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Abstract—Fifth generation (5G) and beyond systems require
flexible and efficient monitoring platforms to guarantee optimal
key performance indicators (KPIs) in various scenarios. Their ap-
plicability in Edge computing environments requires lightweight
monitoring solutions. This work evaluates different candidate
technologies to implement a monitoring platform for 5G and
beyond systems in these environments. For monitoring data plane
technologies, we evaluate different virtualization technologies,
including bare metal servers, virtual machines, and orchestrated
containers. We show that containers not only offer superior
flexibility and deployment agility, but also allow obtaining better
throughput and latency. In addition, we explore the suitability
of the Function-as-a-Service (FaaS) serverless paradigm for
deploying the functions used to manage the monitoring platform.
This is motivated by the event oriented nature of those functions,
designed to set up the monitoring infrastructure for newly
created services. When the FaaS warm start mode is used,
the platform gives users the perception of resources that are
always available. When a cold start mode is used, containers
running the application’s modules are automatically destroyed
when the application is not in use. Our analysis compares both
of them with the standard deployment of microservices. The
experimental results show that the cold start mode produces
a significant latency increase, along with potential instabilities.
For this reason, its usage is not recommended despite the
potential savings of computing resources. Conversely, when the
warm start mode is used for executing configuration tasks
of monitoring infrastructure, it can provide similar execution
times to a microservice-based deployment. In addition, the FaaS
approach significantly simplifies the code logic in comparison
with microservices, reducing lines of code to less than 38%, thus
reducing development time. Thus, FaaS in warm start mode
represents the best candidate technology to implements such
management functions.

Index Terms—5G networks, monitoring and data collection,
serverless computing, FaaS, performance comparison
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I. INTRODUCTION

The growth of data-intensive and real-time applications,
empowered by 5G and Internet of Things (IoT) devices, has
gradually triggered the shift from centralized data centers to
distributed computing and storage resources, in order to avoid
potential bottlenecks and low throughput caused by services
that process increasing data volumes. This architectural change
has subsequently fostered the evolution from traditional cloud
computing services to more capillary models, such as Edge
computing [1] and Fog computing [2]. The boundary between
the two technologies is blurred; Edge computing is typically
regarded as a service implemented either on the devices to
which the user-terminals are attached to or very close to
it, as a rack connected via a gateway node to the access
network. According to the ETSI vision [3], an Edge computing
application is meant to deploy services close enough to the
end users in order to save transmission resources and to
enable low-latency applications with respect to a mere cloud
deployment. Fog Computing entails services taking place in a
continuum between the access network, close to end devices,
and a central cloud [4].

5G systems and their expected evolution, referred to as
as Beyond 5G (B5G) systems, are expected to encompass
Fog and Edge computing technologies to satisfy the service
requirements of new classes of applications requested by many
of their potential vertical customers. Such customers could
be stakeholders of other business sectors that move to 5G as
main transport infrastructure, that require to respect desired
key performance indicators (KPIs) while keeping an efficient
resource usage. Vertical industries may be interested to use
B5G systems not only as transport network, but also as support
for deploying their services (or part of them) in data centers
hosted in the 5G network itself, including Edge and/or core
cloud clusters, as part of a dedicated network slice [5]. Indeed,
the increasing volume of data coming from IoT devices is
going to be processed in a distributed way on B5G platforms,
relying on an Edge/Fog layer in the architecture. Hence, the
importance of monitoring services collecting and analyzing
data generated by the different elements involved in B5G
systems, and generating the KPI values suitable for vertical
customers, is clear [6]. These platforms need to be lightweight
and flexible to be easily deployable in Edge environments, and
should limit the resource allocation for their modules. How-
ever, the conventional provisioning of virtual machines (VMs)
initially designed for 5G network services may significantly
limit the number of concurrent applications and users in an
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Edge or Fog layer of the architecture. Indeed, it relies on
overprovisioning, large computing overhead, and long startup
times. Computing nodes for lightweight deployment have lim-
ited resources with respect to a core cloud system. This is true
not only for the vertical applications, but also for the whole
management infrastructure, which has a significant impact on
the overall amount of resources to be deployed. Thus, also
monitoring services for B5G systems have to move towards
more lightweight deployment paradigms. In this regards, the
main candidates are containerized packages [7] running as
microservices [8], and serverless computing [9], which we will
evaluate in this paper as possible technological alternative for
implementing monitoring services in B5G systems.

Deploying applications components in containers as mi-
croservices, and orchestrating them with platforms like Ku-
bernetes, facilitates the service management, by providing
auto scaling and high availability mechanisms, and increase
service agility in B5G systems [10]. Indeed, the virtuali-
sation support in Kubernetes and Docker is an enabler for
implementing network slicing in 5G, since it provides service
differentiation between services offered to different verticals.
Serverless computing moves a step forward. In a serverless
architecture, computing resources, along with their configura-
tion and management, are dynamically provisioned at runtime
— thus the name serverless: It hides server provisioning,
maintenance, updates, scaling, and capacity planning from
developers and users. Function-as-a-Service (FaaS) model is
the primary implementation of serverless computing. It allows
application logic, written as stateless functions, to be executed
on demand by containerized runtime environments, without
pre-allocating resources [11] [12]. FaaS and microservices
share similar properties, i.e. the focus on deployment cycle’s
flexibility by dynamically handling changing development
requirements. Both technologies share a modular architectural
pattern, although FaaS is specifically made of atomic functions
meant to be stateless and, typically, event-driven. Microser-
vices are kept active even when not required, whereas the
FaaS approach allows activating functions on-demand to save
resources.

This paper is meant to be a further development of the work
presented in [13], in which we compared the performance
of several virtualization technologies used to deploy a 5G
multi-site and multi-stakeholder monitoring platform. For this
preliminary comparison, we used the VM-based platform
developed in the 5G EVE project [14], whose monitoring
framework allows implementing the distribution and con-
sumption of metrics and KPIs for 5G multi-site platforms
[6], [15] through a publish/subscribe approach using Apache
Kafka1, which demonstrated to be effective. Driven by the
promising results obtained by using different virtualization
technologies in [13] for implementing the communication
system in charge of delivering streams of monitoring data to
data collectors, in this paper we significantly extend the anal-
ysis. Furthermore, the promising initial results with container-
based modules motivated us also to investigate the introduction
of serverless technologies in the management plane of the

1https://kafka.apache.org/

monitoring platform. In particular, the event-triggered nature
of its modules enables the transition from microservices to
FaaS for all the functions that have to be executed at the setup
or teardown of a new slice, in order to configure the relevant
monitor infrastructure. Indeed, managing even some modules
of the monitoring platform by using serverless functions would
greatly simplify the development, reduce the deployment and
configuration effort, and enable the effortless adoption of
horizontal scaling.

Previous work covered the introduction and first analysis
of the 5G monitoring platform, based on a set of VMs [6],
as well as an initial performance comparison between dif-
ferent virtualization technologies including recent lightweight
technologies, such as Kata Containers and Firecracker [13].
This work significantly advances these results. The two main
contributions are as follows.

• We significantly extend the performance evaluation pre-
sented in [13]. In particular, we focus on the suitability
of the considered virtualization technologies for what
concerns the evolution towards a lightweight version of
the target 5G monitoring platform. We present extensive
experimental results comparing the deployment of the
platform through bare metal, VM, and orchestrated con-
tainers, providing novel results on scalability and transient
behavior, not present in [13]. Our measurements are
carried out through an experimental testbed. It includes
two servers located in the same LAN, one hosting the
platform to evaluate, and the other being in charge of
generating the workload.

• We present a new design of 5G monitoring platforms,
compared with [6], by using both microservices and the
serverless principles. In more detail, we illustrate how
the serverless deployment can be leveraged to realize
the functions used to manage event-based features of the
monitoring platform, i.e. those in charge to handle Kafka
topics. In addition, we evaluate the performance of the
new system in terms of execution time and developer
effort, by comparing a FaaS deployment, based on both
cold and warm start modes, against a microservices-based
one. We used the open-source platform OpenFaaS [16],
orchestrated by Kubernetes [17], for the FaaS deployment
testbed, whereas microservices are deployed as containers
with Docker [18] and runc as runtime, orchestrated by
Kubernetes as well. According to the experimental results,
we discuss the resulting benefits and drawbacks with
respect to the original implementation.

In conclusion, the study illustrated in this paper leads to
the proposal of a new design for 5G monitoring systems with
respect to the state of the art. Investigating on the performance
comparison between different virtualization technologies and
deployment paradigms, this work depicts the suitable solutions
available to evolve the considered platform towards a more
efficient and lightweight version. If fact, our findings suggest
to move from a classic VM-based platform to an hybrid one,
in which data monitoring is handled through orchestrated con-
tainers, whereas the relevant management and configuration
functions are implemented through the novel FaaS serverless
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paradigm, configured in warm start mode.
The rest of the paper is organized as follows: Section II

presents some background material related 5G monitoring
platforms as well as to the main concepts of microservices
and serverless computing. Section III presents an overview of
the monitoring platform under study, describing its building
blocks. It introduces the transformation from the original
platform modules to serverless functions exposed as a ser-
vice, and compares the FaaS modules-based version with
the microservices-based one. Section IV presents the analysis
of the platform, consisting of a performance evaluation of
different deployment techniques for the considered platform,
followed by the evaluation of a serverless deployment of the
platform. Finally, Section V concludes the paper and presents
future work.

II. BACKGROUND AND RELATED WORK

A. Monitoring platforms for 5G networks

Standardized design and development models for 5G and
B5G networks monitoring frameworks do not exist at present.
Nevertheless, these topics are the subject of intense research
and some proposals have already been put forward. The
research is driven by the B5G systems evolution, that is charac-
terized by increased variability including Edge segments. The
proposals include the definition of a publish-subscribe mecha-
nism to distribute data between different entities in Edge-based
deployments, as in [19] and [20]. Different organizations, such
as 3GPP [21], O-RAN alliance [22] and ETSI [23], integrated
monitoring and data collection functions in their infrastructure
models to enhance control, management, and orchestration of
mobile networks, particularly regarding 5G environments and
their evolution towards 6G.

In [6], [15], the design principles of the monitoring archi-
tecture under study are presented, together with a preliminary
performance evaluation to characterize the platform in terms
of some performance parameters, such as latency and packet
loss. In [13] the platform, shown in Figure 1, is used to carry
out a preliminary performance comparison between different
virtualization technologies, including serverless-related tech-
nologies, such as Kata Containers or Firecracker, but not in-
cluding other popular serverless platforms as OpenFaas, which
will be considered in this work to redesign some modules
of the target platform using a serverless approach, feasible
for Beyond 5G systems. More in general, the purpose of the
monitoring platforms proposed in these papers is essentially
to monitor all infrastructure and application metrics and KPIs,
with a system based on a publish-subscribe mechanism to
collect and distribute monitoring data through the platform. In
this way, as long as the components can provide the monitoring
data to this system, these metrics and their corresponding KPIs
can be monitored consequently.

The original platform, as well as its evolution towards
serverless computing presented in this work, takes into ac-
count both multi-site and multi-stakeholder scenarios. The
experiments run by different stakeholders are differentiated
through the generation of different topics, and monitoring
data are published to them. An experiment, including not

!"#$%&'()

*"#

+,-./0&/1(,2

3/&1./

"456-./

"&&/7(,8-&/

!"#$ %

9.'4()8-. :.-/()6

"/.8-.;

7.4.-.

-&'()6

&'#'()*++$,#"*- .'-'/$0

<(-. 3/&1./

!"#$ -

<(-. 3/&1./=

>?'./(:.,-

*(@.)A)4.

#8,82./

)/.8-.B8@18%&'()

7.4.-.B8@18%&'()

@.-)CB8@18%&'()

!"<$%&'() *"#

!86CD&8/7E6

C8,74./

*&26-86C

>486-()6.8/)C

B(D8,8

F&6-2/.<G*$

!3

F&/-84$HI+

"/.8-.;7.4.-. -&'()6 (,$F&/-84

"&,@(25/.$

(,7.?.6

&'#'(1"23'+"4'#"*-&'#'()*++$,#"*- '-5(!#*0'/$

F('.4(,.$

:8,82./
"&,@(25/.$'('.4(,.6

J''4A )&,@(25/8-(&,

18@18"&,65:./

!8-8$<C(''./ !8-8$<C(''./

F5D4(6C :.-/()6 F5D4(6C :.-/()6

"456-./

)&&/7(,8-(&,

!.4(K./ :.-/()6 8,7$BF+6

"&,@(25/.$

786CD&8/76

"/.8-.

786CD&8/7 !.4.-.

786CD&8/7

L(6584(M.

786CD&8/7

!"#$%$#&'()*+

,-).(/'(01-2 3*4.(

51). 6*71+1)1.8

Fig. 1: Monitoring architecture designed with microservices
[13]. Functions candidate for serverless implementation are
highlighted in orange.

only the service to test, but also additional components em-
ulating different context conditions, such as traffic load and
delay, runs in a specific 5G slice, which identifies a portion
of communications and computing resources dedicated to a
stakeholder. Different experiments can run in the same slice
or in different slices, depending on their nature. For example,
a mobile broadband experiment will likely run in a slice
different from that designed for running massive IoT services.
However, this is oblivious to the monitoring platform. In fact,
the topics relevant to an experiment are defined and created
when it is instantiated. This enables the separation of different
experiments at the monitoring level, by keeping the monitoring
data of different experiments separated. The flexibility of the
pub/sub mechanisms also offers the possibility to easily group
data from different experiments together, to have either a
global view or a view relevant to a given set of experiments,
such as those running in the same slice.

Thus, the analysis presented in this paper stems from the
work carried out in [6], [13], [15]. We will expand the analysis
by addressing both data plane and management plane for the
monitoring platform, evaluating the most suitable technology
choices for each environment.

B. Microservices and serverless technologies

Microservices represent an architectural style for distributed
systems, in which large and complex applications are split
into one or more interacting services, usually built on top
of Platform-as-a-Service (PaaS) environment. Microservices
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can be deployed independently and are loosely coupled. In
this way, they enable frequent and rapid deployments. Each
microservice may focus on a single, well defined task, repre-
senting a small business function. They can be implemented
in any programming language. As such, it is possible to select
the one that best fits the function to be realized. Instead, they
need standardized language-neutral application programming
interfaces (APIs) to communicate, such as Representational
State Transfer (REST). Microservices are typically deployed
in containers, such as Docker [18] containers, and orchestrated
via container management platforms, among which Kuber-
netes [17] is a popular choice. Kubernetes handles so-called
pods, which are collections of one or more containers grouped
together to increase resource sharing efficiency. A pod is the
smallest unit of a Kubernetes application. Indeed, Kubernetes
containers in the same pod share the same compute resources,
which, in turn, are pooled together to form clusters. These
clusters can provide a more powerful distributed system for
executing applications. The mapping of each service of a
microservice architecture into containers and pods is left to the
developer, considering resource usage and service interactions.
Additional details can be found in [24].

Serverless computing is an emerging paradigm wherein
computing resources are dynamically provisioned at run-time,
through an event-driven allocation control, typically referred
to as Function as a Service (FaaS). The FaaS model requires
application logic to be implemented as atomic functions, which
may be written in various languages and packed with their
modules and dependencies. These functions are then exposed
as web services, or triggered by specific events or conditions.
Upon invoking a function, the platform runs it through a
container, either reused from previous executions (warm start
mode) or a new one (cold start mode) [11].

Compared with a conventional Infrastructure-as-a-Service
deployment (IaaS), the FaaS model ensures need-based re-
source allocation, deploying containers on demand and pos-
sibly in parallel. It does so without any need of control-
ling application deployment processes at the operating-system
level. This means that containers are dynamically scheduled
in the hardware or in the virtual infrastructure maintained
by cloud providers. Note that FaaS is intended to be dif-
ferent from Software as a Service (SaaS), due to its event-
based architecture and auto-scalability, emphasizing its virtual
independence from the underlying servers (i.e., serverless).
This contrasts with traditional methods in which the needed
resources are planned during application design and provided
during deployment. The name serverless computing highlights
that application design does not include any production servers
but can focus solely on the application code, organized through
individual functions executed in microVMs or containers.
Serverless computing was identified as a promising approach
for several applications, such as those for data analytics at the
network Edge [25] [26].

However, these serverless frameworks and techniques are
somehow tied to the platform in which they are implemented,
as providers intend to lock-in their serverless clients by
also offering extra services that assorts the provisioning of
serverless applications [27]. For this reason, serverless frame-

works are becoming increasingly popular, having the purpose
of hiding the technical features of the serverless platform
or cloud infrastructure for application developers. This ab-
straction simplifies the process of designing, developing and
deploying the serverless functions [28]. Examples of these
frameworks, in terms of open-source solutions, are OpenFaaS,
Kubeless, Fission or OpenWhisk, among others. OpenFaaS
[16], the selected platform for our serverless testbed, is a cloud
native computing foundation (CNCF) open source serverless
framework. It allows developers to define and use templates
of different languages to create and build serverless functions.
It relies on Docker images and Kubernetes control plane to
run applications, providing fail-over, high availability, scale-
out and security management. In the OpenFaaS framework, the
OpenFaaS gateway, which is similar to a reverse proxy, is in
charge of exposing and managing the function pods, offering
a REST API for all interactions.

The decision of resorting to any specific solution essentially
depends on the vertical stakeholders expected to be hosted
on the system to be developed, as each framework offers
different capabilities that make it suitable for particular use
cases. The paper [29] identifies some key aspects of Open-
FaaS, highlighting its easy extensibility and good performance
throughout different scenarios. It shows the best flexibility in
supporting multiple container orchestrators and largest adop-
tion rate among the analyzed serverless frameworks. The work
presented in [30] shows a performance analysis of a serverless
IoT application deployed by OpenFaaS, considering warm and
cold start approaches. This analysis shows the advantages and
disadvantages of both deployment modes, highlighting the
serverless flexibility and low resource requirements. However,
a comparison with other paradigms, such as the mere use of
microservices, is not provided.

In this paper we analyse the performance of the popular
open-source serverless framework, OpenFaaS, for a realistic
deployment, consisting of a 5G monitoring platform. We
present the comparison between serverless and microservice-
based deployments, and analyze the impact of cold and warm
start modes.

III. ARCHITECTURE OF THE 5G MONITORING PLATFORM

To fully describe the implications of adopting the serverless
paradigm, the 5G EVE monitoring platform is used as an
example of a 5G-related system that is liable to be transformed
into serverless in some of its main building blocks. The
original system includes multiple 5G network sites belonging
to different operators. Nevertheless, it could be used for
representing more general deployments, in which a single
operator deploys a pub/sub infrastructure in each Edge node.
In the current deployment, all data coming from the Edges
are aggregated into a central cloud broker, connected with the
system in charge of consuming the data and generating metrics
and KPIs per experiment.

This platform was designed as a modular architecture, as
depicted in Figure 1. Two main building blocks were defined:
the Data Collection Manager (DCM), which is in charge of
managing both the publish-subscribe delivery system and the
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monitoring data collection, and the Data Collection Storage
and Data Visualization (DCS-DV), providing indexing and
visualization mechanisms.

The complete Broker System of the considered platform
is divided into a set of Site Broker entities (one for each
site), playing the role of the Intra-site broker system, together
with the Interworking Broker entity in the Data Collection
Manager, which represents the Inter-site broker system. All
the brokers are based on Apache Kafka, and are coordinated
and orchestrated by the Cluster Coordinator, which is based
on Apache ZooKeeper2.

The main component that implements the operations needed
to publish the metric data is the Data Shipper. It is logically
connected with the Multi-Broker cluster, that is used for exe-
cuting the log-to-metric operations. These operations convert
metrics with heterogeneous formats, even raw logs, obtained
from components and collection tools, into metrics with a
uniform format.

The Broker system is mapped into a set of publish-subscribe
queues, starting from the local queues deployed in the Intra-
site broker. The queues aggregate metrics into the Interwork-
ing publish-subscribe queue (Inter-site broker). This broker
provides to components in upper layers a transparent access
to data from all sites. Each Intra-site broker is represented
by a Site Broker entity, located in each site, that forwards the
received data to the Data Collection Manager. The latter is in
charge of providing the interested entities with the requested
data coming from different sources.

In the DCM, four functions are considered as candidate
serverless modules. These functions, modeled as REST-based
services, are depicted in Fig. 1 (central block in the figure):

• createKafkaTopic, which is in charge of creating topics
in Kafka.

• deleteKafkaTopic, which is in charge of deleting topics
in Kafka.

• fetchKafkaTopic, an auxiliary module that allows check-
ing whether a given topic already exists in Kafka.

• DCM Topic LCM, also referred to as dcm, which
manages the other three functions and the calls to the
equivalent module in the Data Collection and Storage-
Data Visualization component, used to orchestrate the
configuration of the whole platform. This component has
two related operations : (8) dcmCreate and (88) dcmDelete,
depending on whether the configuration has to be created
or deleted, respectively.

The DCS component, which collects each of the subscribed
components data through Logstash3, provides data persistence,
searching and filtering capabilities. It does so for obtaining the
useful data to be monitored during the operation of the system
thanks to Elasticsearch4. For this component (block at the top
in Figure 1), two REST-based functions can be implemented
as serverless modules:

• kafkaConsumer, which creates a Python-based Kafka
consumer listening to the topic created in the platform,

2https://zookeeper.apache.org/
3https://www.elastic.co/logstash/
4https://www.elastic.co/elasticsearch/

with the function of triggering the creation of the cor-
responding Kibana dashboard when the first message is
received in the topic. This way the dashboard is created
only when data are available in the topic.

• DCS Topic LCM, which is in charge of configuring
the modules of DCS, based on the Elastic Stack, when
the DCM Topic LCM sends the proper request to this
component, which can trigger two different operations:
(8) dcsCreate and (88) dcsDelete, depending again on
whether the configuration has to be created or deleted,
respectively.

The Data Visualization component allows monitoring the
progress of the deployment. Monitoring data can be displayed
through Kibana5, by using a set of dashboards that are created
for each deployment. A complete description of the modules
composing the platform is included in [6].

The monitoring platform was originally designed by a
microservice pattern to provide all the required functions
by using Docker containers orchestrated by a lightweight
Kubernetes version [6]. However, the original design considers
two levels of virtualization, since the platform is hosted in a
VM, where containers are deployed. Thus, resource manage-
ment and service capability are impacted by the presence of
VM virtualization. Our goal is twofold: first we identify the
components that, being event based, can be transformed into
serverless functions. Secondly, for components not suitable for
being deployed by using the serverless model, we evaluate
alternative virtualization technologies to improve resource
usage and service latency.

A. Identification of Candidate Serverless Functions

As for the first goal, we identified a set of handlers defined
in both components DCM and DCS, previously introduced and
framed in orange in Figure 1. These handlers are in charge of
managing the lifecycle of the topics related to the metrics and
KPIs for any experiment. They do so by triggering actions
such as creation of a topic in Apache Kafka, or building of
a Kibana dashboard for a given topic. They result in atomic
functions that interact through a sequence of operations used
to obtain the desired result. Each handler is implemented as a
REST HTTP service.

The handlers described above are feasible candidates to
be re-designed as serverless functions due to the following
features:

• Event oriented: The handlers perform their function only
when a new experiment is created or deleted in the
platform

• Stateless nature: Multiple executions of the same handler
are independent of each other, a common state can be
kept in a remote storage system (e.g., Kafka for storing
the topics, PostgreSQL for storing created dashboards).

• Removability in idle mode if not used: Since the handlers
are not needed for the whole duration of the experiment,
their execution environment can be deallocated to save
infrastructure resources.

5https://www.elastic.co/kibana/
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According to the discussion on the atomic functions de-
scribed above and depicted in Fig.1, two different service
function chains can be identified as candidate to be made
deployable through a serverless approach:

• Creation chain: It is triggered by the dcmCreate oper-
ation. This operation makes use of the fetchKafkaTopic
function to check whether the Kafka topic to be created
exists. If not, it is created by the createKafkaTopic func-
tion. Then, a notification to the dcsCreate function is
triggered to configure the Elastic Stack and to create a
kafkaConsumer in an asynchronous way.

• Deletion chain: It is triggered by the dcmDelete
operation. This operation also makes use of the
fetchKafkaTopic function to check whether the Kafka
topic to be created exists. In this case, only if it exists,
it is deleted by the deleteKafkaTopic function, and then
a notification to the dcsDelete function is triggered. This
is to remove the configuration from the Elastic Stack.

In the next section we describe the process of transforming
the candidate microservices into serverless functions while
trying to meet the challenges of the serverless paradigm
proposed in [31] by using the OpenFaaS platform.

All the functions identified above are related to management
tasks of the monitoring platform, and more specifically to
its configuration. In more detail, they are event-triggered
functions, invoked when a new experiment is created, and once
again when it is deleted. Hence, they are the ideal candidates
for serverless implementation, to save computing resources
when they are idle. As for the delivery of the data monitoring
messages, the main component involved in data transfer is the
broker. This is not a good candidate for serverless deployment,
since the serverless paradigm uses an application gateway, that
has to invoke the appropriate functions to be executed each
time a new request arrives. In the case of the broker, each
new message containing monitoring data should pass through
the gateway, which could become the system’s bottleneck. In
fact, the rate associated with the stream of the monitoring
data is in the order of 100 Mbps. For this component, we
evaluate alternative virtualization technologies, ranging from
bare metal (no virtualization at all, Kafka broker installed on
the hardware), to VM-based virtualization through Kernel-
based Virtual Machine (KVM) [32], to different container
technologies, to improve service capacity, service latency, and
scalability. This analysis is reported in Section IV-B. In this
context, it must be noted that it is possible to do a composition
of both microservices and FaaS, communicating with each
other through REST API calls. This strategy is recommended
when modules have different latency requirements or when the
system includes both event-triggered and always-on services.
In fact, the final configuration of the considered 5G monitoring
platform includes the cooperation of microservices, which
handle data plane of monitoring services, with FaaS modules,
which leverage serverless paradigm’s benefits to deploy the
handlers meeting the aforementioned criteria.

B. Transformation into Serverless Architecture
The REST-based services identified in the previous section

are modeled as serverless functions managed by OpenFaaS.
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Fig. 2: Introduction of serverless functions (framed in
orange) in the target monitoring platform.

This transformation can be observed in Figure 2, in which the
serverless components are framed in orange. Consequently,
the workflows change considerably, as the OpenFaaS platform
becomes the central component of the serverless implementa-
tion. OpenFaaS exposes the interfaces needed to reach each
serverless function. When an entity requests a service offered
by a serverless function, it contacts the OpenFaaS gateway.
That gateway will then trigger the instantiation of the function
(cold start) and route the request to the relevant container.
OpenFaaS is in charge of managing the lifecycle of the server-
less function, thus instantiating resources and releasing them
when the execution is completed. The shift from microservices
to FaaS modules leads to significant savings in code and
application logic development time. As presented in Cloud
Native Computing Foundation’s serverless whitepaper [12],
serverless enables developers to focus on the logic of atomic
modules and let the platform take care of the rest (i.e. trigger-
to-function logic, information passing from one function to
another function, auto-provisioning of container, autoscaling,
identity management, etc.). This reduction of responsibilities
provides lower requirements for infrastructure management
compared to the ones of any of the cloud native paradigms.
IaaS users still have to manage their virtual resources or,
when dealing with PaaS providers, to configure the application
to match the PaaS requirements [33]. Serverless applications
developers in contrast do not have to consider the operating
or file system, runtime execution management, and even
container management.

Code 1 in the appendix shows the implementation of the cre-
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ateKafkaTopic module as a Python microservice. The reader
can notice that several lines of code are not directly related
to the business logic of the service but to the application
setup, configuration, and execution. Lines 1-9 are used to
import packages for the microservice and many of them are
not strictly needed for the implementation of the business
logic. For example, flask is a web framework needed to declare
HTTP paths, argparse manages command line arguments and
logging and colored support the logging of the application.
The functions covered by these packages are quite common
in any microservice built on an HTTP API. Lines 12 and 13
initialize the flask application and logging. Lines 16 to 21
defines an endpoint to provide users with some documentation
about the microservice. Lines 24 to 50 contain the imple-
mentation of the endpoint of the microservice, implementing
the createKafkaTopic function. Finally, from line 53 to 85,
the initialization of the application happens. This includes:
(i) parsing and validating the command line arguments, (ii)
setting up the logging, and (iii) serving the application and
configure its IP address and port. The part strictly related to the
business logic of the microservice i.e., the creation of topics
(create kafka topic() function) represents less than one third
of the overall service logic, 25 lines of code out of 85.

Code 2 in the appendix shows the same createKafkaTopic
function developed in a serverless way using OpenFaaS’
python3-http template6. The reduction in terms of lines of
code with respect to the microservice version is clear: Ex-
ploiting OpenFaas of-watchdog7 and the transparent function’s
endpoints lifecycle management, the only logic needed for
the createKafkaTopic module is the actual function with no
additional overhead. Thus, the former service consisting of
85 lines of code is reduced to 32 lines. The handle() function
reproduces the same logic as the create kafka topic() function
in Code 1 (some refactoring has been applied), while the
other functionalities (e.g., web framework, logging, etc.) are
provided by the OpenFaaS platform. Moreover, the translation
of a microservice into a FaaS serverless function provides an
additional benefit to the developers: Horizontal scalability is
completely handled by the serverless platform, with no need
to manage the process at code level.

To sum up, the evolution from microservice to serverless al-
lows saving of at least 62% in lines of code, which reflects not
only in a significantly reduced software implementation effort
[34], but also in code simplification and maintenance. Besides,
these considerations do not include the additional code and
configuration files needed to properly deploy the microservice
in a production environment (e.g., web server, reverse proxy,
SSL setup), which require a significant additional effort, not
required by FaaS.

IV. PERFORMANCE EVALUATION

A. Testbed setup

For the evaluation process, two physical servers based on
Ubuntu Server 20.04 were used. Their hardware specifications
are reported in Table I. They are connected to the same LAN

6https://github.com/openfaas/python-flask-template
7https://github.com/openfaas/of-watchdog

TABLE I: Specification of the servers used in the testbed.

Server name Server #1 Server #2
CPU Intel(R) Xeon(R) CPU

E5-2640 v4 @ 2.40 GHz
Intel(R) Xeon(R) CPU
E5-2650 v3 @ 2.30 GHz

RAM 128 GB @ 2133 MT/s 64 GB @ 2133 MT/s
Disk 280 GB (145 MB/s write

speed)
280 GB (145 MB/s write
speed)

Net. ifaces 1x10 Gbps, 4x1 Gbps 1x10 Gbps, 4x1 Gbps

Fig. 3: Deployment of testbed components on the servers.

as illustrated in Fig. 3. Time synchronization is achieved by
using the Network Time Protocol (NTP). The two servers were
used for different purposes. The first one, Server #1, hosts the
monitoring platform, and it is in charge of collecting its CPU
utilization for different workloads. Instead, Server #2 is used
to generate the workload and to collect service related met-
rics. Specifically, in Server #1, the Data Collection Manager
component from the Monitoring platform8 was deployed for
each virtualization technique studied. In particular, the only
subcomponents of the DCM used for the tests are Kafka and
ZooKeeper. In the tests with 2 instances of the Kafka broker,
both of them run on Server #1, managed by ZooKeeper. A
CPU collector script based on the mpstat command was used
for measuring the relevant CPU consumption on Server #1.
Regarding Server #2, a Kafka publisher based on Sangrenel9

is used for obtaining the performance parameters under study.
The first set of tests is relevant to the evaluation of alterna-

tive virtualization components for running the Kafka broker of
the DCM. Thus, the testbeds deployed in Server #1 to evaluate
the technologies under study are the following:

• Bare-metal testbed, using directly the Server #1 hard-
ware without any virtualization technique. In this case,
Kafka and ZooKeeper are directly installed as Linux
services.

• KVM testbed, deploying Kafka and ZooKeeper in a
specific Ubuntu virtual machine10. This is the default
setup, analyzed in detail in [6].

• Docker testbed, using runc as container runtime (the de-
fault one for Docker) for deploying Kafka and ZooKeeper.

• Kubernetes testbed, using Kubernetes (v1.19)11, with
containerd as container runtime, in order to deploy pods
running Kafka and ZooKeeper.

8The software related to this architecture is publicly available in the 5G
EVE Github repository: https://github.com/5GEVE

9https://github.com/jamiealquiza/sangrenel
10The disk used for the VM, based on the qcow2 technology, is configured

with the writeback mode for the cache, and also using the metadata property
for the preallocation parameter.

11The Kubernetes distribution does not affect the performance of the
container runtime.
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The results of the evaluations are reported and analyzed in
Section IV-B.

For the investigation of the suitability of the serverless
paradigm to implement the management part of the 5G
EVE Monitoring platform12, management modules have been
deployed by using Docker containers, all orchestrated by
Kubernetes. The whole platform has been deployed on Server
#1. In more detail, the testbeds deployed to evaluate the
technologies under study are the following:

• Microservices testbed: using Kubernetes (v1.19), with
Docker as runtime, to deploy all the containers that
compose the Monitoring platform.

• Serverless Functions testbed: using OpenFaaS on top
of Kubernetes (v1.19) for managing the six atomic func-
tions described in Section III-A, exploiting faas-netes for
this purpose. faas-netes is an OpenFaaS provider which
enables Kubernetes for OpenFaaS.

The results of the latter set of evaluations are illustrated and
analyzed in section IV-C.

B. Experiments on virtualization technologies to handle mon-
itoring data

1) Evaluation plan: The evaluation process involves a
maximum number of six experiments running simultaneously
on the monitoring platform.

Each experiment generates monitoring data related to both
the infrastructure and the user application. Infrastructure re-
lated metrics include CPU usage, memory usage, disk usage,
and network usage measured for each Virtual Network Func-
tion (VNF) composing the service. Application related metrics
report information specific to the user application. They are
defined by the vertical user and can include, for example,
the number of devices currently connected to the service, the
number of requests served per second, the number of queries
to a database, round trip delay, re-transmitted packets and so
on (more information on the definition of application related
metrics is available in [34]).

The evaluation of each testbed mentioned above is done by
emulating the registration of experiments on the monitoring
platform and by generating synthetic monitoring data for
each of them. Metrics are sent in the form of messages
to a single instance of Apache Kafka after being generated
with Sangrenel. Each experiment has is own set of topics.
The generation of messages was modeled from empirical
observations carried out in the 5G-EVE project and pushed
toward worst case scenarios, in order to stress the monitoring
platform as much as possible during evaluation. Specifically,
each experiment produces 20 metrics, each one mapped into
a topic of Kafka messages. The workload is composed as
follows:

• 8 of these topics have packet size of 100B and a rate of
1000 messages per second.

• 8 of these topics have packet size of 1000B and a rate of
1000 messages per second.

12The software related to this architecture is pub-
licly available in the 5G EVE Github repository:
https://github.com/5GEVE/monitoring dockerized environment

• 2 of these topics have packet size of 100KB and a rate
of 1 message per second.

• 2 of these topics have packet size of 1MB and a rate of
1 message per second.

Thus, data for simple metrics (e.g., CPU usage) was modeled
with 16 topics with messages of small packet size generated
at high rate, providing a view of the system status with 1
ms granularity. The remaining 4 topics model more complex
data possibly coming from application related metrics, like
application logs, such as the 2xx, 3xx, and 4xx response
messages from selected HTTP service endpoints. Thus, the
period is increased to 1 s. The resulting traffic rate generated
by each experiment through its 20 topics is approximately
102.4 Mbps. These values of the period are much lower
than those typically used for monitoring functions in cloud
providers such as Azure [35] and Amazon [36], which use
monitoring periods in the order of 1-5 minutes. This is due
to two reasons. The first one is that a 5G system is much
more complex than a cloud, and thus it may need a tighter
monitoring. The second is that, as mentioned above, we need
to stress our system, thus we artificially reduced the period of
transmission of monitoring data. This implies that each of the
experiment used in our evaluation can represent tens of real
experiments. However, this does not endanger in any way the
obtained results.

In the following, we summarize the parameters that fully
define the workload used for evaluation.

• Design parameters: They are related to input data to
the system in order to properly configure the monitoring
platform for the evaluations. We can distinguish between:

– Fixed: Each experiment publishes on 20 topics, with
a concurrent publication rate of approximately 102.4
Mbps per experiment. The test duration is 5 minutes,
and the number of test repetitions is fixed to 10.
We show that this experiment duration is enough to
obtain stationary values in Section IV-B2.

– Variable: There are 20 topics per experiment. The
number of experiments is varying from 1 to 6.
This parameter determines the aggregate throughput
received by the monitoring platform, thus varying
from 102.4 to 614.4 Mbps.

• Performance metrics: these are the parameters measured
during the execution of the tests, which can be:

– CPU consumption [%]: measured on Server #1 with
the CPU collector. For having similar results on all
testbeds, all the tools that are not going to be used
for a particular testbed have been turned off.

– Batch write latency [ms]: the time spent until an
ACK message is received from the Kafka broker,
which indicates that the message has been correctly
handled by the broker. This is measured on Server
#2.

– I/O message ratio: the received throughput divided
by the publication rate (ingress load), which is a
measure of the fraction of messages lost by the
broker due to overload. This is measured on Server
#2 as well.
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2) Results: Figure 4 shows the results of the first part of the
performance evaluation. It shows performance metrics (defined
in Section IV-B1) for different virtualisation techniques. Four
virtualization schemes for the broker are compared: bare
metal, KVM-based VM virtualization, Docker containers, and
Kubernetes with containerd runtime. The comparison is plotted
as a function of the number of concurrent experiments in
terms of a) CPU consumption (%), b) batch write latency
(ms) in log scale, and c) normalized throughput. The abscissa
reports the number of concurrent experiment (representative
of the offered load). All subplots include the 95% confidence
intervals, although they are often very small and difficult to
distinguish.

Figure 4.a reports the evolution of CPU consumption versus
offered load. The first observation is that a saturation effect can
be noticed, a phenomenon previously observed in [15]. This
means that the CPU consumption increases with an increase
in the number of experiments deployed until a hard limit is
reached (i.e., the saturation point), which is around 25-27% for
the bare-metal, KVM, Docker and Kubernetes testbeds. Com-
paring all the deployment alternatives, the following trends are
observed:

• The bare-metal, Docker and Kubernetes testbeds present
a similar trend13, starting with a CPU consumption of
8-10% for one experiment and reaching the hard limit
between 3 and 4 experiments deployed in the system.

• The KVM scenario has a higher consumption profile at
the beginning, as it saturates sooner (with 2 experiments),
but it eventually reaches the same values as the previous
case.

To sum up, the best performance is provided by Kubernetes
technology, which saturates at 5 experiments (about 500 Mbps
of offered load) with a CPU consumption of 25%.

The latency of the batch FA8C4 operation is depicted in
Figure 4.b. We used the log scale in order to distinguish the
four curves. The latency increases with an increase of the
number of experiments deployed. For this parameter, three
different trends are observed, but with different implications
compared to the CPU consumption:

• Once again, the best results are observed for the bare-
metal, Docker and Kubernetes testbeds, with a batch write
latency value lower than 3 <B in the worst case (i.e., with
6 experiments deployed).

• When using KVM, we yield latencies of one order of
magnitude larger than the previous case (around 40 <B

in the worst case). This happens since the hypervisor’s
access to disk, required by Kafka, differs from the one
with containers. Containers share resources with the host
server. Hypervisor’s access to disk obviously also differs
from direct access to the disk, which is the case of
the bare-metal scenario. Again, saturation values for this
metric are reached for 2 experiments in the VM-based
virtualization.

13In the case of the analysis from [15], where containers are deployed
wihin VMs, the results are similar to the KVM testbed from this analysis, as
containers adapt their performance to the environment in which they run.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

# experiments

5

10

15

20

25

30

C
P

U
 c

o
n
s
u
m

p
ti
o
n
 [
%

]

Bare metal KVM Docker (runc) Kubernetes (containerd)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

# experiments

10-1

100

101

102

B
a
tc

h
 w

ri
te

 l
a
te

n
c
y
 [
m

s
]

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

# experiments

0.2

0.4

0.6

0.8

1

1.2

I/
O

 m
e
s
s
a
g
e
 r

a
ti
o

a)

b)

c)

Fig. 4: Comparison between bare metal, KVM-based VM
virtualization, Docker, and Kubernetes: a) CPU consumption,
b) batch write latency, and c) normalized throughput.

To sum up, also in this case the best performance is reached
by the Kubernetes technology, although it is very close to the
one relevant to Docker and bare-metal.

Finally, according to the results shown in Figure 4.c, the
evolution of the normalized throughput (i.e., the handled
throughput divided by the publication rate) depends also on
the saturation effect experienced in the Kafka broker. When it
appears, packet losses occur, causing a reduced I/O message
ratio with increased number of experiments (i.e., the through-
put received by the platform). In this way, the three trends
observed for the CPU consumption are also repeated in this
case with a clear correlation between results:

• First of all, the bare-metal, Docker and Kubernetes
testbeds present the same trends and the highest possible
values, with an I/O message ratio of about 0.75 in the
worst case (Docker testbed with 6 experiments deployed).
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According to the point where the I/O message rate starts
falling, it is confirmed that the saturation point seems to
be in the range of 3 (for bare-metal and Docker) to 4 (for
Kubernetes) experiments deployed.

• The KVM testbed follows, in which the saturation point is
reached already with 1 experiment, as commented in the
CPU consumption analysis, with a significant throughput
decrease for 2 experiments, and achieving a minimum
value of about 0.25 in the worst case. This trend is, in
fact, the one observed in the analysis done in [15], as
containers are used in a VM as host.

Also when considering I/O ratio, the best performing solution
is Kubernetes, since it can keep nearly the 100% of throughput
(i.e., 1 I/O ratio) for 4 experiments (about 410 Mbps of offered
load). Instead, for 4 concurrent experiments this ratio starts
falling below 0.99 for bare-metal and Docker. In more detail,
it falls below 0.97, which makes the configuration no longer
acceptable, since a significant fraction of monitoring data gets
lost. Data loss must be avoided since these data are used by
the verticals to evaluate their KPIs. Thus, looking back to
results in Fig. 4.a and 4.b, one can see that Kubernetes is
the best solution, since it reaches the saturation point later
and it can offer the best performance in latency and CPU
consumption compared to the other solutions. As for the VM-
based virtualization, it is now clear that saturation is reached
in the range of 1 (0.999 I/O ratio) to 2 experiments (0.746
I/O ratio). This implies that its performance in term of CPU
consumption and latency does not significantly change with
more than 2 experiments.

Given these results, we decided to analyze also the scala-
bility of the compared solutions when the same hardware is
used. It is known that deploying multiple instances of the same
virtualized software on the same hardware is often convenient
also in terms of performance (e.g. see [37]), allowing to better
exploit the computing capacity. Clearly, for the bare-metal
solution this is not possible. As for the other solutions, we
considered KVM virtualization and, for the container solution,
Kubernetes, given its superior performance with respect to
Docker with a single instance. In our analysis, we considered
the comparison between 1 and 2 instances for both technolo-
gies, with both instances running in Server #1. Results are
shown in Figure 5, which reports a) CPU consumption in
percentage, b) batch write latency in ms , and c) I/O ratio (c),
always as a function of the number of experiments. Again,
95% confidence intervals are reported in all plots. Results are
as expected. Both KVM and Kubernetes benefit of multiple
instances, although a clear gain is obtained only with the latter.
In fact, with 2 VMs it is possible to mitigate the saturation
effect for 2 experiments, with an I/O ratio equal to 0.95 (see
Figure 5.c), but not enough to justify its usage. Clearly, latency
is improved (see Figure 5.b) due to a higher CPU consumption,
which witnesses that complete saturation is still not reached.
However, the highest I/O ratio is provided by Kubernetes. In
fact, Fig.5.c shows that, when considering 2 instances of the
Kafka broker, automatically managed by the platform, it is
possible to reliably sustain the offered load of 6 experiments
(0.998 I/O ratio), corresponding to about 614 Mbps. For higher
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Fig. 5: Scaling comparison between KVM virtualization and
Kubernetes: a) CPU consumption, b) batch write latency, and
c) normalized throughput.

load, we expect more significant message loss. This is also
confirmed by the CPU consumption (5.a), which increases
steadily with the number of experiments, without any signifi-
cant flattening. Finally, also latency benefits of this alternative
deployment become visible, with a maximum latency of about
1 ms. An important remark is on the CPU consumption. Even
using 2 instances, the overall CPU consumption is below 40%
in non-saturated conditions (6 experiments), which is nearly
the same CPU requirement as that of the KVM solution (2
VMs) when loaded with 1 experiment only.

It must be noted that using different topics in the same
broker to separate experiments is effective only at the func-
tional level. When the number of experiments increases, packet
losses affect all experiments indistinguishably, thus not pro-
viding performance isolation for monitoring data collection.
However, with the last analysis, we have identified the way
to address this issue. The most straightforward solution is to
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Fig. 6: Comparison of the impact of transient between KVM
virtualization and Kubernetes on: a) CPU consumption, b)
normalized throughput.

.

allow Kubernetes to scale automatically, thus replicating the
broker to maintain a given performance level. In addition, since
Kubernetes can allocate resource quotas to namespaces [38],
in some scenarios it could be convenient to deploy different
instances of the broker in different namespaces for handling
experiments running in different slices, each one with its own
computing resources. This can be done at runtime during the
set up of a slice. In both ways, the data plane performance
of the monitoring platform would be independent from the
number of concurrent experiments, and it would be possible
to exploit not only powerful servers, but also clusters of them.
As for the overhead, we expect a small increase, as it appears
in Figure 5.a, where for running 2 experiments (i.e. the case of
interest) the CPU consumption of Kubernetes with 2 instances
is only 3% higher than in the case of handling the whole traffic
with a single instance.

Finally, we analyze the transient effects on CPU consump-
tion and normalized throughput, which are depicted in Fig. 6.
Figure 6 shows a) the CPU levels and b) the related I/O rate as
a function of the test time for a single runtime test. During the
test, the value of each workload is kept constant for 5 minutes,
after which a further experiment is added, which corresponds
to an increase in the workload rate of 102.4 Mb/s, up to
a maximum of 6 concurrent experiments. The figure shows
the performance for both Kubernetes, using the containerd
runtime, and VMs managed by KVM. We can observe a step in
the CPU consumption every 300 seconds, corresponding to the
increase in the workload (Fig. 6.a). This phenomenon is more
evident for Kubernetes, which scales much better and reaches
the saturation only for 5 experiments. Considering the I/O rate,
it is easy to identify the transition to higher workload levels
in KVM, which enters saturation condition for 2 concurrent
experiments. In addition, the transient due to a significant

increase in the workload (i.e. when a new experiment is added)
always vanishes within 20 seconds, which represents less than
7% of the test duration for each workload level. This transient
manifests itself with a peak of CPU occupation, which can
correspond to instantaneous I/O rate values slightly lower than
100%, immediately compensated by values slightly larger than
100%14. This means that the test time is more than enough
to capture the steady state of the system for each level of
workload. However, from the analysis of the figure, it is
possible to note that these CPU oscillations and the resulting
variations in the ability to handle the offered load are present
not only during the initial transient, but occur periodically
throughout the test time, and the value of these spikes increases
as the workload grows. These fluctuations in both CPU occu-
pancy and I/O pace are larger with VMs than with Kubernetes
containers. This is reflected in a better average performance
of Kubernetes (best approach) than KVM (baseline and worst
approach), as already discussed this section.

The results shown in Fig. 6 allow commenting also the
dynamic behaviour of the monitored services. For instance,
if the number of served users and/or their traffic increases
significantly, the 5G platform scales up by adding replicas
of the VNF instances, as expected. However, this implies
an obvious increase in the rate of monitoring data generated
by those VNFs. Also in the worst case, in which all VNFs
involved in the service are replicated, this corresponds to
adding a further experiment, as in Fig. 6, which can be easily
managed by our platform, with a corresponding horizontal
scaling operation, when needed.

C. Experiments on management of monitoring topics

The previously described performance comparison has high-
lighted an overall supremacy of Kubernetes technology in
terms of efficiency and latency. This baseline analysis has
further motivated the investigation of serverless computing
feasibility in a real world 5G scenario. This because the
serverless computing paradigm mainly relies on containers,
which are orchestrated by a system such as Kubernetes,
with additional serverless-management components such as
the ones in faas-netes15, an OpenFaaS provider which en-
ables Kubernetes for OpenFaaS. The observed superiority of
containerized approaches for the given platform motivates the
choice of a microservices-designed version of the platform as
a benchmark to analyze serverless computing performance in
deploying the services needed by the platform. Both paradigms
rely on the same virtualization technique (containerization),
being different for what concerns the management and deploy-
ment of services. Microservices represent a de-facto standard
architecture for containerized software deployment, whereas
serverless computing is still in an early stage, making its way
into application development.

14The I/O message rate can be higher than 1 because there are packets
that are expected to be received at a specific time but may be delayed and
received later on, so that the number of packets received at some moments can
be higher than the total number of packets sent per second, but on average,
the hard limit of the I/O message rate is 1.

15https://github.com/openfaas/faas-netes
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1) Evaluation plan: Delving into the particular tests to be
executed on each testbed, they consist of the execution of
the creation-and-deletion chain, already described in Section
III-A, measuring the execution time spent since the request
reaches the monitoring platform until it is completed. For each
configuration (serverless with cold start, serverless with warm
start and microservices), any execution was repeated 1.000
times, to have statistically significant results, and the execution
time of each serverless function was measured by using the
output of the curl command.

In the case of the serverless functions testbed, for both
cold and warm start configurations, each execution performs
a creation chain, sequentially followed by a deletion chain,
while the time spent by each atomic function is measured. The
execution steps are reported below. Steps 1 to 6 are related to
the creation chain, whereas steps 7 to 10 are related to the
deletion chain.

1) A topic is created with the createKafkaTopic function.
2) With fetchKafkaTopic function, it is checked if the

previously created topic exists.
3) The Kafka consumer process is created with the kafka-

Consumer function, doing an asynchronous call16 to the
function.

4) The topic is deleted with the deleteKafkaTopic function.
5) A new topic is created with another invocation of the

createKafkaTopic function, of which the corresponding
execution time is not considered.

6) The previous topic is used for invoking the dcsCreate
operation from the DCS Topic LCM, which also implies
the execution of the kafkaConsumer function.

7) The configuration created in the previous step is deleted
with the dcsDelete operation from the DCS Topic LCM.

8) The topic is deleted with deleteKafkaTopic, but its
execution time is not registered again.

9) The whole creation chain is invoked by triggering the
dcmCreate operation in the DCM Topic LCM.

10) The whole deletion chain is invoked by triggering the
dcmDelete operation in the DCM Topic LCM.

To compare the performance of the microservices testbed
with that of the serverless one, and to have a clearer analysis
of the whole execution chain, a test execution in the microser-
vices testbed simply triggers the dcmCreate and dcmDelete
operations.

Since the transformation of the platform into serverless
involves only management components, we do not consider
the batch write latency and I/O message ratio metrics for
its evaluation. Having already shown the benefits in terms of
development and deployment effort, we want to verify whether
the serverless components can provide similar performance
as their microservice counterpart. Hence, we focus on the
execution time needed by a function to serve a single request
and on the one needed to execute a chain of functions.

2) Execution Time Evaluation for Serverless Functions:
The execution time measured by each serverless function in the

16Due to this, as the measured execution time does not reflect the real time
spent by this function, it is not included in the performance evaluation.
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Fig. 7: Average execution time for all the serverless
considered functions, in cold and warm start modes, with
95% confidence intervals.

serverless functions testbed, repeating each execution 1.000
times, is depicted in Figure 7.

From Figure 7 is clear that running functions in cold start
mode leads to a significant penalty in terms of execution time.
In particular, considering a simple function as fetchKafkaTopic,
the execution time is in the order of milliseconds for the warm
start mode, whereas the same function executed in a cold start
mode requires more than 8 seconds to complete. Looking at
the composite serverless functions dcmCreate and dcmDelete
reported times, we observe that the sum of functions that
belong to the same chain is higher than the execution of
the whole chain, represented by the dcmCreate/Delete op-
erations. For example, dcmCreate time should be equal to
the sum of its serverless functions times (createKafkaTopic +
fetchKafkaTopic + dcsCreate). Instead, it can be noted that
the sum of simple serverless functions execution times is
higher than the single execution time obtained for the compos-
ite dcmCreate, Hence, calling functions separately consumes
more than calling functions simultaneously by invoking the
corresponding composite function. This conclusion applies to
both cold start and warms start modes.

To check the evolution of one serverless function for each
repetition in both configurations, Figure 8 shows how the
execution time of the createKafkaTopic function evolves for
each repetition executed. Considering the graph in Figure 8,
one can observe that the warm start curve remains nearly flat,
whereas the cold start curve presents more variability, with
spikes of up to 20 s during the considered repetitions. These
spikes appear randomly, so it is an unexpected effect. This
phenomenon could be related to influencing factors such as
memory and CPU conditions or containers shutdown issues, as
analysed in [39]. Cold start instability regarding the execution
time pattern will be further investigated in future works.

3) Execution Time Comparison between Microservices and
Serverless Functions: The comparison between the dcmCreate
and dcmDelete operations in the serverless testbed (with cold
and warm start) and the microservices testbed is presented in
Figure 9. It shows that the obtained execution times for these
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Fig. 8: Results’ comparison between the executions carried
out by the createKafkaTopic function in cold and warm start.
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Fig. 9: Execution time for dcmCreate and dcmDelete
functions in serverless and microservices deployments, with
95% confidence intervals.

two operations implemented with microservices and serverless
functions in warm start mode are almost equal. Hence, a
serverless approach with warm start mode can achieve the
same latency performance of a microservices deployment, with
the additional benefit of reduced code logic, as shown in
section III-B, and infrastructure maintenance [12]. Considering
a cold start approach, the same performance degradation of
execution time previously detected in Figures 7 and 8 is
obtained. Latency requirements for the management operations
of the monitoring platform can be quite loose. Even so,
several seconds of difference and, more importantly, a kind
of performance instability recommend the usage of warm
start mode over the cold start one. Thus, in conclusion, the
serverless approach is preferable, since it allows achieving the
same operation latency as a microservice implementation, but
with a much easier code implementation and maintenance.

V. CONCLUSION

In this paper, we discussed a new design of a real 5G
monitoring platform by introducing serverless computing prin-
ciples. We presented a performance evaluation of a FaaS

deployment and compared it to a microservices deployment
in terms of execution time. Through practical examples we
demonstrate the transformation of an atomic operation (i.e.,
createKafkaTopic) from microservice to FaaS modules. We
highlight the benefits obtainable with the serverless paradigm.
Those are essentially a simplified development workflow, sig-
nificant reduction of operational costs related to infrastructure
maintenance and software deployment, and almost effortless
horizontal scaling. We evaluated the performance of the re-
designed platform. For doing so, we have built a testbed
and executed three deployment scenarios: a microservices
based one, a serverless based one with warm start mode,
as well as a serverless based one with cold start mode. A
complete workflow of the 5G monitoring platform under study
was used as test execution. We measured the execution and
response time of each atomic operation. Our findings suggest
that the solution of serverless deployment with warm start
leads to the same performance in terms of execution time
as a microservices deployment, but with the above identified
additional advantages. An additional benefit of the serverless
platform is improved resource usage efficiency, in particular
when using a cold start approach. Nevertheless, the choice of
a cold start mode entails a significant increase of execution
and response times, as our analysis demonstrates. Hence, it
is preferable to avoid serverless deployment in conjunction
with cold start for delay-sensitive applications. Moreover, in
cold start mode the overall serverless deployment suffers of
some instability consisting of spikes of latency values which
happened during specific tests. We plan to further investigate
the nature of the cold start instabilities in future work.

However, serverless functions cannot be used to realize all
components, especially those with a behavior that is not event-
based. This is the case of the monitoring platform’s module in
charge of handling monitoring data, that is the pub/sub broker
implemented by Apache Kafka in our testbed. For this module,
the containerized approach with Kubernetes using containerd
as container runtime clearly showed superiority in terms of
lower CPU consumption, lower latency, and higher throughput,
with respect to the VM-based virtualization as well as to
the bare-metal implementation. It also slightly outperformed
its companion implementation using Docker with runc as
container runtime. In addition, Kubernetes exhibits excellent
horizontal scaling properties.

To sum up, the results of our analysis suggests to real-
ize a monitoring platform for B5G systems by adopting an
hybrid approach including both microservices and serverless
technologies, preferring the latter when event-based operation
are involved.

Future work will focus on formal modeling of the presented
system, as well as on the introduction of artificial intelligence
techniques to drive the horizontal scalability operations of the
platform.

APPENDIX
CODE SNIPPETS FOR CREATEKAFKATOPIC FUNCTION

Code 1 shows the implementation of the createKafkaTopic
module as a Python microservice, whereas Code 2 shows the
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same function developed in a serverless way using OpenFaaS’
python3-http template.
1 import requests
2 import argparse
3 import logging
4 import coloredlogs
5 from flask import Flask, request, jsonify
6 from flask_swagger import swagger
7 from waitress import serve
8 from kafka.admin import KafkaAdminClient, NewTopic
9 import json

10
11
12 app = Flask(__name__)
13 logger = logging.getLogger("CreateKafkaTopic")
14
15
16 @app.route("/spec", methods=[’GET’])
17 def spec():
18 swag = swagger(app)
19 swag[’info’][’version’] = "1.0"
20 swag[’info’][’title’] = "CreateKafkaTopic REST

API"
21 return jsonify(swag)
22
23
24 @app.route(’/create_kafka_topic’, methods=[’POST’

])
25 def create_kafka_topic():
26 logger.info("Request received - POST /

create_kafka_topic")
27 if not request.is_json:
28 logger.warning("Format not valid")
29 return ’Format not valid’, 400
30 try:
31 admin_client = KafkaAdminClient(
32 bootstrap_servers=kafka_ip_port,
33 client_id=’create_kafka_topic’)
34
35
36 data = request.get_json()
37 logger.info("Data received: %s", data)
38 topic = data["topic"]
39
40 logger.info("Creating topic %s in Kafka",

topic)
41
42 topic_list = []
43 topic_list.append(NewTopic(name=topic,

num_partitions=1, replication_factor=1))
44 admin_client.create_topics(new_topics=

topic_list, validate_only=False)
45 admin_client.close()
46 except Exception as e:
47 logger.error("Error while parsing request"

)
48 logger.exception(e)
49 return str(e), 400
50 return ’’, 201
51
52
53 if __name__ == "__main__":
54 parser = argparse.ArgumentParser()
55 parser.add_argument(
56 "--kafka_ip_port",
57 help=’Kafka IP:port’,
58 default=’localhost:9092’)
59 parser.add_argument(
60 "--log",
61 help=’Sets the Log Level output, default

level is "info"’,
62 choices=[
63 "info",
64 "debug",
65 "error",
66 "warning"],

67 nargs=’?’,
68 default=’info’)
69
70 args = parser.parse_args()
71 numeric_level = getattr(logging, str(args.log)

.upper(), None)
72 if not isinstance(numeric_level, int):
73 raise ValueError(’Invalid log level: %s’ %

loglevel)
74 coloredlogs.install(
75 fmt=’%(asctime)s %(levelname)s %(message)s

’,
76 datefmt=’%d/%m/%Y %H:%M:%S’,
77 level=numeric_level)
78 logging.getLogger("CreateKafkaTopic").setLevel

(numeric_level)
79 logging.getLogger("requests.packages.urllib3")

.setLevel(logging.ERROR)
80
81 global kafka_ip_port
82 kafka_ip_port= str(args.kafka_ip_port)
83
84 logger.info("Serving CreateKafkaTopic on port

8190")
85 serve(app, host=’0.0.0.0’, port=8190)

Code 1: createKafkaTopic as a microservice module

1 from kafka.admin import KafkaAdminClient, NewTopic
2 import json
3
4 def handle(event, context):
5 if event.method == ’POST’:
6 data = json.loads(event.body)
7 if "topic" not in data:
8 return {
9 "statusCode": 400,

10 "body": "Format not valid"
11 }
12 try:
13 topic = data["topic"]
14 admin_client = KafkaAdminClient(

bootstrap_servers="kafka.deployment8:9092",
client_id=’create_kafka_topic’)

15 topic_list = []
16 topic_list.append(NewTopic(name=topic,

num_partitions=1, replication_factor=1))
17 admin_client.create_topics(new_topics=

topic_list, validate_only=False)
18 admin_client.close()
19 except Exception as e:
20 return {
21 "statusCode": 400,
22 "body": "".format(e)
23 }
24 return {
25 "statusCode": 200,
26 "body": "OK"
27 }
28 else:
29 return {
30 "statusCode": 200,
31 "body": "No action for this endpoint"
32 }

Code 2: createKafkaTopic as a FaaS module
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