
Department: Head
Editor: Name, xxxx@email

Serverless Vehicular Edge
Computing for the Internet of
Vehicles
F. Alam
Monash University, Australia

A. N. Toosi
Monash University, Australia

M. A. Cheema
Monash University, Australia

C. Cicconetti
University of Pisa, Italy

P. Serrano
University Carlos III de Madrid, Spain

A. Iosup
Vrije Universiteit Amsterdam, Netherlands

Zahir Tari
RMIT University, Australia

A. Sarvi
University of Melbourne, Australia

Abstract—Rapid growth in the popularity of smart vehicles and increasing demand for vehicle
autonomy brings new opportunities for vehicular edge computing (VEC). VEC aims at offloading
the time-sensitive computational load of connected vehicles to edge devices, e.g., roadside
units. However, VEC offloading raises complex resource management challenges and thus
remains largely inaccessible to automotive companies. Recently, serverless computing emerged
as a convenient approach to the execution of functions without the hassle of infrastructure
management. In this work, we propose the idea of serverless VEC as the execution paradigm for
the Internet of vehicles applications. Further, we analyze its benefits and drawbacks, and identify
technology gaps. We also propose emulation as a design, evaluation, and experimentation
methodology for serverless VEC solutions. Using our emulation toolkit, we validate the
feasibility of serverless VEC for real-world traffic scenarios.

May/June 2019 1



Introduction
Vehicles such as cars, trucks, and other modes

of transportation play a critical role in modern
society. With nearly 1.5 billion vehicles already in
existence on Earth in 2022 and increasing demand
for digital processing and onboard applications,
the future of transportation and mobility presents
numerous new opportunities across the hardware,
software, networking, and services industries. We
envision a paradigm shift in this ecosystem.

Although sensory inputs attached to the vehi-
cles provide many of the current advancements
in Intelligent Transport Systems (ITS) and Con-
nected and Autonomous Vehicles (CAVs), the
next generation of automobiles will require fast
and reliable external computation services to off-
set the growing complexity and costs of onboard
computers [1]. Modern CAVs can generate data
at a velocity and volume that may exceed by far
the network capacity towards the Internet, and the
high Round Trip Times (RTTs) may be incompat-
ible with many emerging applications requiring
real-time capabilities. To cater to extra computing
needs and stringent latency requirements, we need
an approach that can leverage more resources than
available in-vehicle, yet make sure the resources
can compute and send back the results in-time,
and can do so automatically and efficiently for
a variety of time-critical vehicular applications,
including the perilous tasks of every autonomous
driving system.

We propose in this work an approach that ad-
dresses these needs by combining two emerging
paradigms: vehicular and serverless computing.
Vehicular Edge Computing (VEC) combines ve-
hicular and edge computing by offloading delay-
sensitive computational tasks from vehicles to the
nearby edge computing nodes. VEC utilizes avail-
able infrastructure that includes primarily Road
Side Units (RSUs) and decentralized edge data
centers in the proximity of RSUs. A large body
of research also proposes to utilize the leftover
capacity of the neighbouring and parked vehicles
for the computation of time-sensitive tasks [2].
There are significant challenges to achieving the
potential of VEC. Firstly, in contrast to cloud-
native applications, the development and deploy-
ment of VEC-compatible applications in dynamic
and diverse VEC environments are extremely

challenging for developers and operators. In fact,
any VEC solution should allow developers to
focus on the application’s business logic instead
of handling the management and orchestration
aspects. Moreover, addressing the scalability re-
quirements of the time-critical applications to
respond to the load variability at the edge is not
a trivial task. Finally, due to the mobile nature
of the vehicles at the network edge, using tra-
ditional stateful application architectures, which
are tightly coupled with storage to hold states
of the application (stored inputs and outputs),
significantly compromises the agility, elasticity
and efficiencies of ITS applications.

In recent years, a new paradigm of Function-
as-a-Service (FaaS) has emerged in the cloud
computing domain to address similar challenges,
with recent explorations in the context of edge [3]
and mobile computing [4], [5]. FaaS allows users
to deploy an independent, standalone piece of
code (a “function”) on the infrastructure where
the computational backend requirements for the
functions are assessed, provisioned and main-
tained by the platform provider. Advantages in-
clude: i) high agility in application development
without operational expertise; ii) effortless scala-
bility to cater to the surge in functions calls, and
iii) efficient use of resources through seamless
multi-tenancy. Since FaaS relieves the developer
from server management-related issues, the con-
cept is also known as serverless computing.

In accordance with these contemplations, this
paper coins a new term called “Serverless Ve-
hicular Edge Computing” or simply “Serverless
VEC”. Severless VEC refers to the deployment
of serverless execution model on edge devices,
RSUs, and vehicles for the purpose of processing
data from connected vehicles and supporting the
development of applications. In this architecture,
functions, and tasks are executed on edge devices
located near the source of data, rather than in
a central server. The “serverless” aspect means
that the edge devices can dynamically allocate
computing resources as needed, without the need
to manage and maintain a dedicated server infras-
tructure. This provides low latency, real-time pro-
cessing, and increased efficiency, flexibility, and
scalability for the management and analysis of
the large amounts of data generated by connected
vehicles and the increasing number of emerging

2 © 2019 IEEE Published by the IEEE Computer Society IT Professional



real-time applications.
Multiple efforts have been made in the recent

past for efficient task offloading on the vehicular
edge [1]. These works are centered around finding
the best methods for distributing the load to
connected computational units, e.g., neighboring
vehicles, RSUs or traditional cloud for optimizing
time, energy, or computational capacities. How-
ever, there has been no or little effort in providing
a comprehensive solution that caters to VEC
application deployment issues such as ephemeral
connectivity of moving vehicles, failure handling,
provisioning, monitoring, and scalability.

In addition, without empirical evidence, the-
oretical concept such as Serverless VEC may
be deemed infeasible and impractical for time-
sensitive real-world scenarios. To bolster its fea-
sibility and usability in reality, we provide an
emulation architecture and toolkit for Serverless
VEC using open-source frameworks. Through ex-
periments, we demonstrate the viability of Server-
less VEC for real-world applications and show
that it can provide improved response times for
resource-intensive applications such as object de-
tection. Our future work will aim at using this
architectural framework to provide more exten-
sive experiments with various policies providing
a platform for others to conduct similar experi-
ments.

This work aims to provide a comprehensive
and practically feasible solution that distributes
the load and creates, manages, and scales the
VEC applications for optimal latency while min-
imizing development and deployment costs. We
extend the idea of serverless computing that is
successful in the traditional cloud to provide a
feasible solution to manage the VEC infrastruc-
ture [3]. Our key contributions are: i) a platform
agnostic infrastructure management for serverless
VEC with built-in autoscaling, and load balancing
on the edge; ii) an analysis of the advantages of
serverless VEC; iii) a review of the challenges
expected in early adoption; and iv) a detailed
architecture for the emulation of serverless VEC,
along with an exemplary scenario to showcase the
feasibility of serverless VEC.

Operational Model and Background
We consider an operational model that com-

bines vehicular, edge, and serverless computing.

Vehicular AdHoc Network (VANET)
The next generation of vehicles, called

CAVs, will be equipped with communica-
tion technologies to communicate with each
other—Vehicle-to-Vehicle (V2V)—with roadside
infrastructure—Vehicle-to-Infrastructure (V2I)—
and in some cases, even with pedestrians—
Vehicle-to-Pedestrian (V2P). The ambit term for
these communication technologies is Vehicle-to-
Everything (V2X) communication. This Point-
to-Point communication infrastructure creates an
adhoc network on the roads called Vehicular Ad-
Hoc Network (VANET). CAVs utilise VANET for
applications such as pre-crash sensing, blind in-
tersection, and forward collision. VANET enables
message and information passing using multihop
strategies on the P2P connections established by
V2X [6].

Task Offloading in VANET
The number of sensors in vehicles is spiraling

with the cost of electronics in vehicles, which
was around 35% in 2010, is expected to reach
50% by 2050. Vehicles with higher autonomy
generate around 25GB of data per hour, according
to an estimate by McKinsey. With the advent
of VANET and V2X, ITS applications would
pave the way for newer and more advanced
applications. However, the present computational
infrastructure would not be sufficient to process
this deluge of data for advanced applications. To
cater to the growing demands of vehicular com-
putation, we need to offload their computational
tasks using the VANET infrastructure. Thus, a
large body of research has been attributed to
efficient task offloading [1].

Vehicular Cloud/Edge Computing
The onboard computational power in current

vehicles is not keeping up with the advanced ap-
plication demands. Due to an ongoing bottleneck
in semiconductor production, producing and scal-
ing enough chips to meet this growing demands
is unlikely to happen for the next coming years.
Mobile Cloud Computing (MCC), a paradigm
that allows both storage and computation of data
outside the mobile device, is being employed to
keep up with this growing demand.

As an extension to MCC, Mobile Edge
Computing/Multi-Access Edge Computing

May/June 2019 3



Department Head

Edge Data Center

RSU RSU RSU

Figure 1. A serverless vehicular edge computing Scenario. f represents serverless functions that can be
deployed on various nodes.

(MEC) has been explored to minimize latency
of transmission to cloud and further improve the
quality of service (QoS). MEC is a paradigm
where the resources for infrastructure-as-a-
service (IaaS), platform-as-a-service (PaaS), and
software-as-a-service (SaaS) can be accessed at
the edge of the network. When the MEC concept
is extended to ITS, it is known as Vehicular Edge
Computing (VEC). In a VEC, the data would
be computed at the RSUs, or at decentralized
computing centers nearby RSUs, which is called
edge data centers. For sudden peaks in API
triggers, even neighboring vehicles and central
cloud facilities can be employed to augment the
edge infrastructure. Various studies have been
conducted to study the modalities and techniques
for VEC [1].

Software-Defined Networking (SDN)

Software-defined networking (SDN) is an ap-
proach to networking that provides separation
between the network control plane and the for-
warding plane with centralized administration
identified as the key enabler for 5G. It also offers
operation flexibility and network management at
scale for VANETs. A programmable and intelli-

gent 5G network provided by SDN is highly agile
and boosts the usability of the high bandwidth
and low latency offered by 5G. It also paves the
way for more innovation, and advanced service
and product offerings, thereby improving overall
efficiency.

Serverless and Function-as-a-Service (FaaS)
With the advent of virtualization and cloud

computing, the notion of serviceability enhanced
by the advancement of technologies led to the
creation of Function-as-a-Service (FaaS). FaaS
allows the user to specify logical, independent
pieces of code to be deployed as microservices.
Functions are deployed in software containers
which are self-contained units holding the func-
tion and related libraries bundled together in an
isolated space running as a process. The ser-
vice provider provides the required resources to
execute functions based on their footprint and
elastically scales them according to the demand.
This is beneficial as the user does not need to
maintain or scale the backend resources.

Figure 1 illustrates how FaaS operates in
VEC. FaaS acts as a serverless way to de-
ploy functions on the infrastructure provided and
maintained by the service provider. It is mainly

4 IT Professional



used in an event-driven context where functions
are triggered by typical events such as HTTP
requests, message queues, database or storage
operations, etc. The event driven nature of server-
less aligns well with the nature of many VEC
applications that require event triggering based on
sensing/actuation.

Benefits of Serverless VEC
In the cloud, serverless computing and the

FaaS programming model are becoming increas-
ingly popular due to the many advantages they
offer [7]. In this section we frame these advan-
tages in the context of serverless VEC.
Serverless scales well with non-uniform dy-
namic vehicular offloading. Requests for VEC
applications follow vehicle traffic patterns, which
are bound to be highly non-uniform in both space
and time. With serverless, provisioning does not
need to be based on peak traffic conditions,
which can waste resources. In other words, the
stateless nature of FaaS invocations makes it
straightforward to scale up and down the num-
ber of instances of a given platform based on
the request rate and commensurate resource re-
quirements. This would also help optimize the
infrastructure cost of the service provider as the
system specifications are set based on favorable
traffic conditions, keeping the system elastic to
meet growing demands. Scaling also helps reduce
overall operational costs and energy consumption.
Ideally, the exact amount of resources needed for
the current traffic load should be active at any
time and platform [8].
Flexible billing model helps on-demand vehic-
ular applications. With the rate of advancements
and investment in ITS, the applications and ser-
vices attributed to the vehicles will increase as
well. This creates an opportunity to implement
opportunistic mechanisms to share the compute
resources available on the RSUs and the vehicles.
Some preliminary studies on incentive mecha-
nisms for edge computing have been proposed,
e.g., [9], but the research is still in its infancy.
We can speculate that the sandboxed environment
provided by serverless computing, coupled with
fine-granularity billing (typically in volume of
function calls), will provide a fertile environment
for a market of computation power for VEC.
For example, low-end vehicles with little or no

computational resources would have the option
to get the services offered by high-end vehicles
or nearby infrastructure by paying for the services
only as needed.
Statelessness property helps opportunistic de-
ployment of VEC functions. The FaaS paradigm
is inherently stateless. The stateless nature of
serverless functions makes them an attractive
platform for real-time VEC applications that need
to deploy services opportunistically. Avoiding
state enables serverless to be ephemeral. Thus,
it makes it easier for the serverless framework to
allocate resources to functions and host functions
across RSUs, Vehicles, etc. Moreover, in VEC,
the state of some applications may only make
sense for a given physical location (e.g., at a
junction) and for a limited amount of time (e.g.,
until a traffic jam is resolved) which is matching
the ephemeral states in Serverless.

Stateless property addresses the challenge of
service migration for moving vehicles. Due
to the dynamic nature of moving vehicles, a
vehicle may trigger an API request at the edge,
but leave the network coverage area of the
RSU before receiving the response. In order to
meet the low-latency requirement of real-time
VEC applications, this may require service
migration over the network, particularly for
stateful applications, which can be a costly and
time-consuming process. In a stateless serverless
scenario, the same task can be requested again
at the next connected RSU without impacting
the overall application flow. On the other hand,
in traditional edge computing with stateful
containers or VMs, service continuity requires
the transfer of the current state to the new edge,
thus increasing the management plane complexity
and affecting both the system resources and the
user’s Quality of Experience (QoE).
Serverless VEC handles massive paralleliza-
tion. FaaS invocations are independent of one
another; thus, the execution of complex applica-
tions through many smaller tasks in parallel may
be done in a straightforward manner [10]. Some
vehicular applications may take advantage of this,
especially when running on relatively modest
hardware, such as that made available by RSUs.
Such a granular function decomposition opens the

May/June 2019 5



Department Head

door to sophisticated optimization strategies and
high-performing architecture. The request sched-
uler can place sub-tasks independently on differ-
ent threads, processes, and machines or schedule
them for parallelism on hardware accelerators.
Serverless VEC favors interoperability. With
vehicles of different car makers and models on the
road, vehicle computation infrastructure would
be heterogeneous in nature. Handling various
devices, hardware, operating system, and library
requirements is a challenge that needs to be ad-
dressed within industry alliances (e.g., AUTomo-
tive Open System ARchitecture – AUTOSAR1),
which slows down the innovation and time-to-
market. With serverless, the container is a self-
contained abstraction with function code and rele-
vant libraries pre-bundled in a single unit that can
be deployed over different hardware and archi-
tectures, thus enabling faster cycles of software
deployment, adoption, and updates.
Serverless helps faster development of VEC
applications. A serverless architecture relieves
the developers from the burden of platform man-
agement, maintenance, and scaling. This allows
them to focus solely on the functionality and
business logic of the application they want to
provide to clients, paving the way for faster
development cycles and lower operational costs.
Event-driven nature of serverless matches ve-
hicular use cases. The event-driven architecture
of serverless makes it a perfect match for many
VEC applications working in real-time based
on data-rich sensing and actuation events and
state changes. In other words, the distributed
and asynchronous architecture pattern of VEC
applications can be simply handled by the event-
driven function services. Serverless can rely on
events to trigger and communicate between de-
coupled services of VEC applications built on
microservices.

Challenges and open issues of using
Serverless in VEC

Despite the advantages to using serverless
architecture in a VEC scenario, there are also
some challenges and open issues that need to be
addressed to fully exploit its potential.
Management and Orchestration (MANO) of

1https://www.autosar.org/

Serverless VEC has high overheads. Clus-
ter management and orchestration is a complex
operation involving keeping a list of running
containers, driving autoscaling, managing place-
ment, performing load balancing, and continu-
ously monitoring the resources. Existing Server-
less frameworks are designed to execute in pur-
posely built cloud settings with computing nodes
in static clusters operated on tightly coupled and
often homogeneous servers connected through
high-speed and reliable wired networks. However,
in VEC, computing nodes are heterogeneous and
dispersed over a mixture of wired and unstable
and intermittent wireless networks, which makes
management and orchestration more challenging
and especially vexing for low-resource computing
nodes such as vehicles and RSUs.
Cluster formation is not designed for dynamic
vehicular topologies. Existing FaaS frameworks
and orchestration tools are designed for back-
end server-based solutions where cluster nodes
are readily available for scheduling and are ex-
pected to be stable over time. Instead, in a VEC
secnario, where vehicles can act as computing
nodes and join and leave clusters dynamically.
Today’s procedure for cluster formation may be
inadequate for such a volatile scenario due to the
considerable time and resources required by the
related procedures, which can negatively impact
the overall performance.
Serverless suffers from cold-start effects. Ex-
periments executed in the cloud have revealed
that only a tiny fraction of the response time
of a FaaS call invocation can be attributed to
computation, while the rest is overhead due to
network transfers, container activation, run-time
environment set-up, virtualization costs [11] etc.
The overhead is especially significant the first
time a function is invoked after the orchestra-
tion system has scaled down to zero instances,
in which case a cold-start phenomenon occurs.
The container image has to be pulled from the
repository and loaded, which can take orders of
magnitude more time than the typical response
time.In a VEC scenario, we speculate that cold-
start effects may be much more widespread than
in a cloud system because there is not a single
serverless platform logically centralized in a data
center, but many distributed over a territory. High
jitter, and in particular tail latencies created by

6 IT Professional

https://www.autosar.org/


cold-start effects, can be problematic for time-
critical tasks and, if not addressed by research and
technology, may become a barrier to the adoption
of serverless VEC.
Resource scheduling optimization is more dif-
ficult. In the cloud, the main role of the au-
toscaler is deciding how many replica instances
are needed for a given function. In an edge sce-
nario, the problem becomes more complicated be-
cause the run-time environment is also in charge
of deciding where, that is, on which edge node to
activate or terminate an instance. Serverless VEC
presents a new level of complexity because these
environments are highly dynamic and consist of
a heterogeneous, loosely coupled set of nodes
connected with erratic and unreliable network
connections. Given the time-variable dynamics of
such a system, it is difficult to predict which node
is best suitable for the given request, considering
the locations of the nodes, their velocities, direc-
tions of movement, hardware characteristics, and
so on.
New security concerns. Serverless in the cloud
is secured by a firewall in a trusted environ-
ment [12], while in a VEC, nodes would be
exposed to different heterogeneous and insecure
vehicles. Moreover, with multi-tenancy, multiple
clients would be serviced in the same cluster and
overlapping nodes. This adds to the complexity of
addressing security measures as the data would be
distributed across vulnerable nodes in heteroge-
neous environments. Although sandboxing does
help isolate the space, the data is still shared on a
different platform. New studies on how to enable
security and privacy in such a heterogeneous and
ephemeral system are needed.
Ingress points are distributed Serverless sys-
tems in the cloud are logically centralized, with
all client requests forwarded to a central gateway.
Such a model does not capture the distributed
nature of a typical VEC scenario, and investi-
gation is required to establish a scalable, dis-
tributed, agile and/or hierarchical model for faster
response times for clients and minimum resource
utilization for servers. Furthermore, the choice of
where to place the multiple gateways based on
the continuously changing VEC environment is
also an open research problem.
Modeling, simulation, and emulation of server-
less VEC is not trivial. Models, simulators, and

emulators are required to evaluate and test the
performance of serverless VEC applications and
mimic their behavior, hardware, software, etc.
However, modeling, simulation, and emulation of
a serverless VEC scenario where vehicles move in
and out of range at varying high speeds in a short
span of time with many distributed software and
hardware components involved is challenging. In
the remaining part of this paper, we focus on
this challenge and propose our emulation for
serverless VEC.

Serverless VEC Sample Use Cases
There could be many applications that would

benefit from a serverless VEC. Some of the use
cases are listed below:
Autonomous Driving. Serverless VEC can sup-
port high-speed processing of data from the cam-
eras and other sensors onboard vehicles with
full or partial offloading to assist extra computa-
tion and application development for autonomous
driving. This improves the performance, reliabil-
ity, and cost-effectiveness of autonomous driving
systems.
Traffic Management. Serverless VEC can help
with real-time data processing from vehicles to
enable coordinated responses to traffic informa-
tion such as road incidents and other safty hazard
for efficient traffic management.
Infotainment Services. The presented framework
can provide high-speed, low-latency processing
for vehicle add-on services like entertainment
systems such as gaming, streaming video, and
more. Other add-on services could include emerg-
ing AI/ML use cases for gesture recognition and
voice recognition, leading to improved QoE.

Emulation Architecture and Prototype
A typical VEC scenario involves a bunch of

RSUs and vehicles generating requests for tasks
such as image processing or object detection
for various applications like autonomous driving,
accident prediction algorithms on blind turns, and
augmented and virtual reality applications for
add-on comfort. Testing, performance analysis,
and verifying serverless applications in a real-
world VEC environment is costly and difficult,
if not impossible, in many cases. In addition, it
is essential to study the system’s intricacies, like
predicting the load on RSUs, average response

May/June 2019 7



Department Head

times, effects of various scheduling and orches-
tration strategies, the impact of traffic movement
patterns on a load of RSUs and edge data cen-
ters, and other similar metrics. In these cases,
simulation or emulation tools are instrumental in
providing developers with accurate or near-real
precision data. In this work, we put together an
emulator toolkit to delve into the peculiarities of
deploying a FaaS application in a serverless VEC
environment.

The proposed emulator toolkit architecture is
depicted in Figure 2. We use a mix of multiple
off-the-shelf and open source simulator/emulator
tools along with our software codes to create a
software suite representing serverless VEC sce-
narios. In the following, we discuss main compo-
nent of our proposed emulator.

SUMO: For road network traffic simulation,
we use Simulation of Urban MObility (SUMO),2

an open source traffic simulator. SUMO can han-
dle large scale and continuous traffic simulation
on vast road networks. One can also create road
networks of choice for their setup. Maps down-
loaded from OpenStreetMaps (OSM)3 are used
as an input of the road network to SUMO for
real life traffic generation. As an output, SUMO
generates traffic trace file with position of every
vehicle at every time step on the map using a
given traffic model.

Mininet-WiFi: The proposed architecture
uses WiFi based DSRC network for V2X commu-
nication. We use open source emulator Mininet-
WiFi.4 Mininet-WiFi is an extension of open
source network emulator Mininet and allows for
creation of WiFi access points and WiFi stations.
Mininet-WiFi allows specifying the positions of
the stations and access points. The WiFi con-
nection is established by virtualizing the wireless
medium that connects all WiFi devices. This vir-
tual medium is called wmediumd. It also handles
handover by stations getting connected to the
access point based on two different strategies:
strongest signal first (ssf) and least loaded first
(llf).

Containernet: Containernet5 is another
project that extends Mininet-WiFi and allows

2SUMO. https://sumo.dlr.de/docs/index.html
3OpenStreetMap. https://www.openstreetmap.org/
4Mininet-WiFi., https://mininet-wifi.github.io/
5Containernet. https://mininet-wifi.github.io/containernet/

creation of Docker containers as hosts and
stations in the emulated network topology. We
use containernet to create vehicles (stations
in Mininet-WiFi) and RSU or edge devices
as Docker Containers. Containers let us
get a segregated computing environment
for experimentation closely resembling the
independent environment over any vehicle or
edge device.

ONOS: Mininet-WiFi also integrates with
Software-Defined-Networking (SDN), where net-
working of nodes can be managed by an SDN
controller. We use Open Network Operating Sys-
tem (ONOS)6 as the SDN controller. All the
nodes connect to ONOS for updating their rout-
ing entries. SDN helps provide more networking
control and related optimization in a dynamic
experimental setup.

Container Orchestrator: Any serverless
framework requires a running cluster on which
function can be deployed and executed. We use
Docker Swarm7 to create and orchestrate the VEC
cluster due to its lightweight architecture suitable
for edge computing. In our setup, the Docker
Swarm instance runs on the RSU container. The
vehicles running on other docker containers can
join the cluster as nodes using the connection
maintained by Mininet-WiFi. Vehicles joining
the cluster are available for the function replica
placements by the swarm manager at RSU. Other
edge devices and RSUs can also join the cluster
similarly. The cluster manager is responsible for
maintaining a list of nodes (vehicles or other
RSUs and edge devices) associated with this
cluster, providing a platform for the placement
of functions and helping in the scheduling and
orchestration of nested containerized functions.
We used Docker Swarm instead of Kubernetes
as the time required for nodes to join a cluster
in Kubernetes is much high compared to Docker
Swarm. If a vehicle moves fast and keeps crossing
RSUs, much of the time is spent on disconnecting
from the previous cluster and connecting to the
closer ones, providing little time for the actual
computation of functions.

OpenFaaS: OpenFaaS8 is an open-source
serverless framework for the deployment of

6ONOS. https://opennetworking.org/onos/
7Docker Swarm. https://docs.docker.com/engine/swarm/
8OpenFaaS.https://www.openfaas.com/

8 IT Professional

https://sumo.dlr.de/docs/index.html
https://www.openstreetmap.org/
https://mininet-wifi.github.io/
https://mininet-wifi.github.io/containernet/
https://opennetworking.org/onos/
https://docs.docker.com/engine/swarm/
https://www.openfaas.com/


FaaS Platform (OpenFaaS) Container Orchestrator (Docker Swarm)
 

Vehicular Edge Computing (VEC) Hosts
 

Containerization platform (Docker or Containerd)

Autoscaler

Application (YOLO)

Wireless Medium (Wmediumd)

Wirless Network Emulator (Mininet-WiFi)

Hosts Emulator (Containernet)

Tr
af

fi
c 

S
im

u
la

to
r 

(S
U

M
O

)

 S
o

ftw
are-d

efin
ed

 N
etw

o
rk C

o
n

tro
ller (O

N
O

S
)

... ...

Func. Replica

RSU/Edge node 1 
Container

Nested Container

Swarm Manager

Metric/Load Monitoring 
(Prometheus)

Authentication

Internal Distrbuted 
State Store

P
yt

h
o

n
 R

u
n

n
er

R
o

ad
 M

ap
 

(O
p

en
S

tr
ee

t 
M

ap
)

Func. Replica

Vehicle 1 Container

Nested Container

Position

Req. Generator

 Func. Replica

Vehicle n Container

Nested Container

Position

Req. Generator Func. Replica

RSU/Edge Node m 
Container

Nested Container

Gateway

Load BalancerOperator

Deployment 

Tr
af

fi
c 

V
is

u
al

iz
er

M
ov

e 
V

eh
ic

le
s

Join Cluster

map.osm/
custom map

G
en

er
at

e 
Tr

af
fic

 

E
m

ulation logs

S
et

 u
p 

To
po

lo
gy

/E
m

ul
at

io
n

Request/Response

Figure 2. Software architecture of the emulation toolkit.

Function-as-a-Service. This is used to deploy
functions as a service on the cluster setup by
Docker Swarm. The user needs to specify the
functions to be used, and OpenFaaS deploys these
functions on the Docker Swarm cluster. Open-
FaaS helps set up API gateway for the functions
and performs autoscaling as the load changes.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Response Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tu

al
 F

re
qu

en
cy

Cumulative Distribution Function

FaaS
No FaaS

Figure 3. CDF of response times

Experimental Setup
An experiment is conducted to prove the fea-

sibility of the presented architecture. A road map
with a single crossing and a 1km road length on
each side is employed. Traffic is randomly gener-
ated for a 5-minute interval using randomTrips.py
utility of SUMO. Traffic traces are generated in
XML format, maintaining vehicle positions at

each time step (seconds) throughout the vehicle
journey.

A python script parses these traces and in-
vokes a routine for Mininet-WiFi. It starts an
access point, instantiates wmediumd wireless
medium with IEEE802.11n protocol, logDistance
as the propagation loss model and Strongest Sig-
nal First for association and handover. It creates
vehicles as Mininet-WiFi stations and emulates
them on the docker container provided by the
containernet. RSU is instantiated as a docker
host and connected with the access point on an
ethernet link. Each vehicle container is allocated
a 1GB memory and RSU a 4GB memory.

The YOLO object detection model 9 is de-
ployed on OpenFaaS as the use case application
for experimentation. A docker container image
is created for YOLO with an exposed port for
HTTP requests. Before starting the emulation,
Docker Swarm and OpenFaaS are installed on the
RSU with RSU as the manager node.

After that, the python script starts the move-
ment of vehicles as per traffic traces generated by
SUMO. The vehicle movement is performed by
changing the position parameter associated with
each vehicle container (as provided by Mininet-

9YOLO, https://pjreddie.com/darknet/yolo/

May/June 2019 9

https://pjreddie.com/darknet/yolo/


Department Head

100 120 140 160
Timestep (s)

0

1

2

3

4

Re
sp

on
se

 T
im

e 
(s

) Vehicle-1
FaaS
No FaaS

100 150 200
Timestep (s)

Re
sp

on
se

 T
im

e 
(s

) Vehicle-2
FaaS
No FaaS

100 150 200 250
Timestep (s)

Re
sp

on
se

 T
im

e 
(s

) Vehicle-3
FaaS
No FaaS

150 200 250 300
Timestep (s)

Re
sp

on
se

 T
im

e 
(s

) Vehicle-4
FaaS
No FaaS

200 250 300 350
Timestep (s)

0

1

2

3

4

Re
sp

on
se

 T
im

e 
(s

) Vehicle-5
FaaS
No FaaS

300 400
Timestep (s)

Re
sp

on
se

 T
im

e 
(s

) Vehicle-6
FaaS
No FaaS

250 300 350 400
Timestep (s)

Re
sp

on
se

 T
im

e 
(s

) Vehicle-7
FaaS
No FaaS

300 350 400 450
Timestep (s)

Re
sp

on
se

 T
im

e 
(s

) Vehicle-8
FaaS
No FaaS

Figure 4. Response time with FaaS and without FaaS per HTTP request

WiFi). Mininet-WiFi automatically updates the
received signal strength based on the updated
vehicle position and establishes a connection with
the RSU accordingly.

A Graphical User Interface (GUI) is also
created to visualize the movement of vehicles on
the road. Figure 5 depicts a sample screenshot of
the traffic visualizer where the green triangle rep-
resents RSU and blue circles represent vehicles
labeled with the number of running containers
(pod) hosted by that RSU/vehicle at different
times. When a vehicle connects to the RSU, a
python script in the vehicle sends a command
to the swarm manager to connect the vehicle
as a worker node. To emulate requests, a traffic
generator script runs at each vehicle which sends
HTTP requests with an image as payload to the
deployed API gateway for the YOLO functions
every 0.25 seconds asynchronously. The response
time for each request and the number of replicas
at each time step is recorded for evaluation.

For comparison, we perform another experi-
ment without OpneFaaS (No FaaS) by installing
YOLO function of size 1.35GB directly at the
RSU with no autoscaling option. With the same
SUMO traffic traces and the same workload gen-
erator at each vehicle as above, we check the
response times and success rates for the requests
sent. The emulation is run on the road for 465
seconds, in which eight vehicles were generated

Figure 5. Screenshot of the traffic visualizer.

in the scene. We exclude the first 100 seconds of
results for a warm-up and system stability.

Results
Results show that 99.3% of total HTTP re-

quests are successful with FaaS while only 90.4%
of requests are successful for No FaaS when
request timeout is set at 3 seconds. Figure 3 shows
the Cumulative Distribution Function (CDF) of
the response times. We can see that with FaaS,
90% of requests are completed within 250ms
while only 40% of requests are completed in
the same for No FaaS. Figure 7 shows the total

10 IT Professional



100 120 140 160
Timestep (s)

0.00

0.02

0.04

0.06

0.08

0.10
La

te
nc

y 
(s

)
Vehicle-1

100 150 200
Timestep (s)

La
te

nc
y 

(s
)

Vehicle-2

100 150 200 250
Timestep (s)

La
te

nc
y 

(s
)

Vehicle-3

150 200 250 300
Timestep (s)

La
te

nc
y 

(s
)

Vehicle-4

200 250 300 350
Timestep (s)

0.00

0.02

0.04

0.06

0.08

0.10

La
te

nc
y 

(s
)

Vehicle-5

300 400
Timestep (s)

La
te

nc
y 

(s
)

Vehicle-6

250 300 350 400
Timestep (s)

La
te

nc
y 

(s
)

Vehicle-7

300 350 400 450
Timestep (s)

La
te

nc
y 

(s
)

Vehicle-8

Figure 6. Network latency per HTTP request

Timestep (s)0

1

2

3

Av
g.
 R
es
. T
im
e 
(s
)

timeout
Average Response Time

FaaS
No FaaS

Timestep (s)0
2
4
6
8

Co
un
t

Replicas On Each Vehicle (With FaaS)
RSU v1 v2 v3 v4 v5 v6 v7 v8

100 150 200 250 300 350 400 450
Timestep (s)

0

2

4

6

8

Co
un
t

Vehicles at each Timestep
v1 v2 v3 v4 v5 v6 v7 v8

Figure 7. Number of vehicles and replicas

number of replicas and the number of vehicles
present at each time step. With multiple vehi-
cles in the scene and each sending requests for
function execution, OpenFaaS detects a surge in
HTTP requests and auto-scales function replicas
accordingly. Docker Swarm uses Spread strategy
for replica placement as default. Thus it tries to
spread replicas evenly on all the vehicles in the
vicinity and the RSU itself. As it can be seen
in Figure 7, the number of replicas increases
with an increase in the number of vehicles. It
can also be observed that despite the increase in
load, autoscaling results in a stable response time,
whereas the response time increases considerably
with load in No FaaS. Figure 4 illustrates the re-
sponse times for each request made by vehicles in

the vicinity. It can be observed that the response
times for each vehicle using FaaS are mostly
lower compared to No Faas. Figure 6 shows the
average latency encountered in sending the HTTP
request to the RSU. It can be seen that the latency
encountered by the network is much lower when
compared with the corresponding response times.

Similarly, Figure 4 displays the response time
of each vehicle with FaaS and No FaaS.

Conclusions and Future Directions
In this work, we advocated the idea of server-

less for vehicular edge computing and discussed
its advantages, limitations, and challenges in early
adoption. To study and experiment on server-
less VEC, we presented an emulation built on
open-source frameworks and developed a proto-
type. Through experimenting with our prototype,
we identified that serverless VEC can provide
promising for task offloading and provides rea-
sonably low and stable response times even for
compute and bandwidth-intensive functions like
object detection in images.

The area of vehicular edge computing has
recently attracted significant interest in the scien-
tific community. This work is only a preliminary
step towards a mature realization of the serverless
VEC concept. As a straightforward continuation
of our activities, we foresee building a custom
swarm manager to cherry-pick appropriate vehi-

May/June 2019 11



Department Head

cles for replica placement, where the choice of
vehicle for placement could depend on how long
and well it could cater to the offloaded tasks.
Furthermore, since the vehicles are moving at var-
ious speeds with varying bandwidths, optimized
load-balancing schemes are required for better
response times. Further, the emulation architec-
ture can be improved in terms of scalability; one
solution could be to load balance such that the
heavy tasks of simulation and function execution
are distributed across multiple servers. To further
enrich the innovation of this work, we are consid-
ering conducting more extensive experiments in
our future work, which will include comparison
with other baselines and additional metrics such
as analyses from network, latency, and fairness
perspectives.

Acknowledgments
We would like to thank Mr. Asama Qureshi

for his contribution to the traffic visualizer appli-
cation.

REFERENCES
1. S. Talal, W. S. M. Yousef, and B. Al-Fuhaidi, “Computa-

tion offloading algorithms in vehicular edge computing

environment: A survey,” in 2021 International Confer-

ence on Intelligent Technology, System and Service for

Internet of Everything (ITSS-IoE), 2021, pp. 1–6.

2. L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang,

“Vehicular edge computing and networking: A survey,”

Mobile networks and applications, vol. 26, pp. 1145–

1168, 2021.

3. M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi,

P. Sbarski, D. Taibi, M. Assuncao, S. S. Gill, R. Gaire,

and S. Dustdar, “Serverless edge computing: Vision

and challenges,” in 2021 Australasian Computer Sci-

ence Week Multiconference, ser. ACSW ’21. New York,

NY, USA: ACM, 2021.

4. M. Gramaglia, P. Serrano, A. Banchs, G. Garcia-Aviles,

A. Garcia-Saavedra, and R. Perez, “The case for server-

less mobile networking,” in IFIP Networking Conference

(Networking), 2020, pp. 779–784.

5. N. Apostolakis, M. Gramaglia, and P. Serrano, “Design

and validation of an open source cloud native mobile

network,” IEEE Communications Magazine, pp. 1–7,

2022.

6. S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and

H. Zedan, “A comprehensive survey on vehicular ad

hoc network,” Journal of Network and Computer Appli-

cations, vol. 37, pp. 380–392, 2014.

7. S. Eismann, J. Scheuner, E. v. Eyk, M. Schwinger,

J. Grohmann, N. Herbst, C. L. Abad, and A. Iosup, “The

state of serverless applications: Collection, characteri-

zation, and community consensus,” IEEE Transactions

on Software Engineering, vol. 48, no. 10, pp. 4152–

4166, 2022.

8. P. Patros, J. Spillner, A. V. Papadopoulos, B. Varghese,

O. Rana, S. Dustdar, and S. Dustdar, “Toward sustain-

able serverless computing,” IEEE Internet Computing,

vol. 25, pp. 42–50, 11 2021.

9. R. Olaniyan, O. Fadahunsi, M. Maheswaran, and M. F.

Zhani, “Opportunistic edge computing: Concepts, op-

portunities and research challenges,” Future Genera-

tion Computer Systems, vol. 89, pp. 633–645, 2018.

10. V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht,

I. Stoica, J. Ragan-Kelley, E. Jonas, and S. Venkatara-

man, “Serverless linear algebra,” in Proceedings of

the 11th ACM Symposium on Cloud Computing, ser.

SoCC’20. New York, NY, USA: Association for Com-

puting Machinery, 2020, p. 281–295.

11. I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke,

A. Beck, P. Aditya, and V. Hilt, “SAND: Towards High-

Performance serverless computing,” in 2018 USENIX

Annual Technical Conference (USENIX ATC 18).

Boston, MA: USENIX Association, july 2018, pp. 923–

935.

12. D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and

D. Song, “Keystone: An open framework for architecting

trusted execution environments,” ser. EuroSys’20. New

York, NY, USA: Association for Computing Machinery,

2020.

Faisal Alam is a PhD student in DisNet Lab, at the
Faculty of Information Technology, Monash University,
Australia. He is working on resource management
and scheduling algorithms for vehicular edge comput-
ing.

Adel N. Toosi is the director of DisNet Lab and a
senior lecturer at Faculty of Information Technology,
Monash University, Australia. His research interests
include Cloud and Edge Computing, Serverless Com-
puting, and Sustainable IT. More information at http:
//adelnadjarantoosi.info/.

Muhammad Aamir Cheema is an ARC Future Fellow
and Associate Professor at Faculty of Information
Technology, Monash University, Australia. He is the
Co-Director of Urban Computing Lab and is interested

12 IT Professional

http://adelnadjarantoosi.info/
http://adelnadjarantoosi.info/


in the development of sustainable cities.

Claudio Cicconetti has a PhD in Information Engi-
neering from the University of Pisa, Italy and he is a
Researcher at IIT-CNR. He is interested in serverless
edge computing and Quantum Internet architecture
and protocols. Contact him at c.cicconetti@iit.cnr.it.

Pablo Serrano is an Associate Professor at the Uni-
versity Carlos III de Madrid. His research interests
lie in the analysis of wireless networks. He currently
serves as Editor for IEEE Open Journal of the Com-
munication Society.

Alexandru Iosup is tenured full Professor and Uni-
versity Research Chair with the Vrije Universiteit Am-
sterdam, the Netherlands. He is elected Chair of the
SPEC-RG Cloud Group. For scientific and community
merits, he has been knighted.

Zahir Tari is a full professor in Distributed Systems at
RMIT and the Research Director of the RMIT Centre
of Cyber Security Research and Innovation (CCSRI).
Zahir’s expertise is in the areas of system’s perfor-
mance (e.g. P2P, Cloud, IoT) as well as system’s
security (e.g. SCADA, SmartGrid, Cloud, IoT).

Majid Sarvi is the chair in transport engineering and
the director of Transport Technology program at the
University of Melbourne, Australia. His expertise cov-
ers a range of topics, including Artificial Intelligence
in Transport, connected and automated multimodal
transport systems and ITS.

May/June 2019 13


	Introduction
	Operational Model and Background
	Vehicular AdHoc Network (VANET)
	Task Offloading in VANET
	Vehicular Cloud/Edge Computing
	Software-Defined Networking (SDN)
	Serverless and Function-as-a-Service (FaaS)

	Benefits of Serverless VEC
	black Challenges and open issues of using Serverless in VEC
	black Serverless VEC Sample Use Cases
	Emulation Architecture and Prototype
	Experimental Setup
	Results

	Conclusions and Future Directions
	Acknowledgments
	REFERENCES
	Biographies
	Faisal Alam
	Adel N. Toosi
	Muhammad Aamir Cheema
	Claudio Cicconetti
	Pablo Serrano
	Alexandru Iosup
	Zahir Tari
	Majid Sarvi


