumption and failure
probability. Based on this model, we derive an algorithm to
optimally configure the thresholds. Simulation results confirm
the accuracy of the model both under synthetic and realistic
traffic patterns as well as the effectiveness of the configuration
algorithm. We also provide some insights on the best strategy
to support an energy-efficient highly-reliable service: deploying
a few powerful and reliable machines versus deploying many
machines, but less powerful and reliable.

Index Terms—Service virtualization, Resource on Demand,
Reliability, Energy Consumption

I. INTRODUCTION

The next generation of mobile networks will need to accom-
modate a large variety of services with very heterogeneous re-
quirements in terms of performability, involving performance
metrics such as delay or throughput, and dependability at-
tributes such as availability, reliability, or integrity [1], among
other Key Performance Indicators (KPIs) [2]. To efficiently
support such diverse requirements, mobile networks rely on
the network slicing paradigm [3], where different independent
and isolated virtual instances of a network run over the same
physical infrastructure. Each of these network instances is
called network slice and consists of a set of interconnected
software Virtual Network Functions (VNFs) which typically
run over general-purpose servers [4].

To make an efficient use of the resources in a network
slicing setting, these need to be re-assigned dynamically,
scaling out additional physical resources assigned to the VNFs
of a slice when the load increases, and scaling them in when
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the load decreases [5]. As shown in [6], such a dynamic
allocation of resources can enable very high sharing gains,
improving significantly the sustainability of a deployment.
When activating resources for new VNFs, however, these need
to be turned on in advance by anticipating their demands, as
the activation of additional resources, possibly involving the
deployment of new network instances, is not immediate. In
fact, relevant standard specifications by ETSI [7] and 3GPP
[8] recommend such practices.

When designing resource allocation algorithms for 5G/6G
services, dependability requirements can be very stringent,
with e.g. availability levels of 5 nines (99.999%) or more [9],
[10]. In fact, position papers for 6G are already pushing for
9 nines [11]. One example of a service with extreme require-
ments is that of remote driving. In this case, the application
controlling the vehicles is typically deployed at the edge for
latency reasons. This kind of services can be deployed using
the Multi-access Edge Computing (MEC) specifications. To
ensure the proper driving of the cars, we need to ensure that the
MEC server hosting this application has enough resources at
all times. Another example is connected industry. To provide
this service, we need to deploy a virtual network involving
(among others) encryption/decryption functions to provide the
desired security features. The downtime of such functions has
to be reduced below a given threshold to meet the requirements
of industrial applications.

Out of the different attributes of dependability, in this
paper we focus the reliability, defined as the probability of
correct service continuity [1], which is a critical metric for
dependability. To provide the reliability guarantees required
by 5G/6G, we need to make sure that, when a new VNF has
to be deployed, there are resources available to host the VNF
and that the VNF remains up and running throughout the entire
lifetime of the service. While the scaling of resources is a well-
known problem in cloud computing, traditional schemes have
not been devised to meet such extreme levels of reliability.
Indeed, existing scaling algorithms in the literature typically
focus on coarse-grained requirements such as, e.g., response
times, throughput, or cost [12], which are not appropriate to
capture reliability requirements. Furthermore, they typically
ignore the fact that servers are fallible, i.e., they can eventually
crash or go down (even if infrequently).

The impact of server failures can be ignored when the reli-
ability requirements are loose,1 since they yield much smaller

1For instance, for an uptime requirement of 99.9%, we can allow up to 10
min long failure every week.
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failure times. However, they cannot be ignored when pursuing
tighter reliability levels. This is particularly critical with the
recent trend of deploying data centers using small or even nano
servers (e.g., the Raspberry Pi [13]), which originally were not
intended for carrier-grade operation. Although some recent
works propose the use of redundancy to improve reliability
(we discuss them in Section VI), they focus on coarse metrics
(e.g., downtime in the order of seconds) and do not allow to
configure the reliability level required by the service.

To provide the desired reliability levels, the scaling mech-
anism needs to keep a sufficient number of active resources,
both to anticipate traffic demands (some type of fault pre-
vention) and to mitigate the impact of server failures (fault
tolerance). Still, it is important to make sure that no more
resources than needed are turned on. Indeed, if too many
resources are activated unnecessarily, this will result in a waste
of resources. For instance, data centers running VNFs consume
a very substantial amount of energy [14] and significantly
contribute to the electricity bill of network operation, which is
one of the chief concerns of network operators nowadays [15].
In fact, virtualized servers consume even more energy than
physical servers [16]. The challenge when scaling resources,
thus, is to achieve a good trade-off between performance
(activating sufficient resources) and energy consumption (not
activating more resources than needed), with the performance
being characterized by a reliability guarantee in our case.

In this paper, we address the above by analyzing and
optimizing the resource management and activation policies
for a farm composed of fallible servers with non-zero start-
up times, supporting a communication service with a target
reliability level. While our work is motivated by the stringent
reliability requirements in 5G/6G, the analysis and proposed
scheme could also be applied to other scenarios and other
metrics. More specifically, our key contributions are:
• We present an analytical model to characterize the

performance of a horizontal auto-scaling server farm
dedicated to communication services, where servers are
(de)activated following a generic threshold-based policy.
Our analysis captures system performance by modeling
the reliability and energy consumption as a function of
the (de)activation thresholds. In contrast to other most
existing models for auto-scaling, we are the first to
consider the fallibility of the servers.

• We design an algorithm to optimally configure the thresh-
olds, which guarantees that the reliability is above a
given level while minimizing the energy consumption.
This contrasts with other proposals to support reliability,
which are based on heuristics or machine learning and
do not provide any configuration mechanism to meet a
target failure probability.

• We perform an extensive performance evaluation that
confirms the accuracy of the model and the effectiveness
of the configuration algorithm for a wide range of reliabil-
ity values, in contrast to previous works that only consider
coarse metrics. By considering two different deployment
strategies for the server farm, we shed some light on
whether it is better to provide a service with multiple
small machines, or with a few but powerful machines.

The rest of the paper is organized as follows. Section II
formally introduces the system model. Section III derives the
analytical modeling of the system. Section IV presents the
algorithm for its optimal configuration. Section V assesses the
accuracy of the analytical model and the performance of the
configuration algorithm. Section VI reviews the related work.
Finally, we conclude the paper in Section VII.

II. SYSTEM MODEL

We consider a cloud system (e.g., MEC, edge cloud or
central cloud) supporting a communication service with strin-
gent reliability requirements. The system receives requests to
execute one or several tasks with such requirements, e.g.,
deploy a connected industry service or to instantiate a remote
driving slice, involving the execution of their components (i.e.,
tasks) for a given service duration. For instance, such tasks
could be executed as one or more VNFs. The objective is to
ensure that these tasks can be immediately started upon arrival,
and that continuously run during their entire service lifetime.

To run the VNFs, the system has a number of physical
machines (PMs)2. To ensure that VNFs are guaranteed the
required PM resources (CPU, memory), we limit the number
of tasks that can run in a PM. Given the need for a energy-
efficient operation, another objective is to keep the number
of active PMs to the minimum that guarantees the required
reliability. Under these circumstances, service reliability is
challenged by two real-life factors: the non-zero boot up times
of PMs, and their fallibility, discussed next.

In case a task arrives and there are enough resources
available to host it (i.e., at least one PM that is not completely
occupied), we assume that it is immediately served, given that
deploying VNFs over a running PM is very quick (e.g., in the
order of 1 sec [17], [18]). In case there are no sufficient active
PMs, the task is put in a queue to ensure that we do not disrupt
the other tasks, and a new PM is activated to serve this task.
This task will then stay in the queue until either another task
finishes (thus freeing some resources) or the new PM becomes
active (after the corresponding boot up time). We refer to this
as a failure upon arrival. As typical boot up times of servers,
including the so-called power-on self-test [19] can be in the
order of minutes (according to our own measurements detailed
in Section V-A, up to 3 min), such failures will create very
significant disruption and hence we need to ensure that their
probability is very small to provide the desired reliability level.

Since the PMs are fallible, an active PM can crash or
shut down at any point in time. In case it was serving
one or more VNFs, we assume that, as long as there are
enough additional active resources available, these VNFs can
be seamlessly migrated to a different PM without disruption.
Note that existing technologies already support this operation,
e.g., [20], [21] provide the means for restoring the state of a
VNF in a different PM in a very short time; furthermore, for
the case of the stateless operation envisioned in 5G [22], [23]
this migration would be even simpler. In case there are not
enough active PMs, the remaining tasks are placed on hold

2In this paper, we use interchangeably the terms “server” and “physical
machine.”
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until sufficient PMs are activated. This is referred to as failure
during service and again we need to ensure that the probability
that this type of failure occurs is very small.

As the metric for the reliability, we will focus on the
failure probability (Pf ) of a task, this being defined as the
probability that a randomly chosen task is not successfully
served. We consider that a task is successfully served only
if it never suffers from any failure upon arrival nor any
failure during service. To quantify resource consumption, we
will compute the average energy consumed by the farm over
time, which we refer hereafter as the power consumption
(ω) of the servers. Note that following our analytical model
described in the next section, it would be possible to derive
other performance metrics of interest such as, e.g., availability,
mean time to failure, or switch on/off rates.

Our analysis relies on the following assumptions:
• Tasks arrive following a Poisson process at a rate λ, and

session length follows an exponential random variable
with average equal to 1/µ.

• As long as the number of tasks running in a server does
not exceed a given threshold N , the server can provide
all tasks with the required computational resources.

• Boot up times follow an exponentially distributed random
variable of average 1/α, while the time required to shut
down a PM is zero.

• PMs are fallible, i.e., they can crash. We model this
with a lifetime defined as the time since a PM is active
until it crashes. In line with the usual assumptions in the
literature [24]–[26], the lifetime follows an exponential
random variable of average 1/ν.

• Once a server has crashed, it can be immediately acti-
vated, i.e., the repair time is zero. This corresponds to
software failures that are repaired after a reboot.

• Following usual power consumption models [27], we
assume that the power consumed by a server when
deactivated is zero, and when active is given by two
components: one fixed term that does not depend on the
load (i.e., an idle component), and another term that is
proportional to the number of served tasks in that server.

• Tasks can be seamlessly migrated across PMs even right
before a server crash with no service disruption (thanks
to the use of the techniques discussed above) nor extra
energy consumption (due to their sporadic occurrence).

In the performance evaluation, we will also consider more
general settings to show that our model and algorithm also
work when these assumptions do not hold. In what follows,
we present the components and operation of our system, and
then we detail the threshold-based (de)activation policy.

A. System components and operation

The system we analyze in this paper is a server farm
composed of an infrastructure manager (IM), and M PMs to
handle the requests to deploy new VNFs. Following previ-
ous approaches (e.g., [28]–[31]), we assume that the IM is
composed of three building blocks: (1) the load balancer, in
charge of accommodating new tasks arriving at the system, or
holding them until there are enough resources to serve it; (2)

Fig. 1: Server farm with 5 physical machines (PMs), each one
with a capacity of up to N = 4 tasks

the migration manager, responsible for keeping a synchronized
backup of the status of the tasks to support their migration
across PMs; and (3) the PM manager, responsible for powering
on and off the PMs following the resource on demand policy
described next.3 All these blocks are interconnected between
them and with a monitoring platform, in charge of detecting
the health of the overall infrastructure. The IM is always on,
while the PMs can be in one of these states: (1) active, a
state in which they can serve requests; (2) booting up, if
the PM manager decided that more resources are needed; or
(3) stopped (i.e., down), if they crashed or they are not required
to handle the current traffic load.

Fig. 1 depicts a simple example composed of M = 5 PMs,
where each PM can support up to N = 4 tasks, three PMs
are running, one starting up, and one stopped, and there is a
total of 9 tasks at the beginning of the example (represented
as green circles). We next describe a sequence of events,
numbered from (1) to (7) in Fig. 1, to illustrate the system
operation. As we can see, when a new task arrives to the
system (1), the load balancer selects the most appropriate PM
to process it (PM2 in this case) and places it accordingly (2).
Note that our model is independent of the specific algorithm
used to assign tasks to PMs and holds both for an algorithm
that performs load balancing across PMs as well as an algo-
rithm that does not balance the load. Indeed, given our linear
power consumption model (see Sec. III-C) and the assumption
that tasks can be seamlessly migrated across PMs, the resulting
power and failure performance does not change with the way
tasks are assigned to PMs. We acknowledge, however, that
performing load balancing might have some advantages in
terms of fairness among tasks, but this metric falls outside
our scope. Given the change in the load, the algorithm at the
PM manager triggers the booting of PM4 (3). In the meantime,
the monitoring platform alerts (4) about the incipient crash of
PM1 (e.g., memory issues), and triggers the migration of the
four tasks running at this PM (5).

Since PM4 is still booting up, only two out of the four
orphan tasks can be migrated to the two available slots at PM2
and PM3, respectively. As discussed above, this migration is
immediate, thanks to light-weight migration tools [20], [21]

3Note that the first two blocks could be integrated into a single one, but we
prefer to keep this separation like previous approaches, to properly distinguish
between sources of unreliability, as discussed previously.
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Fig. 2: Active servers and thresholds for the resource on
demand policy specified by the equations (1) and (2).

or the use of stateless VNFs [22], [23]. Following this, two
tasks from PM1 are seamlessly migrated to PM2 and PM3
(6), while the third and fourth tasks are migrated from the IM
queue to PM4 after it has completed its boot up (7).

B. Resource on demand policy

The policy followed by the PM manager for the manage-
ment of the resources is as follows. At least one server should
be active at all times (even when the system is empty) to
avoid any delay for arriving tasks. For the rest of the servers,
we employ a threshold-based policy that decides whether to
switch on/off an additional server based on the number of tasks
being served and the number of active servers.

More specifically, we denote by ton
m the number of tasks in

the system that trigger the activation of a m-th PM, and by
toff
m the number of tasks that triggers the deactivation of one

PM when there are m active PMs. For illustrative purposes,
Fig. 2 shows a policy based on the following activation and
deactivation thresholds:

ton
2 = 3, ton

3 = 6, ton
4 = 11, (1)

toff
2 = 1, toff

3 = 3, toff
4 = 8. (2)

In the above example, with one active server the system
activates a second server when there are 3 tasks in the system
(ton
2 = 3); with 2 servers, a third server is activated when there

are 6 tasks (ton
3 = 6), but if there is only one task in the system,

one of the servers is deactivated (toff
2 = 1); and so on. Prior

to the actual server deactivation, the PM manager coordinates
with the migration manager to seamlessly migrate the tasks
from the server to be deactivated (if any) to a different server.

In general, the activation thresholds should satisfy ton
m+1 ≥

ton
m, and the deactivation threshold for m servers should be

smaller than its activation threshold, i.e., toff
m < ton

m. While
meeting these constraints, the use of thresholds enables a large
variety of policies, such as, e.g.,
• An always on policy, with ton

m = 0 and toff
m = −1.

• A green policy, where a new server is activated only when
the currently active servers are completely loaded, i.e.,
ton
m = (m − 1)N , and a server is deactivated as soon as

possible, i.e., toff
m = (m − 1)N − 1. For instance, with

N = 4 tasks/server, a third server would be activated
only when there are 8 tasks in the system, and deactivated
when the number of tasks falls to 7.

• A policy that activates and deactivates servers based on
relative loads, e.g., an 80-70 policy would activate an
additional server when the 80% capacity is reached (i.e.,
ton
m = 0.8 (m − 1)N ) and deactivate a server when the

occupation is below 70% (i.e., toff
m = 0.7 mN ).

Variable Description

M Number of physical machines (PMs)
N Capacity of one machine
C Capacity of the server farm
λ Task arrival rate
1/µ Session length
ρ System load
1/α PM boot up time
1/ν PM lifetime
ton
m # tasks to activate an mth server
toff
m # tasks to deactivate one of the m servers
ω Power consumed by the server farm
Pidle Power consumption of one PM when idle
Pload Load-proportional power consumption term
Pf Failure probability
Tf Target failure probability
(i, j) State with i tasks and j servers

TABLE I: Main variables used throughout the paper.

In the following, we first characterize the performance of
a system operated with a policy based on activation and
deactivation thresholds, and then derive the optimal configu-
ration that ensures that the failure probability is below a given
threshold, while minimizing the power consumption.

III. SYSTEM ANALYSIS

The system described above can be modeled with a
continuous-time Markov chain with states (i, j), where i
represents the total number of tasks in the system, and j the
number of active servers available to serve tasks. The total
number of rows in the Markov chain is given by M+1, where
the first row represents the cases with no available servers,
while the rest of the rows correspond to the number of active
servers. The columns account for the number of tasks, which
is unbounded.

Fig. 3 illustrates the case of a system with M = 3 servers,
where each server can serve up to N = 2 tasks, with activation
thresholds ton

2 = 2 and ton
3 = 4, and deactivation thresholds

toff
2 = 0 and toff

3 = 2. One example of a realization of
the Markov chain, highlighted in light gray in the figure,
would be the following: the initial state with an empty system
corresponds to the (0,1) state, and then one arrival (at a rate
λ) results in state (1,1), while another arrival leads to (2,1).
Since now the number of tasks is equal to ton

2 , a novel server
is activated (note the α rate), that would lead to state (2,2).
From this state, a departure of any of the two tasks (hence
the 2µ rate) leads to state (1,2), and the finalization of the last
task leads (0,1), since the deactivation time of a server is zero.

In general, in a given state (i, j) there can be up to four
possible transitions:
• A task arrives, at a rate λ.
• A task departs, at a rate given by µ times the number of

tasks being served. This number is given by the minimum
of the current capacity jN and the number of tasks in the
system i.

• A server crashes, at a rate given by ν times the number
of active servers j.

• A server finishes its booting up, at a rate α times the
number of servers that are in the setup phase, which
depends on the activation thresholds {ton

m}.
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Fig. 3: Markov chain for a system with M = 3, N = 2, and thresholds ton
2 = 2, ton

3 = 4, toff
2 = 0, and toff

3 = 2. States
corresponding to the example described in Section III are highlighted in light gray.

The above transition rates are defined by the generation (or
transition) matrix Q. In the next section, we specify how to
compute this matrix.

A. Computation of the generation matrix

The structure of the system corresponds to that of a quasi-
birth-death process (QBD) [32]. QBDs are a generalization
of the birth-death process, where transitions are allowed only
between neighboring states, and the transition matrix has a
tridiagonal block structure. Given a state (i, j), i is the level
of the state, which in our case corresponds to the number
of tasks in the system, and j is the inter-level state or phase,
which in our case corresponds to the number of active servers.

In general, in a QBD there is a finite number of initial
levels I for which the block transition matrices are not
necessarily identical, while for the rest of the (possibly infinite)
levels, the block matrices are the same (these are called the
repeating levels). However, unlike typical QBDs, in our case
the number of phases in each initial level is not constant, since
the maximum number of servers that could be active, denoted
as A(i), depends on the number of tasks i and the deactivation
thresholds {toff

m} as follows

A(i) =


1 if i ≤ toff

2 ,

m if toff
m < i ≤ toff

m+1,

M if i > toff
M .

(3)

With this, the state space S of our system is given by

S = {(i, j) | 0 ≤ i, 0 ≤ j ≤ A(i)}. (4)

Eq. (5) illustrates the transition matrix Q, which contains
the matrix B for the initial levels. The repeating levels
correspond to the cases where all servers are active or booting
up and the number of tasks is greater than or equal to the
capacity of the system (see Fig. 3); while the number of initial
levels correspond to the case when some servers are neither

active nor booting up or when the number of tasks is lower
than the capacity of the system; thus, I = max(N ·M, ton

M ).
In what follows, we address the computation of the different

blocks of the matrix Q. We first describe how to compute the
Bi,j blocks of the B matrix, and then the Ai blocks for the
repeating levels.

1) Computation of the Bi,i matrices: These square matrices
correspond to the transitions within the same level, when there
is no change in the number of tasks in the system but only
in the number of servers that are available, which depends on
the booting up and crashing rates (α and ν, respectively). We
have the three following cases.

Cases i ≤ toff
2 : These are transitions across levels with up

to one active server. The transition matrix is the 2× 2 matrix

Bi,i =

[
− α
ν −

]
. (6)

Note that the above matrix does not show the diagonal
elements, as they will be computed along with the rest of
the diagonal elements of Q in Section III-A5.

Cases toff
m < i ≤ toff

m+1: The transition matrix is a
tridiagonal matrix of size (m+ 1)× (m+ 1) given by

Bi,i =

− ai,0 0

ν − ai,1

2ν
. . . . . .
. . . . . . ai,m−1

0 mν −



. (7)

where ai,j represents the activation rate when there are i tasks
and j active servers. To compute ai,j , we proceed as follows.
Let S(i) represent the minimum number of servers that should
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Q =

B00 B01 0 0 . . . 0

B10 B11 B12 0 . . . 0

0 B21 B22 B23 . . . 0

...
...

...
...

. . . . . .

0 . . . . . . BI−2,I−3 BI−2,I−2 BI−2,I−1 0

0 . . . . . . 0 BI−1,I−2 BI−1,I−1 A0 0

0 . . . . . . 0 0 A2 A1 A0 0 . . .

...
...

...
...

. . . . . .





B: matrix for the initial levels
. (5)

be active when there are i tasks in the system. This is given
by

S(i) =


1 if i < ton

2 ,

m if ton
m ≤ i < ton

m+1,

M if i ≥ ton
M .

(8)

Then, ai,j can be computed by subtracting j from S(i), i.e.
the number of servers being boot up. Thus,

ai,j = α ·max{(S(i)− j), 0}. (9)

Cases i > toff
M : This is special case of the previous one

with m = M , so we can use the same expression used there
to compute Bi,i.

2) Computation of the Bi,i+1 matrices: In these transitions
the number of tasks in the system increases. The matrices can
be either square or rectangular, depending on the level: in some
cases the number of phases does not vary (e.g., 2nd and 3rd
level in Fig. 3) while in others it increases by one (first level
in the figure).

Cases i < toff
2 : The transition matrix Bi,i+1 is a diagonal

matrix with all diagonal elements equal to λ, i.e. Bi,i+1 =
λ× I2, where In is the identity matrix of size n.

Case i = toff
2 : This case corresponds to the transitions

from a level with 2 phases to a level with 3 phases. The matrix
Bi,i+1 is a 2× 3 matrix formed by the column concatenation
of the matrix λ× I2 and a vector of size 2 with all zeros.

Cases toff
m < i < toff

m+1: These cases correspond to
transitions between levels with the same number of phases
m+1, leading to the the transition matrix Bi,i+1 = λ×Im+1.

Cases i = toff
m: Here the transitions are from a level with

m states to a level with m+1 states. This leads to a rectangular
matrix Bi,i+1 of size m × (m + 1) formed by the column
concatenation of the matrix λ × Im and a vector of size m
with all zeros.

Cases i > toff
M : When the number of servers that can be

active is M , the number of phases is M +1 and the transition
matrix is Bi,i+1 = λ× IM+1.

3) Computation of the Bi,i−1 matrices: In these cases the
number of tasks in the system decreases, i.e., a task was served.
The transition rates depend on the number of active servers
and the number of tasks that are being served. Let di,j denote

the departure rate with i tasks and j active servers, which can
be expressed as

di,j = µ ·min{i, jN} (10)

where the min takes into account the cases when the number
of tasks in the system i exceeds the capacity with the current
numbers of active servers j, which is jN . Like before, we
divide the computation of Bi+1,i in a number of cases.

Cases i < toff
2 + 1: These are transitions across levels

with one active server. The transition matrix is a 2×2 diagonal
matrix with diagonal elements given by the vector [di,0, di,1].

Case i = toff
2 +1: These transitions correspond to the case

when the second server is deactivated. The transition matrix, of
size 3×2, is formed by the row concatenation of the transition
matrix given in the previous case and a row vector of size 2
with all its elements zero except the last one, which is di,2.

Cases toff
m + 1 < i < toff

m+1 + 1: In this case, Bi+1,i is
a diagonal matrix of size (m + 1) × (m + 1) with diagonal
elements given by the vector [di,0, di,1, . . . di,m].

Cases i = toff
m+1 + 1: Similarly to the case i = toff

2 +
1 discussed above, here the matrix is a rectangular diagonal
matrix of (m + 2) × (m + 1) elements, formed by the row
concatenation of the transition matrix of the previous case and
a row vector of size m + 2 with all its elements zero except
the last one, which is di,m+1.

Cases i > toff
M + 1: In this case the transition matrix is

a diagonal matrix of size (M + 1) × (M + 1) with diagonal
elements given by the vector [di,0, di,1, . . . di,M ].

4) Computation of the A matrices:
Matrix A1: This corresponds to the transition rates across

phases of the same repeating level. The transition matrix
is a tridiagonal matrix of size (M + 1) × (M + 1) with
the upper diagonal being [Mα, (M − 1)α, . . . , α], the lower
diagonal [ν, 2ν, . . . ,Mν], and the main diagonal computed in
Section III-A5.

Matrix A0: This corresponds to the transitions from a
given repeating level to the next one. It is a square matrix of
size (M + 1)× (M + 1) given by λ× IM+1.

Matrix A2: This matrix of size (M + 1) × (M + 1)
captures the transitions from a repeating level to the previous
one. Given that all servers are completely occupied (each
one serving N tasks), A2 is a diagonal matrix with diagonal
elements given by the vector [0, Nµ, 2Nµ, . . . ,MNµ].
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5) Computation of the diagonal elements: Once we have
computed all the off-diagonal elements of Q, we can compute
the diagonal elements by applying the property that all the
elements of each row of Q have to sum zero.

Cases i ≤ toff
2 :

bi,j =

{
−α− λ if j = 0,

−ν − λ− di,1 if j = 1.
(11)

Cases toff
m < i ≤ toff

m+1:

bi,j =

{
−ai,j − jν − λ− di,j if 0 ≤ j < m,

−mν − λ− di,m, if j = m.
(12)

Cases i > toff
M :

bi,j =

{
−ai,j − jν − λ− di,j if 0 ≤ j < M,

−Mν − λ− di,M if j =M.
(13)

As for the diagonal elements bj of the A1 matrix, we have

bj = −(M − j)α− jν − λ− jµN. (14)

B. Computation of the steady-state distribution

Given the transition matrix B for the initial levels and the
transition matrices A0, A1 and A2 for the repeating levels,
the computation of the steady-state probabilities πi,j for each
state (i, j) is a well-known procedure (see e.g. [32]) that can
be applied as long as the system is stable.

As demonstrated in the Appendix, the stability condition
depends on the system load ρ, defined as the ratio between
the input rate and the maximum service rate, i.e.,

ρ ≡ λ

NMµ
<

α

ν + α
. (15)

C. Computation of the performance metrics

We next address how to compute the performance metrics
we consider in this paper, namely, the power consumption and
the failure probability.

1) Power consumption: In line with traditional power con-
sumption models in the literature [14], [33], we characterize
the power consumption behavior of a single PM with the
following two terms: the idle power consumption Pidle and
a term that is proportional to the utilization Pload (we do
not consider the power consumption of the IM as this is the
same throughout all comparisons). Based on these, the average
energy consumed by the PMs can be computed by weighting
the stationary probability of each state by its associated power
consumed, i.e.,

ω =
∑

(i,j)∈S

πi,jj

(
Pidle + Pload

min(i, jN)

jN

)
, (16)

which can be rewritten as

ω =
∑

(i,j)∈S

πi,j

(
jPidle +min(i, jN)

Pload
N

)
. (17)

where the term Pload/N can be understood as the energy cost
associated with a single request.

2) Failure probability: To obtain the failure probability Pf ,
we first compute the following two probabilities:
• Pwait, defined as the probability that a task has to wait

upon arrival.
• Pint, defined as the probability that a task is interrupted

during service because of a server crash.
Given that we target small values of Pf , we assume that

the above events are mutually exclusive (i.e., we neglect the
probability that a task has to wait and is interrupted). With
this approximation, Pf can be computed as:

Pf = Pwait + Pint. (18)

Furthermore, note that we also make the worst-case ap-
proximation that any task that goes into the queue always
yields a failure, even if there is a small chance that this task
remains in the queue for a short time and hence does not cause
a significant disruption. Our performance evaluation results
confirm the accuracy of this approximation.

Computation of Pwait: A task has to wait when it arrives
to the system when there are no free resources. Because of the
PASTA (Poisson Arrivals See Time Averages) property, this is
given by

Pwait =
∑

(i,j)∈S

1(i ≥ jN)πi,j , (19)

where 1(i ≥ jN) is an indicator function which is equal to
1 when i ≥ jN , i.e., when the number of tasks i is equal or
higher than the available capacity, and zero otherwise.

Computation of Pint: The probability that a task is inter-
rupted during service can be computed as the ratio between
the average number of tasks that are disrupted per time unit,
which we denote as γ, over the average arrival rate λ:

Pint =
γ

λ
. (20)

We can compute γ as

γ =
∑

(i,j)∈S

πi,j jν F
r
i,j , (21)

where jν is the server crash rate in the (i, j) state, and
F ri,j denotes the expected number of running tasks that are
disrupted upon a server crash. F ri,j can be computed as
the difference between the number of running tasks and the
capacity of the system right after the failure, i.e., with j − 1
active servers,

F ri,j = min(max(i− (j − 1)N, 0), N), (22)

where the max operator prevents negative numbers in case
no task is affected (because there is enough available capacity
with j − 1 servers), and the min operator limits the effect of
a failure to the maximum capacity of a single server.

IV. OPTIMAL CONFIGURATION

In what follows, we address the optimal configuration
of the activation and deactivation vectors {ton

m} and {toff
m},

respectively. The objective is to obtain the configuration that
minimizes the power consumed ω while guaranteeing that
the failure probability Pf is smaller than a target failure
probability Tf .
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A. Problem formulation

The optimization problem can be formulated as

min
{ton

m},{toff
m}

ω, (23a)

subject to Pf ≤ Tf . (23b)

Finding the exact solution to the above optimization prob-
lem in reasonable time would be infeasible due to the large size
of the configuration space and the combinatorial nature of the
problem. Hence, in what follows we rely on a approximations
to efficiently compute the threshold configuration.

Following the power consumption model, it is reasonable to
assume that the most efficient configuration has the activation
threshold for the m-th server right after the deactivation
threshold for this additional server, i.e., toff

m = ton
m − 1. The

rationale for this choice is that, if having m servers active
is sufficient to keep the desired failure probability, we would
not want to keep more servers active when the number of
running tasks goes below i. For the sake of readability, in what
follows we will simplify notation and refer to ton

m as tm, i.e.,
tm ≡ ton

m. Next, we first present two approximate analysis for
the computation of ω and Pf , respectively, and then propose
an algorithm to solve the optimization problem.

B. Approximation to compute the power consumption
We make the approximation that, as far as power con-

sumption is concerned, the server crash probability can be
neglected and the activation time is very small. With this
approximation, the system behaves as an M/M/C queueing
model with C = MN , and therefore it is straightforward to
compute the steady-state distribution vector {pi}, where pi
denotes the probability of having i tasks.

To compute the power consumption, we consider the follow-
ing two terms, one associated with the idle power consumption
Pidle and one corresponding to the load term Pload:

ω = ωidle + ωload. (24)

The m-th server will be on whenever the number of running
tasks is equal to or above tm, so its contribution to the idle
power consumption can be expressed as

ωidlem,tm =

∞∑
i=tm

piPidle, (25)

and therefore

ωidle =

M∑
m=1

ωidlem,tm . (26)

To compute ωload, we denote with Preq = Pload/N the
power consumed by single task (see (17)), and consider the
aggregate consumption resulting from all running tasks up to
the total system capacity C, which leads to

ωload =

∞∑
i=1

pimin(i, C)Preq. (27)

With the above, the overall power consumed is given by

ω =

M∑
m=1

ωidlem,tm +

∞∑
i=1

pimin(i, C)Preq. (28)

Note that the second summation in the above expression is
independent of the setting of {tm} and plays the role of a
constant; thus, when computing the optimal configuration we
only need to take into account the first summation.

C. Approximation to compute the failure probability

The failure probability can be computed as follows

Pf = Pα + Pν , (29)

where Pα and Pν are the probabilities of a task being affected
by the boot up delay triggered by exceeding an activation
threshold and a server crash, respectively.

1) Computation of Pα: The probability that a task is
affected by a boot up delay can be expressed as the ratio
between the rate of tasks affected (i.e., the average number
of affected tasks per unit time), denoted as δ, over the arrival
rate λ:

Pα =
δ

λ
. (30)

To compute δ, we leverage the steady-state probability
vector {pi} assuming an M/M/C system, and focus on the
states right before the activation thresholds {tm}, each one
with probability ptm−1. Under such states, if there is a new
arrival, the activation of a new server is triggered, leading to
a rate for the boot up of the m-th server given by ptm−1λ. If
we denote by F δm the average number of tasks affected during
the boot up of the m-th server, this leads to

δ =

M∑
j=1

ptm−1λF
δ
m. (31)

To compute F δm, we focus on the behavior of the system
during the boot up of the m-th server as a function of the
threshold tm, assuming that the rest of thresholds are separated
by N . Note that this assumption is needed to decouple the
effect of the thresholds other that tm, since we assume that
the impact of each threshold in the power consumption and
the failure probability is independent of the rest of thresholds.
With this, the system can be modeled with a continuous-
time Markov chain similar to the one depicted in Fig. 3, but
with several absorbing states corresponding to (1) the case
when either the activation of the m-th server has finished
(a downward transition at a rate α happened), and (2) the
activation has been canceled because enough tasks have left
the system (no downward transition is possible anymore). We
illustrate this chain in Fig. 4 for the same system as in Fig. 3,
assuming as initial state (2,1), i.e., for t2 = 2. The absorbing
states are those corresponding to either the activation of a
server, i.e., (2,2), (3,2), etc., or the cancel of the activation
after a task departure, i.e., (1,1).

We denote the matrix corresponding to this chain as Qm,
which is obtained from Q by removing all the rows/columns
corresponding to transitions from/to states where
• the number of servers is higher or equal to m (i. e., the
m-th server has booted up), or

• there are not enough tasks to activate the m-th server
anymore
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Fig. 4: Markov chain for the computation of F δm for the same
system as in Fig. 3. The initial state is (2,1) and the absorbing
states are highlighted in light gray.

With the above, we can compute the expected time that the
Markov chain spends in the non-absorbing states as

LmQm = −πm(0), (32)

where Lm is an infinite-length vector restricted to the non-
absorbing states considered in the evaluation, where each
position corresponds to the expected time the Markov chain
spends in a non-absorbing state prior to absorption, and the
vector πm(0) corresponds to the initial state probabilities of
the Markov chain (in our case, all the elements are zero except
the one corresponding to the state (tm,m− 1), which is 1).
Equation (32) is a system of equations that can be solved
numerically.

During the boot up of the m-th server, there are two sources
of failure: newly arriving tasks that have to wait, and running
tasks that must be moved to the queue because a server crash
happened.

Thus, we can express F δm as

F δm = F δ,nm + F δ,rm , (33)

where F δ,nm is the average number of tasks that cannot be
served immediately upon arrival, and F δ,rm is the average
number of tasks affected by a server crash. F δ,nm can be
computed as the arrival rate times the average time that the
chain spends on states with all active servers full in the
absorbing Markov chain, i.e.,

F δ,nm = λ
∑

(i,j)∈S

1(i ≥ jN)Li,j , (34)

where Li,j are the different elements of Lm. F δ,rm can be
computed as the average time spent in each state in the
absorbing Markov chain, times the server crash rate in that
state, times the average number of tasks affected by a server
crash in that state, i.e.,

F δ,rm =
∑

(i,j)∈S

Li,j jν F
r
i,j , (35)

where the term F ri,j is given by (22).

2) Computation of Pν: The computation of the failures
triggered by a server crash can be computed by

Pν =

t2−1∑
i=0

piP
ν
i,1 +

t3−1∑
i=t2

piP
ν
i,2 + . . .+

∞∑
i=tM

piP
ν
i,M , (36)

where P νi,m is the probability that a task is affected by a server
crash when there are i tasks in the system and m active servers.

Since our optimization algorithm needs to decouple the
effect resulting from each threshold, we want that each of
the terms in the above sum depends on one threshold only. To
this end, we make the following approximation:

Pν ≈
t2−1∑
i=0

piP
ν
i,1 +

t3−1∑
i=t3−N

piP
ν
i,2 + . . .

+

tM−1∑
tM−N

piP
ν
i,M−1 +

∞∑
i=tM

piP
ν
i,M . (37)

The probability P νi,m can be computed as the ratio between
the rate at which tasks are affected by a server crash over the
arrival rate λ:

P νi,m =
mνF νi,m

λ
, (38)

where mν represents the rate at which a server crashes when
there are m active servers, and F νi,m represents the average
number of tasks affected by a server crash when there were i
tasks in the system and m active servers.

A server crash might trigger three types of failures: (1) run-
ning tasks that are moved to the queue; (2) newly arriving
tasks that cannot be immediately served because no resources
are yet available; and (3) running tasks that are moved to the
queue because of additional server crashes during the booting
up of the first server crash. By denoting the average number
of these tasks as F ν,qi,m, F ν,ni,m , and F ν,ri,m, respectively, we have

F νi,m = F ν,qi,m + F ν,ni,m + F ν,ri,m. (39)

F ν,qi,m can be computed as the difference between the number
of running tasks and the capacity of the system right after the
failure (i.e., with m−1 active servers), which is given by (22).
To compute F ν,ni,m and F ν,ri,m, we proceed as in the boot up delay
case (Section IV-C1) but with all the elements of the initial
probability vector equal to 0, except for the one corresponding
to the (i,m− 1) state which is 1.

3) Failure probability in terms of {tm}: By substituting the
expressions for Pα and Pν and into (29), we obtain

Pf =

M∑
m=1

ptm−1F
δ
m +

t2−1∑
i=0

piP
ν
i,1 +

t3−1∑
i=t3−N

piP
ν
i,2 + . . .

+

tM−1∑
i=tM−N

piP
ν
i,M−1 +

∞∑
i=tM

piP
ν
i,M , (40)

which can be re-arranged as follows

Pf =

M∑
m=2

P fm,tm , (41)

where the term P fm,tm is given by

P fm,tm = ptm−1F
δ
m + P f,νm,tm , (42)
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with

P f,νm,tm =



tm−1∑
i=0

piP
ν
i,1 for m = 2,

tm−1∑
i=tm−N

piP
ν
i,m−1 for m = 3, . . . ,M − 1,

tM−1∑
tM−N

piP
ν
i,M−1 +

∞∑
i=tM

piP
ν
i,M for m =M.

(43)
With the above, we have a number of components such

that each one is associated with one activation threshold, and
independent from the other thresholds. This is the basis of the
algorithm below to select the optimal configuration of each
threshold.

D. Algorithm to compute the optimal thresholds

With the above approximations, we can re-formulate our
optimization problem as follows. Let xm,k = 1 be a binary
variable indicating if the threshold on the m-th server is k (for
instance, x2,5 = 1 indicates that t2 = 5). LetMm be the set of
feasible values of tm, which goes from 0 to N(m− 1). Then,
the optimization problem can be formulated as the following
multiple-choice knapsack problem (MCKP):

minimize
{xm,k}

M∑
m=2

∑
k∈Mm

xm,kω
idle
m,k, (44a)

subject to
M∑
m=2

∑
k∈Mm

xm,kP
f
m,k ≤ Tf , (44b)∑

k∈Mm

xm,k = 1, ∀m = 2, . . . ,M, (44c)

xm,k ∈ {0, 1} ∀m = 2, . . . ,M, k ∈Mm.
(44d)

In the above problem, the objective is to minimize the power
consumption (44a) (more specifically, the first term of the
overall power consumption given by (28)), while guaranteeing
that the failure probability is below a given threshold (44b).
The restriction (44c) ensures that only one value is chosen
for each threshold tj . The MCKP is a well-known problem
for which exists fully polynomial-time approximation scheme
(FPTAS) algorithms. For instance, the algorithm in [34] ob-
tains a 4/5-bounded solution in O(n logm) time, with n being
the total number of items (in our case, n < N(M − 1)) and
m being the number of multiple-choice classes (in our case,
m =M − 1).

As the optimization is based on a number of simplifying
assumptions, it could possibly happen that the solution results
in a failure probability Pf slightly different to the target Tf : if
it is higher than the target, we should reduce it by decreasing
some thresholds; if it is lower than the target, there might
be room for energy savings by increasing some thresholds.
Additionally, it could also happen that some thresholds do not
satisfy the requirement that tm ≥ tm′ when m > m′. To
refine the solution of the optimization problem, we follow the

post-optimization procedure described in Algorithm 1. This
procedure works as follows. First, if for any m,m′ such
that m′ > m we have that t′m < tm, then we swap the
values of these thresholds. Next, we sort the thresholds tm in
decreasing order of their corresponding values of P fm,tm . Then,
we loop through them (lines 3–19): if the failure probability
Pf obtained with the model is higher than its target value Tf
(line 4), we decrease the corresponding threshold tm as long
as Pf > Tf and tm > 0; otherwise, if the Pf is smaller
than Tf (the else in line 9), there is room for energy saving
by increasing the threshold: this is done until the maximum
value is reached (tm < mN , line 10) as long as the condition
Pf > Tf is not met (line 13). In this case, we decrease
the threshold to fix the last increment and move to the next
threshold.

Algorithm 1: Post-optimization tuning
input : Initial solution {tm} to the optimization (44)
output: Fine-tuned solution {tm}∗

1 Swap(tm, t′m) for any m,m′ such that m > m′ and
tm < tm′ ;

2 Compute Pf with {tm} using the model (18);
3 Sort {tm} in decreasing order of P fm,tm ;
4 for tm in sorted {tm} do
5 if Pf > Tf then
6 while tm > 0 and Pf > Tf do
7 tm ← tm − 1;
8 Re-compute Pf ;
9 end

10 else
11 while tm < mN do
12 tm ← tm + 1;
13 Re-compute Pf ;
14 if Pf > Tf then
15 tm ← tm − 1;
16 Re-compute Pf ;
17 end
18 end
19 end
20 end

V. PERFORMANCE EVALUATION

Throughout our performance evaluation we will compare
two different deployments, namely, one consisting of many
affordable nano computers, and one consisting of a few more
powerful servers. This will serve to validate our performance
evaluation and optimal configuration algorithm in a variety
of scenarios, and to shed some light on whether deployments
consisting of general-purpose hardware can provide similar
performance to those consisting of high-performing hardware.

Throughout most of this section, the performance evaluation
will consist of a comparison between results obtained from
the analytical model and those extracted from simulations.
Results from the analytical model are obtained using Matlab
Release 2020b, while simulation results are obtained from
a discrete event simulator written in C++. To assess the
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accuracy of the model under realistic traffic conditions, we
also evaluate its performance using real traces in Sec. V-G.
All these computations were executed on a server with an Intel
Core i7 980x Extreme edition CPU with 6 cores, 12 threads,
using its base frequency of 3.33GHz and 24 GB of RAM.

A. System parameters

In the following, we discuss the quantitative figures con-
sidered during the performance evaluation, but we also have
confirmed the accuracy of the analytical model and opti-
mization algorithm for other numerical figures. Following the
usual approaches in the literature (e.g., [35], [36]), we collect
several parameters from previous studies, and make reasonable
assumptions for those that are not available (as reported in
[25], data of this type is typically vendor-confidential and not
available for publication).

We assume that tasks arrive following a Poisson process
at a rate λ, which we will vary in our experiments, and that
service times follow an exponential random variable with an
average equal to 1/µ = 1 hour. The two deployments we
consider are described in Table II, each one supporting up to
M × N = 256 simultaneous tasks (during our performance
evaluation we also analyze smaller and larger deployments).

Parameter Rack servers Nano servers

M 8 servers 64 servers
N 32 tasks/server 4 tasks/server
1/µ 1 hour 1 hour
1/α 3 min 20 sec
1/ν 32 days 8 days
Pidle 150 W 4.6 W
Pload 120 W 3.0 W

TABLE II: Deployments considered throughout our perfor-
mance evaluation

Deployment 1: Rack servers. This deployment is com-
posed of N = 8 servers, each one modeled from a Dell Power
Edge server equipped with 32 GB of memory and supporting
M = 32 tasks per server. Following the Power Consumption
Database (TPCDB),4 a server consumes Pmax = 270 W
at its peak load and Pidle= 150 W while in idle (note that
these numbers are in line with those of the least consuming
servers analyzed in [14]). Assuming that a server reaches its
peak power consumption when fully loaded, we can compute
the proportional term as Pload = Pmax − Pidle = 120 W.
According to our own measurements, a server boots in 3 min,
while following [37], we assume that the mean time to failure
(MTTF) of a server is 768 h (i.e., 32 days).

Deployment 2: Nano servers. This deployment is com-
posed of N = 64 nano servers, which we modeled from a
Raspberry Pi (RPi) 4b with 4 GB of memory, each one sup-
porting up to M = 4 simultaneous tasks. Following TPCDB,5

each nano server consumes 4.6 W while in idle and 7.6 W
at the highest load level. According to our measurements, an
RPi boots in approximately 20 sec. Nano servers are typically
much cheaper and less reliable than carrier-grade servers,

4http://www.tpcdb.com/product.php?id=2325
5http://www.tpcdb.com/product.php?id=4417

which are typically designed with redundant components.
Based on this, we assume that their reliability is one-fourth
of that of a rack server, i.e., 8 days. While this assumption
is somehow arbitrarily as there is no data available on the
reliability of nano servers, we believe that it serves to capture
the trend of using this type of server. Note also that our
contribution is not affected by the specific parametrization
that we use and one could use our model to evaluate the
performance of any other parametrization.

B. Model validation

We start our performance evaluation by comparing the
results from our analytical model to those obtained via sim-
ulations. To this aim, we analyze the performance of the
two deployments for three different configurations of the
thresholds:
• Green configuration: a novel server is powered on only

if all the active servers are completely occupied, and
deactivated the moment the capacity for N+1 additional
tasks is available (i.e., the capacity of one server plus
one task). This would correspond to the least consuming
scaling policy, and the one that should provide the highest
failure probability.

• Red configuration: a novel server is powered on when
95% of the current capacity is reached, and deactivated
when, without one server, the occupation would be 85%
or less. This configuration should provide a smaller
failure probability than the green one, but a higher power
consumption.

• Yellow configuration: a novel server is powered on when
the occupation is equal to or above 95%, and powered
off when it would fall below 95% without a server. The
performance of this configuration should fall between the
two cases considered above.

We plot the failure probability versus the arrival rate for
these three configurations and the two considered deployments
in Fig. 5, where we use points for the simulation values
and lines for the analysis, and the color of each line and
each point corresponds to the name of the configuration.
Each point represents the average of 20 simulations, each
simulation consisting of 100 million tasks. We also show
in the figure the 95% confidence intervals (they are so
small that they can only be seen for very low probability
values). The results corresponding to the rack servers are
represented with solid lines, while the ones corresponding
to the nano servers are represented with dashed lines. The
figure confirms the accuracy of the model, as the results
from the simulation coincide with those from the analysis
in practically all the cases. Furthermore, we note that this
accuracy is achieved despite the various orders of magnitude
of the failure probability, i.e., between approximately 10−3

and 10−1 for the rack servers, and between 10−7 and 10−1

for the nano servers. Secondly, we observe that the behavior of
the failure probability is not monotonous with the arrival rate
for the yellow and red configurations: it decreases with λ up
to a point (approximately 3 tasks/min), and then it increases
again. The decrease is caused by the anticipated activation of
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Fig. 5: Failure probability versus arrival rate: rack servers
(solid lines) and nano servers (dashed lines).

additional resources, while the increase starts when there are
no more resources to be activated despite the load variations.
By comparing the performance of the two deployments, the
figure shows that, depending on the configuration considered,
it is possible to provide smaller failure probabilities with
enough nano servers despite their shorter lifetime. Finally,
we validate our assumption that a task going to the queue
always yields a failure. An analysis of the waiting time shows
that 95% of the tasks going into the queue have to wait for
more than 1 sec, hence suffering substantial disruption. This
confirms that when a task goes into the queue, this results in
a failure with a very high probability.

We next validate the power consumption model following
a similar approach, with the results being depicted in Fig. 6,
where the power consumption is computed as the total energy
consumed during the simulation divided by the duration of
the simulation. Again, lines and points practically coincide,
which confirms the accuracy of the model. In the remaining
figures of the paper we do not depict confidence intervals
to avoid harming their readability; in any case, confidence
intervals always fall below 1% of the average. In contrast
to the previous case, we have a monotonous behavior of
the power consumption (ω) the arrival rate. The results also
show the usual trade-off between performance and resource
consumption, as the configuration policies that lead to smaller
failure probabilities correspond to higher ω values. Finally,
the figure also suggests that the nano server deployment could
guarantee smaller failure probabilities at a smaller power con-
sumption, although for a fair comparison, we should optimize
the configuration of both deployments, which is addressed
next.

We would like to note that the above results are obtained
with the specific numerical values provided in Table II and
therefore cannot be generalized. However, we do believe that
they provide some insights on the performance that one may
achieve when using smaller and less reliable servers. In any
case, our model allows the evaluation of any parametrization
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Fig. 6: Power consumption versus arrival rate: rack servers
(solid) and nano servers (dashed).

and hence can be used to assess the performance of other types
of servers.

C. Optimization algorithm

We next assess the performance of the optimization algo-
rithm presented in Section IV. To this aim, we consider the
same two deployments as before, three values of the system
load ρ = λ/MNµ, namely, 10%, 30%, and 50%, and a
number of target failure probability levels (Tf ) between 10−3

and 10−6. For each case considered, we compare the power
consumption with the (de)activation thresholds computed by
our algorithm against the power consumption obtained from
an exhaustive search in the whole space of thresholds. To
implement this search, we implement a modified version of the
branch and bound algorithm based on judiciously discarding
parts of the state space leveraging on the system behavior
(e.g., if a target probability failure Tf is not met with a given
threshold ton

m, any positive increase of ton
m will neither met Tf ).

While the configuration algorithm takes on average between
20 sec and 37 sec to compute the optimal configuration, the
exhaustive search takes up to 3 hours for the case of the rack
servers and more than 10 days for the case of nano servers.
The results are shown in Fig. 7 where, for easy viewing, we
use linepoints for our algorithm (solid lines for rack servers,
dashed lines for nano servers), and circles for the exhaustive
search.

According to the results, the performance obtained with
our configuration algorithm is practically identical to the one
obtained after an exhaustive search in the whole configuration
space: the maximum difference of our algorithm from the
exhaustive search is 2.5%, whereas the average difference
is 0.12%. Like before, the power consumption decreases
when the reliability guarantees are smaller in both types of
deployments, although in the nano servers case it is less
evident due to the logarithmic scale of the x axis. Regarding
the impact of the load, we observe the same qualitative
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Fig. 7: Optimal power consumption for different requirements
and system loads.

behavior presented in Fig. 6, with the power consumption
being proportional to the load. Finally, it is worth remarking
that, for the configurations considered, the power consumption
of the nano servers deployment is always smaller than the one
of the rack servers.

D. Variable number of servers

We next analyze how performance varies when the number
of servers M changes. Firstly, we consider the impact of a
reduction in M on performance. More specifically, we assume
a target failure probability Tf = 10−5 and both server farms
optimally configured, and analyze the resulting value of Pf
and ω when the percentage of available servers is reduced
from 100% to 20%. The results are depicted in Fig. 8, for
the same system loads as above. Regarding Pf (Fig. 8a),
the results show that the smaller the load ρ, the smaller the
number of servers strictly required to ensure the target Tf : for
instance, a 10% load can be supported even with less than
half of the servers in the original deployment, while for a
50% load at least 85% of the servers are required. Regarding
ω (Fig. 8b), when there are enough resources the consumption
only depends on the value of Tf and the load, while when M
is reduced to a certain level the value of ω corresponds to the
consumption of the remaining servers operating at their full
capacity.6

We next analyze performance for larger deployments. To
this aim, we assume the rack servers configuration and increase
the number of servers M , assuming a relative load of 10% and
three target failure probabilities Tf = {10−3, 10−4, 10−5}.
For each value of M the computation of the parameters of
(44) can take hours (for the largest configurations), while the
optimization itself including the Algorithm 1 is solved within
minutes. We compute the resulting failure probability Pf and

6We note that although these results confirm that smaller servers might be
more energy efficient for a given target reliability, our results are limited to
the parameters considered in Table II and do not consider key factors such as
e.g. physical constrains or maintenance.
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Fig. 9: Performance when M increases.

the power consumption ω, with the results being depicted in
Fig. 9. The figure confirms that our algorithm guarantees that
the resulting Pf (Fig. 9a) is below Tf for all considered values
of M . Regarding ω (Fig. 9b), for small values of M (up to 64
servers), it can be seen that the power consumption increases
with Tf as before; for larger values of M , the impact of Tf
is harder to notice due to the log scales.

E. Variable load

In this section we apply our algorithm to a scenario with
variable load. Since the optimal thresholds are challenging to
compute in real time, these are precomputed for different target
probabilities and traffic loads. For this specific example, we
precompute the optimal thresholds for a target failure prob-
ability Tf = 10−4 and arrival rates corresponding to traffic
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Fig. 10: Performance when the load varies.

Approach Config. Description

Heuristic [39] Conf. 1 MM: low=50%, high=90%
Conf. 2 MM: low=40%, high=80%

Q-learning [40] Conf. 1 β = 0.8
Conf. 2 β = 1.0

TABLE III: Approaches considered.

loads in steps of 10%, i.e. ρ ∈ {10%, 20% . . .}. The algorithm
then monitors the task interarrival time to estimate the arrival
rate λ using a simple exponentially weighted moving average
(EXMA) with α = 0.99, and uses the precomputed thresholds
corresponding to the load closest to the estimated one.

We simulate the arrival of 500 million tasks, the first 200
million with an interarrival time corresponding to a load of
ρ = 30%, and the rest with an interarrival time corresponding
to a load of ρ = 50%. Fig. 10a confirms the effectiveness
of the approach, as the resulting Pf , averaged over windows
of 10 million tasks, shows minor variations around the target
value Tf , and the average Pf over the whole simulation is
0.96 · 10−4. Fig. 10b illustrates the increment in ω as the load
increases, in line with the results in Fig. 7. While this simple
approach serves to confirm the practicality of our approach
for scenarios with variable load, we leave as future work the
use of more sophisticated schemes, based on e.g., server load
estimation techniques such as the ones discussed in [38].

F. Comparison with other approaches

To put the performance of the optimization algorithm in
context, we next compare it versus other alternatives. Since
no previous work provides a configuration mechanism to guar-
antee a given reliability level, we consider the two schemes
summarized in Table III, each with the configurations used by

the respective papers where they were proposed.7 These two
schemes are summarized next:

Heuristic: This algorithm performs an energy-aware al-
location of virtual machines (equivalent to the tasks in our
proposal) to devices in a data center [39]. The algorithm uses
two occupation thresholds to activate or deactivate physical
resources as the load in the data center varies. Since authors
do not propose any scheme to compute these thresholds, we
select the best performing policy and configurations, namely,
the so-called the minimization of migrations (MM) policy, and
the following pair of occupation thresholds: {50%, 90%} and
{40%, 80%}.

Q-learning: we adapt the approach proposed in [40], which
uses Q-learning (a technique receiving a lot of attention
for networking problems, see e.g., [41]) to minimize the
consumption of resources while aiming for a given Service
Level Agreement (SLA). The state is defined by the number
of tasks and active servers, and at each update interval (which
we set to half the inter-arrival time), an action is taken, namely,
to switch on a server, switch it off, or keep the current number
of active servers. The penalty is given by the a weighted sum
of the number of failures during the interval (nt) and the
normalized power consumption over the same period (ωt) as
follows

pt = βnt + (1− β)ωt, (45)

where the β parameter serves to tune the trade-off between
reliability and power consumption. As in the case of [39], since
performing an exhaustive search on the whole configuration
space would result impractical, for this and the rest of the
parameters we use the same values as defined in [40], i.e.,
β = {0.8, 1}.

For each of these algorithms and configurations, and consid-
ering different traffic loads and the rack servers configuration,
we compute their resulting failure probability and power
consumption, as well as those obtained with our algorithm
assuming Tf = 10−5. The results are summarized in Fig. 11,
where the target Tf is highlighted with a dashed line, each
approach is represented with a different symbol, and each
traffic load is represented with a different color. The results
confirm that using our approach the system achieves the
desired performance, as the square symbols are aligned with
the target Tf . In contrast, the other schemes do not provide
the means to drive the failure probability to the desired
target. Furthermore, as they rely on parameters which need
to be configured heuristically, the resulting performance is
uncertain: in some cases the achieved probabilities are way
larger than those considered in 5G networks, while in other
cases they are overly small thus leading to a wastage of energy.

G. Trace-based evaluation

We finalize our performance evaluation by assessing the
accuracy of the model under real traffic. To this end, we
perform a similar experiment to that presented in Fig. 5, taking
real-life workload as input traffic and evaluating the failure

7Since these methods adopt fixed configurations, there is no computational
time required to obtain them.
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Fig. 11: Comparison versus other approaches.

probability against the model. In particular, the behavior of
jobs arriving at the system is derived from a trace of the Trinity
supercomputer located at the Los Alamos National Laboratory
[42], both for the time between arrivals and the time a request
spends in the system. This trace comprises information of
jobs issued during three months to a large-scale supercomputer
system [43]. To analyze the system in the periods under the
largest activity, we have removed the 25% of the longest inter-
arrival times from the trace.

To evaluate the performance of the model under different
loads, we change the configuration of M and N as follows:
we set the number of servers to M = {4, 8, 16} and perform
a sweep on the capacity per server N such as the load ρ =
λ/(MNµ) is adequately sampled. The results are shown in
Fig. 12 for the same green, yellow and red configurations as in
Fig. 5. For ease of visualization, we use solid lines to represent
the results from the analytical model, and dashed linepoints to
represent the trace-based simulation results.

The results confirm the accuracy of the model under real-
world traces, as the results from the analysis closely follow
those from simulations, with the median error across all con-
figurations being 13%. We can observe that the three policies
provide different levels of reliability, the red one providing the
best reliability and the green one the worst. This configuration
also leads to the largest differences between the simulation
and the analysis, since key assumptions of our model (e.g.,
independence of failure types) become less accurate as the
failure probability increases. We further observe that the
behavior of the reliability with the load is non-monotonic,
specially for the M = 4 case. Here, whenever the load ρ
approaches a multiple of 1/M , i.e., for ρ = {0.25, 0.5, 0.75},
the performance of the green configuration severely degrades,
as only when all servers are 100% occupied a new resource is
activated. In contrast, for the yellow and red configurations this
activation is anticipated, thus leading to a relative performance
improvement. For the other M cases the effect is less evident
given the considered sampling of the load.

In summary, these results show that, even though our model
has been derived under some assumptions that may not always
hold, the model remains fairly accurate under realistic traffic
patterns.

VI. RELATED WORK

Algorithms for scaling server farms. The dynamic man-
agement of cloud resources to reduce consumption has re-
ceived notable attention from the research community. For
instance, in [44], authors assess the impact of different static
algorithms to (de)activate resources and reallocate tasks in a
data center, in terms of energy consumption and so-called
service violations, defined as when a task is not provided
with enough resources. In a series of follow-up papers, [33],
[39], [45], they propose heuristics to adapt the thresholds to
the estimated conditions (e.g., occupation), to reduce these
service violations. Although these works are based on a similar
threshold-based operation as ours, they do not provide any
algorithm to compute them, thus leading to sub-optimal per-
formance and/or the need to perform numerical searches. The
Plug4Green algorithm [46] takes as input the SLAs to identify
constraints, with the goal of reducing power consumption.
However, the SLAs do not include reliability (they include
e.g. hardware variables such as the minimum number of CPUs,
or network guarantees such as minimum bandwidth). Along
the same lines, [29] presents a framework to accommodate
tasks in servers, also with goal of guaranteeing SLAs while
reducing the energy consumption, but again the reliability
is not considered. As mentioned before, one key difference
between our work and the cloud techniques from the literature
including the ones above is that they cannot provide high
levels of reliability such as the ones required in 5G (see e.g.
[12] for a recent survey). Some approaches use of machine
learning to tune the auto-scaling of server farms. The work
in [40] considers a similar scenario to ours, with a global
manager that switches on/off physical machines using a Q-
learning approach. However, it targets a penalty function given
by weighted sum of power consumption and SLA violations
and cannot easily be tuned to provide strict reliability guaran-
tees. Furthermore, convergence times can be extremely large.
Another Q-learning approach has been proposed in [47] for a
similar purpose, although based on a more complex penalty
function, which suffers from similar issues to the ones of [40].

Queueing models. In [48] a Markov chain is used to model
a server farm with setup delays in terms of the response time
and its power consumption. A related analysis, but in the
context of 5G networks, is presented in [49], where thresholds
are used to power up and down instances, and the performance
is characterized in terms of power consumption and waiting
time. None of these works take into account the finite lifetime
of servers nor the failure probability of the service, as we do
in this paper. Other approaches, such as parallel queues with
vacations [50], [51], do not fit with the considered problem as
they do not include a policy to (de)activate servers depending
on the number of tasks in the system.

Reliability of server farms. The seminal work of [25]
analyzes the reliability of a blade server system. This is done
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Fig. 12: Failure probability versus load from real traces

with a high-level fault tree model that interconnects a number
of lower-level Markov models, which serve to account for the
fallibility of the various hardware modules such as, e.g., the
CPU or the memory. A similar approach is followed in [35],
where authors analyze the reliability of a virtualized and non-
virtualized system composed of two hosts. A related system
is later considered in [36], where a sensitivity analysis is
performed to identify the parameters that more critically affect
reliability. None of these micro-scale models consider a server
farm with an auto-scaling policy, nor its optimal configuration.
In contrast, we analyze a generic server farm composed of
a number of servers where each one is characterized by a
lifetime, and derive the configuration of its auto-scaling policy
that minimizes energy consumption while ensuring a given
minimum reliability. Other proposals such as [52] or [53] aim
at improving reliability by replicating tasks and selecting the
most appropriate server (based on a failure model for the
power outages and network components), but they do not
consider energy consumption.

NFV and reliability. The softwarization of networks intro-
duces a great deal of flexibility to decide where to instantiate a
VNF, and how to interconnect them. This has motivated a lot
of work on network function placement, see e.g. the survey
[54], with the aim of maximizing resource efficiency while
providing mild service guarantees (e.g., CPU availability, inter-
VNF delays). For instance, [55] presents a mixed integer
linear programming to minimize the power consumption while
guaranteeing traffic constrains which optimizes the VNF lo-
cations. In contrast to these works, we present an analytical
framework and optimization algorithm for an auto-scaling
scheme to ensure a strict and accurate guarantee (i.e., keep the
failure probability below a given and very small threshold).
For the particular challenge of providing a reliable service,
we can highlight: [56] presents some heuristics for a routing
optimization problem, where redundant VNFs are used to
ensure an average reliability level; [57] relies on machine
learning to predict the next failure of a server, based on the
knowledge of past failures, to trigger a proactive launch of a
novel virtual machine; and [58], analyzes the decomposition
mobile applications in several components and their best
placement in the edge, and also proposes the use of inactive

copies to support reliability. In contrast to these works, we
focus on the analysis of a fine-grained metric and provide
the means to optimally configure the deployment to provide
very stringent levels. The work of [59] also addresses the
reliability of a softwarized deployment, but the focus is on the
understanding of the interconnection of virtual and physical
resources. More specifically, the contribution is a framework to
diagnose and mitigate the so-called cascading effect, i.e., when
a single node failure results in large-scale network collapse.

VII. CONCLUSIONS

The softwarization of mobile networks introduces the ability
to scale resources as demand varies. However, to support
the stringent reliability guarantees required by some 5G ap-
plications, enough resources should be activated in advance,
both to mitigate the impact of start-up delays on performance,
and to introduce redundancies to lessen the impact of server
failures. In this paper, we have modeled the behavior of
a server farm with an auto-scaling mechanism based on
(de)activation thresholds. We have characterized its failure
probability and energy consumption for a wide range of
scenarios, including different deployment configurations, and
derived an optimal configuration algorithm that fulfills a given
service level agreement while optimizing performance. The
accuracy of the model and the optimality of the algorithm
have been extensively validated via simulations. Furthermore,
by comparing the performance of two different deployment
strategies optimally configured, we have shed some light on
whether it is better to support a given service with a few
carrier-grade machines or many low-power servers. While our
results suggest that deploying enough less powerful machines
could be a valid and more efficient strategy, our analysis has
not considered key aspects such as the management costs and
therefore the final decision depends on the criteria to optimize.
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APPENDIX: CONVERGENCE OF THE MARKOV CHAIN

Theorem 1. The QBD process is stable as long as

λ

NMµ
<

α

ν + α
. (46)

Proof. The convergence of the QBD process will be guaran-
teed as long as the drift of the system to higher levels is smaller
than the drift to lower levels. Mathematically, this condition
translates to [60]

πAA01 < πAA21, (47)

where πA is the steady-state probability vector of the generator
matrix A = A0 + A1 + A2, leading to the tridiagonal matrix

A =

− Mα 0

ν − (M − 1)α
. . . . . . . . .

. . . − α

Mν −




(48)

where the computation of the diagonal elements is straight-
forward via the normalization condition. The resulting matrix
corresponds to a BD process of M + 1 states, with πA given
by

πA = [p0, p1, . . . , pM ] (49)

and illustrated in Fig. 13. The balance equations result in the
following relation among consecutive states

pi =
(M − i+ 1)α

iν
pi−1, (50)

which results in

pi =

(
M

i

)(α
ν

)i
p0. (51)

From the normalization condition
∑
pi = 1 we have

p0

M∑
i=0

(
M

i

)(α
ν

)i
= 1. (52)

The summation in the LHS of the previous equation cor-
responds to the binomial expansion of the polynomial
(1 + α/x)

M . Therefore

p0 =
(
1 +

α

ν

)−M
. (53)
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With the above, the computation of πA is completed, so we
can use its value on the condition given by (47). The LHS of
the equation results in

πAA01 = [p0 . . . pM ]

λ 0
. . .
0 λ


1...
1

 (54)

= λ
∑
i

pi = λ,

whereas the computation of the RHS of (47) leads to

πAA21 = [p0 . . . pM ]


0

Nµ
. . .

MNµ


1...
1

 (55)

= Nµ
∑
i

ipi = Nµp0

M∑
i=1

i

(
M

i

)(α
ν

)i
. (56)

Using again the binomial expansion and substituting the value
of p0, the above can be simplified as

πAA21 = NµM
α

ν + α
. (57)

By combining (54) and (57), (47) can be expressed as

λ < NµM
α

ν + α
, (58)

which completes the demonstration of the Theorem.
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