
1

Energy-Aware Adaptive Scaling of Server Farms
for NFV with Reliability Requirements

Jesus Perez-Valero, Albert Banchs, Senior Member, IEEE , Pablo Serrano, Senior Member, IEEE ,
Jorge Ortı́n, Jaime Garcia-Reinoso, and Xavier Costa-Pérez, Senior Member, IEEE

Abstract—Auto-scaling techniques aim to keep the right number of active servers for the current load: if this number is too small we
risk service disruption, but if it is too large we waste resources. Despite the interest in the efficient operation of this type of systems, no
prior work has addressed auto-scaling techniques for Network Function Virtualization (NFV) with stringent reliability requirements such
as those envisioned in 5G (5 or 6 nines). To achieve such levels of reliability, we need to account for both the activation delay until
servers become available (i.e., the wake-up or activation time) and the fallible nature of servers (which may fail with some probability).
In this paper, we build on control theory to design an auto-scaling technique for a server farm for NFV that guarantees certain reliability
while minimizing the number of active resources. We show that the use of well-established tools from control theory results in
convergence times much shorter than those obtained with state-of-the-art reinforcement learning techniques. This shows that, despite
the current trend to apply machine learning to all sorts of networking problems, there may be some cases where other techniques
(such as control theory) can be more suitable.

Index Terms—Adaptive scaling, control theory, NFV, reinforcement learning

✦

1 INTRODUCTION

With the deployment of 5G/6G, mobile services will be com-
monly implemented as network slices, i.e., as interconnected
virtual network functions (VNFs) hosted by cloud servers.
To make an efficient use of the resources, VNFs need to be
scaled up and down based on the load of the VNFs [1],
[2]. When scaling up resources, these need to be activated
in advance, anticipating traffic demands. This is because
the activation of additional resources, possibly involving the
deployment of network instances, is not immediate and thus
resources would not be available when needed unless they
are activated in advance. Following this, relevant standard
specifications by ETSI [3] and 3GPP [4] recommend that
the activation of resources in such settings is performed in
advance. When activating resources in advance, however,
it is important to make sure that no more resources than
needed are turned on, to minimize energy consumption. The
design of scaling policies is particularly challenging for the
case of 5G/6G services, where reliability requirements can
be very stringent with levels of 5 or 6 nines (99.999% or
99.9999%, respectively) [5], [6], much beyond those attained
by traditional scaling techniques [7].

• J. Pérez-Valero, P. Serrano, and A. Banchs are with the Department of
Telematic Engineering, Univ. Carlos III de Madrid, 28911 Leganés, Spain.
E-mail: jesperez@pa.uc3m.es, {banchs, pablo}@it.uc3m.es,

• A. Banchs is also with Institute IMDEA Networks, 28912 Leganés, Spain,
• J. Ortin is with Centro Universitario de la Defensa, Academia General

Militar, 50090 Zaragoza, Spain.
E-mail: jortin@unizar.es,

• J. Garcia-Reinoso is with the Department of Automatic, Univ. of Alcalá,
28871 Alcalá, Spain.
E-mail: jaime.garciareinoso@uah.es,

• X. Costa-Pérez is with i2cat, ICREA and NEC Laboratories Europe.
E-mail: xavier.costa@ieee.org

To achieve the levels of reliability required by 5G/6G ser-
vices, scaling has to take into account not only the delay to
activate a server but also the fact that the servers themselves
are fallible, i.e., they can occasionally (albeit infrequently)
go down. Indeed, while server failures have no perceptible
impact when reliability requirements are not very strict, they
cannot be ignored when pursuing such levels of reliability.
This has an impact both on the developed reliability models,
which need to account for server failures, as well as on
the design of the scaling algorithms, which need to provide
extremely high reliability.

When designing an algorithm to scale resources for
5G/6G, the challenge lies in achieving a good trade-off be-
tween reliability (activating sufficient resources in advance)
and resource efficiency (not activating more resources than
needed). Indeed, if too many resources are activated unnec-
essarily, this will result in a waste of resources. As a matter
of fact, data centers running VNFs consume a very substan-
tial amount of energy [8], more than physical servers [9],
and significantly contribute to the electricity bill of network
operation, which is one of the chief concerns of network
operators nowadays [10]. Hence, in a Network Function
Virtualization (NFV) context, it is of utmost importance to
switch off or bring to a low-power state as many servers
as possible, minimizing the number of active servers. The
optimal trade-off between reliability and efficiency highly
depends on the current conditions. For instance, for low
arrival rates, we do not need very large safety margins when
activating new servers; however, if arrival rates are high, we
need larger margins or risk filling up all available servers.
Thus, we need an adaptive scaling algorithm that dynamically
adjusts the operation of the system based on its behavior, to
meet the desired reliability level while minimizing energy
consumption.

When designing such an adaptive algorithm, artificial

2

intelligence techniques may seem a natural choice. However,
even though artificial intelligence techniques such as rein-
forcement learning have indeed proved very effective in
many areas (see e.g. the recent surveys [11], [12]), we argue
that for the specific problem addressed in this paper, where
we need to adapt as quickly as possible to changing condi-
tions of the network or risk to operate under non-desired
conditions for a substantial amount of time, artificial intelli-
gence techniques may be too slow to converge. In contrast
to artificial intelligence techniques, control theory allows the
design of algorithms that converge as quickly as possible
to the desired point of operation while ensuring that the
system does not turn unstable. In this paper, we leverage
control theory to design a solution called A3S (Adaptive
Algorithm for Auto Scaling), that dynamically adjusts the
system parameters of an NFV system to provide an optimal
trade-off between reliability and energy consumption. Our
performance results show that our solution is much faster
than a widely used reinforcement learning technique that
has been designed for a similar goal to the one addressed in
this paper.

Contributions
We propose A3S, a closed-loop system for adaptive scaling
of server farms in the context of NFV which, in contrast to
previous proposals, is capable of providing very high levels
of reliability as required by 5G/6G systems. The proposed
system leverages control theory to automatically adjust its
configuration to provide an optimal trade-off between relia-
bility and power consumption, bringing as many servers as
possible to sleep. We thoroughly evaluate the performance
of A3S via simulation. Our performance analysis shows that
the proposed system quickly converges to the desired point
of operation while keeping stable. A comparison against
a well-established reinforcement learning (RL) algorithm
shows that control theory is much quicker to adapt and
hence much more suitable for this kind of problem. We
further show that our technique is capable of adapting to
real traffic, while a solution derived analytically may fail
when dealing with real traffic.

The key novelties of our work are as follows (see Sec-
tion 5 for more details): (i) to address this kind of problems,
previous works have built on complex analytical models
that are only valid for static conditions; (ii) the impact of
fallible servers is neglected by most works in the literature,
which consider only non-zero activation times; and (iii) in
contrast to “agnostic” artificial intelligence techniques (e.g.,
Q-learning), which are too slow to adapt, our control theo-
retic design exploits the structure of the system and thus is
much faster.

The rest of the paper is structured as follows. In Section 2
we present our system model and formally expose the
problem that we aim at solving in this paper, which involves
finding an optimal trade-off between reliability and power
consumption. In Section 3 we design a closed-loop system
along with an adaptive algorithm based on control theory
to solve this problem. Section 4 evaluates the performance
of the proposed approach, showing that (i) it meets the
reliability target, (ii) it minimizes power consumption, (iii)
it adapts quickly to changing conditions, and (iv) it outper-
forms a machine learning approach. Section 5 provides a

detailed review of related work, highlighting the novelties
of our approach, and Section 6 presents some concluding
remarks.

2 SYSTEM MODEL

In the following, we present the model of the system
proposed in this paper: first, we describe the server farm
behavior as a function of the activation thresholds; then, we
propose our policy for setting such thresholds; finally, we
expose the problem addressed by this paper.

2.1 Server farm

The system we consider in this paper is a server farm for
NFV. The server farm implements dynamic power manage-
ment (DPM), where idle servers are switched into one of the
multiple low-power states available to save energy [13].

The system is composed of an infrastructure manager
and S servers. There are tasks arriving at the system which
need to be served by the servers. To handle these tasks,
a subset of the S servers is running, while the remaining
servers are in one of the available sleep modes to save
power, and can be activated when needed. More specifically,
each server can be in one of the following states: (i) running
(i.e., active), a state in which it can serve tasks; (ii) in a
low-power sleep mode; (iii) switching from a sleep mode
to the active mode (or vice versa), when the infrastructure
manager decides that more (less) resources are needed; or
(iv) booting-up, after a server crash (we assume that a server
can always restart after a crash). The infrastructure manager
decides the number of servers that should be active at a
given point in time as well as the low-power sleep mode
employed. Since there is a clear trade-off between power
consumption and the delay to switch between a low-power
state into the active state, selecting the proper sleep state in
NFV is crucial for the performance of the system.

We denote the average task arrival rate to the system by
λ. Upon arrival, the infrastructure manager decides which
of the active servers with enough resources should handle
the task, with the aim of balancing the load across servers.
Alternatively, if there are no servers available to handle
an arriving task, the infrastructure manager requests the
activation of a server in sleep-mode (if any), holding the
task in a queue until there are enough resources to serve
it. A task involves the allocation of computational resources
for the duration of the corresponding session, e.g., to run
the corresponding virtual machine. We assume that one
server can serve up to T simultaneous tasks and denote
by 1/µ the average service time of a task. We assume that
servers have a finite lifetime, and denote by 1/β the average
lifetime of a server until it crashes, i.e., its mean time to
failure (MTTF). We also assume a non-zero boot time with
average 1/α, which is also the recovery time after a crash. In
case of a hardware failure that does not allow rebooting the
server, we assume that a new server is booted up instead.
Eventually, when the number of active tasks in the system is
sufficiently low, we can switch servers to one of the available
sleep modes. We assume that the time required to put a
server in sleep mode is negligible, and that the average time
to activate a server from the sleep mode is also 1/α.

3

The infrastructure manager keeps track of the system
status, and after detecting a failure (using tools such as e.g.
DOCTOR1) it triggers the relocation of the affected tasks
with e.g. life migration tools available with OpenStack,2

VMWare [14], or containers [15]. If there are not enough
resources available right after a crash, the task is placed
in a system queue until a server is available, thus causing
a service disruption. Similarly, if a new task arrives at the
system and there are no resources to serve it, this is also
considered a service disruption. Hereafter, we consider any
task suffering a service disruption as a ‘failure’ and refer
to the percentage of tasks suffering a failure as ‘failure
probability.’

In addition to the failure probability, the other key metric
is power consumption. We assume that the average power
consumed by the server farm is given by four terms:

ω = ωs + ωa + ωm + ωz (1)

where the term ωs corresponds to the average power con-
sumed when serving the tasks, the term ωa represents the
power consumption due to the activation of the servers, the
term ωm represents the extra power consumption due to
task migrations, and the term ωz corresponds to the average
power consumed by servers in sleep mode.

To compute ωs, we follow traditional power consump-
tion models in the literature [8], [13], that characterize the
power consumption behavior with the following two terms:
(i) the idle power consumption Pidle, and (ii) a term that
is proportional to the utilization Pload. Assuming that the
average load per server is t, and the average number of
active servers is Ns, ωs can be expressed as

ωs = NsPidle +Ns
t

T
Pload. (2)

To compute ωa, we assume that during its activation
time (which lasts 1/α), a server operates at its peak power
consumption rate (i.e., Pidle + Pload), hence the energy
consumption of one activation is:

ea = (1/α)(Pidle + Pload). (3)

Since this is the energy consumption of one activation, to
compute the power ωa (i.e., energy over time), we multiply
ea by the server activation rate (i.e., the rate at which servers
are powered on over time), which we denote by Λ. In this
way, ωa can be computed as

ωa = Λ(Pidle + Pload)1/α. (4)

To compute ωm, we first compute the energy cost of
a migration, following the measurements reported in [16]
that characterize the energy cost of reading and writing
from a server, denoted es Er and Ew, respectively. Given
an average migration of λm tasks over time, ωm can be
computed as:

ωm = λm(Er + Ew). (5)

Finally, the ωz can be computed as:

ωz = (S −Ns)Psleep (6)

where Psleep is the power consumption in the sleep mode.

1. https://wiki.opnfv.org/display/doctor
2. https://docs.openstack.org/nova/pike/admin/

live-migration-usage.html

2.2 Threshold-based (de)activation policy
The policy followed for the management of the resources is
as follows. At least one server is kept active at all times (even
when the system is empty) to avoid any delay in arriving
tasks. For the rest of the servers, we employ a threshold-
based policy that decides whether to activate an additional
server based on the number of tasks being served and the
number of active servers. We denote by sm the activation
threshold for the mth server and proceed as follows. On the
one hand, if the number of tasks in the system reaches sm,
we trigger the activation of the mth server. On the other
hand, when the number of tasks falls below sm, tasks are
seamlessly moved (using e.g. [14] or [15], as discussed in the
previous section) to free one server, which is then switched
into the sleeping mode.

The setting of the thresholds {sm} is a critical choice for
the performance of the system. The highest possible thresh-
old value to serve all current tasks is sm = (m− 1)T , which
corresponds to the minimum number of active servers
needed to serve all the tasks present in the system (i.e.,
given that each server can serve up to T tasks, (m − 1)T
tasks fill m− 1 severs and at that point we need to activate
the mth server). Note, however, that if we want to ensure
that an arriving task will not have to wait for a server to
boot up, we need to choose lower threshold values. Indeed,
with sm = (m − 1)T , when task (m − 1)T + 1 arrives at
the system, it will have to wait if the mth server has not
finished its boot up before the task can be served. Yet, if
we set the thresholds unnecessarily low, we will have more
servers running than those actually needed, paying a price
in power consumption. Thus, when setting the activation
thresholds there is a trade-off between reliability and power
consumption.

2.3 Problem description
In this paper, we address the problem of optimally scaling
an NFV server farm by appropriately setting the activation
thresholds of our threshold-based policy. As 5G/6G services
typically have Service Level Agreements (SLAs) that involve
a certain level of reliability, the proposed scaling policy
needs to satisfy such reliability requirements. These require-
ments are expressed in terms of a target failure probability
that cannot be exceeded, i.e., the probability that a task is
disrupted cannot exceed a certain target Tf . For 5G/6G
services such as URLLC (ultra-reliable and low latency
communications), such target failure probability can be as
low as 10−5 or less, while for other services such as eMBB
(enhanced mobile broadband) it does not need to be so
stringent. As long as the target failure probability is met, it is
desirable to save as much power as possible, to minimize the
cost of running the network. Following this, the goal of this
paper is to find the optimal values of the activation thresh-
olds that (i) meet the reliability requirements of the services
being provided, while (ii) minimizing power consumption
as long as such reliability requirements are satisfied.

The setting of the activation thresholds to meet the above
goals depends on the system conditions. For instance, when
the rate of task arrivals is low and not bursty, we do not
need to activate servers with a long time in advance since
the likelihood that many tasks arrive before the server has

4

‐
Pf

Tf

Controller
C

Mapping
{sm}c

Server farm

System H

Fig. 1: Closed-loop system.

been activated will be low. Instead, in case of bursty and/or
high-rate arrivals, we will need to have a much larger safety
margin or risk not being able to serve arriving tasks without
delay. Therefore, a static policy for setting the thresholds will
not be effective in optimizing performance, and we need to
adjust their setting based on the current conditions.

The rest of this paper is devoted to designing an adaptive
algorithm that sets the activation thresholds based on the
observed behavior of the system to provide an optimal
trade-off between reliability and power consumption.

3 A3S SYSTEM DESIGN

To address the problem exposed above, in the following
we build A3S (Adaptive Algorithm for Auto Scaling), a
closed-loop system that aims at bringing the system to the
optimal point of operation using an adaptive algorithm that
dynamically adjusts the activation thresholds.

3.1 Closed-loop system

Our system design is based on the closed-loop from con-
trol theory illustrated in Fig. 1. This closed-loop system
is composed of the server farm itself that takes as input
the thresholds {sm} and provides as output the failure
probability, given by the percentage of tasks whose service
has been disrupted measured over a time interval; this is
the system’s output signal Pf . This signal is compared to
the reference signal, which is given by the target failure
probability Tf : the difference between the output and the
reference signals (Pf − Tf), referred to as the error signal, is
fed into the controller. The controller produces as output the
control signal c, which serves to derive the thresholds {sm}
through a mapping function (described next), thus closing
the loop. We denote the controller by C and the system
composed by the server farm and the mapping function for
the thresholds as H .

To measure the failure probability, the system proceeds
as follows. We slot the time in periods comprising a given
number of tasks, hereafter denoted as “slots”, and measure
the number of tasks that have failed over one slot, denoted
by Nf . Note that there is a trade-off when selecting the slot
length: an overly small number of tasks would result in a
lot of noise when measuring the failure probability, while
an overly large number would result in a system that takes
too much time to react. As a compromise between these two
extremes, we have set the slot length to 10/Tf tasks, which

corresponds to an average of 10 failures per slot and thus
provides a fairly reliable measurement.

The measured failure probability over a given slot t,
Pf (t) is given by the number of failed tasks in this slot,
Nf (t), over the total number of tasks (i.e., 10/Tf), which
gives

Pf (t) = Nf (t)Tf/10. (7)

At each time slot, the controller takes as input the error
e(t) defined as the difference between the failure probability
and the target one measured in this time slot, i.e.,

e(t) = Pf (t)− Tf , (8)

and provides as output a value c(t + 1) that serves to
configure the thresholds {sm}(t+ 1) for the next time slot.

As explained earlier, the challenge with an auto-scaling
system is the configuration of the thresholds {sm}; the goal
when configuring these parameters is to minimize power
consumption while guaranteeing that the failure probability
stays below a given target Tf . As there is an inherent trade-
off between power consumption and failure probability, in
order to minimize power consumption we need to operate
close to the failure probability target, as otherwise, we
would be consuming more power than needed to reach this
target.

Our solution is based on the following design criterion:
to minimize energy consumption when operating at the
target failure probability Tf , we set all thresholds {sm} at
the same distance from their highest possible value, which
is given by (m − 1)T . The intuition behind this criterion is
that if some thresholds were more aggressive than others,
the most conservative thresholds would need to be overly
small to compensate for the more aggressive ones, and this
would lead to wasting a large amount of power.

Next, we explain the mapping of the control signal to the
thresholds and then present the adaptive algorithm itself.

3.2 Control signal mapping

The mapping of the control signal c to the thresholds
is performed as follows. As explained above, we aim at
setting all thresholds more or less at the same distance
from the highest possible value, since this policy is effective
in minimizing power consumption as corroborated by our
performance evaluation results. Furthermore, to provide
the highest possible level of granularity, we enforce that a
difference of one unit in c only modifies one threshold by
one unit (which is the minimum possible change).

As explained in Section II.B, the largest possible value
for the thresholds is given by sm = (m − 1)T , which
corresponds to the case where we launch the mth server
only when the previous m − 1 servers are full.3 We update
the thresholds such that, at a given point in time, all the
thresholds are at the same distance from such values, with
differences of one unit at most due to rounding. Given that
rounding imposes that some thresholds are one unit larger
than others, we set the thresholds such that the lower ones
take the smaller values.

3. For instance, with T = 3 machines per server we have, e.g., s3 = 6,
meaning that the third server is powered when there are 6 tasks in the
system filling the first two servers.

5

When mapping the control signal c to the thresholds
sm, every time the control signal increases by one unit, we
reduce one of the activation thresholds by one unit. More
specifically, we define the mapping between the c and the
sm as follows:

• With c = 0, we set all thresholds at the highest
possible value, i.e., sm = (m− 1)T, ∀ m.

• For c = 1 we decrease s2 by one4 and leave all other
thresholds unchanged, i.e., s2 = T − 1 while sm =
(m− 1)T if m > 2;

• For c = 2, we decrease both s2 and s3 by one and
leave all other thresholds unchanged, i.e. s2 = T − 1,
s3 = 2T − 1 and sm = (m− 1)T if m > 3;

After we have decreased all thresholds by one unit (for
c = S−1), in the next increment of c (i.e., c = S) we decrease
s2 by two units and the remaining thresholds by one unit,
i.e., s2 = T−2 and sm = (m−1)T−1 if m > 2; we continue
with the rest of the thresholds in the same way.

Following the above, the values of the thresholds sm
can be computed using the quotient (denoted as q) and the
remainder (denoted as r) of c divided by S − 1, i.e.,

q =

⌊
c

S − 1

⌋
, r = c− (S − 1)

⌊
c

S − 1

⌋
, (9)

since each time c exceeds S − 1 all thresholds are decre-
mented by one; in case m is equal to or smaller than r + 1,
the threshold should be decremented once more. Following
this,

sm =

{
(m− 1)T − q − 1, if m ≤ r + 1,

(m− 1)T − q, otherwise.
(10)

To illustrate the mapping, we give an example of a
scenario with S = 4 servers with a per-server capacity of
T = 3 virtual machines. In this example, the mapping of the
first values of c to {sm} is illustrated in Table 1.

c s1 s2 s3 s4

0 0 3 6 9
1 0 2 6 9
2 0 2 5 9
3 0 2 5 8
4 0 1 5 8

TABLE 1: Mapping of c to {sm} for S = 4 and T = 3.

Since the control signal can actually take any real value
and not just non-negative integers, when doing this map-
ping we do as follows:

• If c does not take an integer value, we use the closest
integer to compute (9).

• If c is so large that with the above expression some
thresholds would take negative values, we set all
thresholds to 0.

• If c is negative, we set all thresholds to their highest
possible value (as we do for c = 0).

4. Note that, since the first server is always active, s1 is fixed to 0.

3.3 Adaptive algorithm

The control signal c needs to be dynamically adjusted
through an adaptive algorithm to bring the error signal
to 0. There are well-established controllers that have been
designed for this purpose. In this paper, we choose the
widely used Proportional-Integral (PI) controller. Some of
the advantages of this controller are its simplicity and the
fact that it guarantees zero error in the steady-state. With
this controller, the control signal c(t) at time slot t is com-
puted based on the error signal in the previous time slots,
e(t′) for t′ ∈ {0, . . . , t− 1}, as follows:

c(t) = Kpe(t− 1) +Ki

t−2∑
t′=0

e(t′). (11)

where Kp and Ki are the so called proportional and inte-
gral parameters of the controller. The control signal can be
computed recursively as:

c(t) = Kpe(t− 1) + c(t− 1) + (Ki −Kp)e(t− 2). (12)

For the setting of the Kp and Ki, we follow the same
approach as in [17], [18]:

Kp =
0.4

Ĥ
, (13)

Ki =
0.4

Ĥ · 0.85 · 2
. (14)

where Ĥ is an upper bound for the module of the linearized
transfer function of the system. The system takes the control
signal c as input and provides the failure probability Pf

as output. The linearized transfer function of the system,
denoted by H , corresponds to the ratio between the vari-
ation of the failure probability, ∆Pf , and the variation of
the control signal, ∆c, at the desired point of operation, i.e.,
H = ∆Pf/∆c. To determine a bound for |H|, we apply
the following rule of thumb. Let us assume that the system
is operating at the desired failure probability, Tf , and we
increase by one unit all thresholds sm, m ∈ {2, . . . , S}),
which corresponds to increasing the control signal by S − 1
units, i.e., ∆c = S − 1. Then, since larger c means that
servers are switched on earlier, the failure probability will
decrease; specifically, it will go from its value at the desired
point of operation, Tf , to a smaller value. This yields the
following bound for the variation of the failure probability,
|∆Pf | < Tf , from which we obtain the upper bound
Ĥ = Tf/(S − 1).

3.4 Multiple controller instances

A single instance of the control algorithm is well suited for
scenarios with stationary traffic: with the proper setting of
Kp and Ki, the control signal is guaranteed to arrive at
the steady state after a transient period. However, real-life
traffic is sometimes characterized by non-stationarity, with
e.g. strong weekly correlations (weekdays vs. weekend),
or even daily correlations (office vs. non-office hours, day
vs. night). For these cyclostationary processes, instead of em-
ploying a single configuration of the activation thresholds
for the whole input process, it is better to have a different
threshold configuration for each period of the input process

6

with the same statistical properties, computed with a differ-
ent control instance. To this end, the approach that we take
in this paper is to run different instances of our algorithm,
employing the same instance for the periods with similar
statistical properties.

706560555045403530252015105

C
on

tr
ol

 s
ig

n
al

Lo
ad

Hours
0

Fig. 2: Different instances for different periods of the day.

We illustrate the above approach in Fig. 2. The figure
represents a cyclostationary process where the load (straight
line) varies over time with a periodicity of one day. By
running three different instances of the control algorithm
(each instance is represented with a different color), the
system can converge to three different values of c(t): a
relatively large value (magenta) for high load, a medium
value (green) for an average load, and a small value (red)
for a low load. Using this approach, we can thus achieve a
more efficient operation than with a single instance, since
in each period the system is optimized to current traffic
conditions to achieve the desired Tf while minimizing the
power consumption.

To implement multiple algorithm instances running in
parallel, we proceed as follows. In the transition from one
period to another, the system freezes the algorithm instance
corresponding to the previous period and reactivates the
instance for the next period, recovering the state of that
instance from the time when it was frozen.

4 PERFORMANCE EVALUATION

To evaluate the performance of the proposed adaptive al-
gorithm, A3S, we perform simulation experiments using
a discrete event simulator written in C++. In Sections 4.1
to 4.4, we consider that tasks arrive following a Poisson pro-
cess at a rate λ, service times follow an exponential random
variable with average 1/µ = 1 hour, lifetimes also follow an
exponential random variable with average 1/β, and boot up
and activation times are constant (which we have confirmed
with real-life measurements). In Sections 4.5 and 4.6 we rely
on real traces for the arrival and service times. Experiments
are repeated until the confidence intervals (not depicted for
clarity) fall below 1% of the average. We further assume
that the migration of a task requires the transmission and
reception of 1 MB of information, which is done with an
efficiency of 1.9 MBpJ and 2 MBpJ, respectively [16]. This
results in a migration cost of 1.02 J/task.

Throughout our experiments, we consider three config-
urations for the server farm, each of them able to process
up to S × T = 128 simultaneous tasks with different server
types and power management policies:

• Nano servers: This deployment is composed of S = 32
nano servers such as, e.g., the Raspberry Pi, each sup-
porting up to T = 4 simultaneous tasks. The time to
boot up one server is 1/α = 30 seconds and the aver-
age lifetime of a server is 1/β = 24 hours. Following
the measurements in [19], we take Pidle = 3 W and
Pload = 2 W.5

• Rack servers: This deployment is composed of S = 8
servers such as, e.g., Intel Core i7-4470 with one
socket, 4 cores, 8MB L3 cache and 16 GB memory,
each of them supporting up to T = 16 simul-
taneous tasks. The time to boot up one server is
1/α = 2 minutes and the average lifetime of a server
is 1/β = 1 week. In this configuration, we assume
no sophisticated power management technique, and
therefore the servers are either completely powered
off or active. Following the numbers reported in [13],
we take Pidle = 30 W, and Pload = 40 W.

• Rack servers with ACPI: This is the same deployment
as before but assuming a power management based
on ACPI. More specifically, we assume that when
unused, servers can be moved immediately to the
lowest-consuming S4 state, and brought back to the
active mode after a wake time (shorter than the boot
time). While this technique consumes more energy
than directly switching off servers, it precludes fre-
quent de/activations which might affect the lifetime
of the server. Following [20], we take Psleep = 49 W
and a wake time of 48 s.

4.1 Failure probability
We start our evaluation by assessing the effectiveness of A3S
to drive the system to the desired point of operation. To this
end, we consider the configurations described above, the
target failure probabilities Tf = {10−3, 10−5}, and different
values of the arrival rate λ. For each setting, we evaluate
via simulation the failure probability Pf provided by A3S
after more than 105 slots, and compare it against the target
Tf . To model the service time, we consider three different
random variables with the same average: an exponential
distribution (short-tailed), a log-normal distribution with
parameters µ = 1 and σ = 2.85 (long-tailed), and a uniform
distribution between zero and twice the average (no tail).
The results, depicted in Fig. 3, show that in all cases the
resulting Pf values perfectly match the desired Tf , which
confirms the effectiveness of A3S in providing the target
reliability levels.

4.2 Power consumption
We next assess the efficiency resulting from A3S in terms of
power consumption. To this end, we repeat the same exper-
iment as in the previous section and measure the average
power ω consumed by the server farm when using A3S. To

5. Note that this type of servers do not allow for different sleep
modes, so the only way to deactivate a server is to switch it off.

7

Exponential

Uniform

Log-normal

1e-06

1e-05

1e-04

1e-03

1e-02

0.2 0.4 0.6 0.8 1.0
l (req/min)

F
ai

lu
re

 p
ro

ba
bi

lit
y

Fig. 3: Failure probability vs. λ for two target values, 10−3

(top) and 10−5 (bottom), and different service times.

Rack servers-ACPI

600

700

800

900

1000

1100

w Tf=10-3

Tf=10-5

Rack servers

200

300

400

500

600

w

Nano servers

0

20

40

60

0.3 0.6 0.9
l (req/min)

w

Fig. 4: Power consumption vs. λ. Lines represent the con-
sumption of A3S. Points give the consumption resulting
from performing an exhaustive search and selecting the best
configuration.

determine if the algorithm is effective in minimizing power
consumption, we compare it against the result of performing
an exhaustive search over the {sm} configuration space
and selecting the setting that meets the target Tf while
minimizing the power consumption. Note that, while such
an exhaustive search is unfeasible in a practical setting, it
provides a benchmark for the optimal performance. Results
are provided in Fig. 4 for the same settings as before.

According to the results, there are very small differences
between the power consumption resulting from A3S (lines)
and that of the exhaustive search configuration (points). In-
deed, while the exhaustive search provides slightly smaller
consumption, the difference is well below 1% in almost all
cases. This confirms that A3S is effective in minimizing

power consumption. As expected, power consumption in-
creases with λ. With rack servers, this increase is steeper
given the relatively higher value of Pload as compared to
Pidle. Along the same lines, the more stringent the target
failure probability Tf , the higher power consumption, as
this requires on average a higher number of active resources.
Note that we do not provide the power consumption pro-
vided by the RL algorithm since this is very similar to the
one obtained using A3S.

For the set of parameters considered, it is more energy
efficient to support a service with nano servers than with
rack servers. This is somehow counter-intuitive as the nano
servers are less reliable and hence one may expect that they
are less suitable to support very low failure probabilities.
However, their low power consumption allows them to
efficiently provide highly reliable services by activating a
sufficient number of servers. The use of ACPI results in
an even larger power consumption, despite the faster ac-
tivation times, due to the extra energy consumption in the
sleeping mode.

4.3 Controller setting
The objective of the setting of the Kp and Ki parameters
provided in Section 3.3 is to achieve a proper trade-off
between stability and speed of reaction to changes. To
verify this, we analyze the evolution of the controlled signal
c(t) over time for the “rack servers” configuration with
a target failure probability of Tf = 10−3 and a load of
λ = 0.2 tasks/min. Assuming as initial conditions c(0) = 0,
i.e., the thresholds at their highest values, we depict in
Fig. 5 the instantaneous value of c(t) after each slot, for
three configurations of the controller parameters {Kp,Ki},
namely:

• The proposed configuration given by (13) and (14),
denoted as ‘Kp,Ki’ (middle subplot).

• A configuration of these parameters ten times larger
than the proposed values, denoted as ‘Kp∗10,Ki∗10’
(top subplot).

• A configuration ten times smaller, denoted as
‘Kp/10, Ki/10’ (bottom subplot).

The figure confirms that the proposed configuration
provides a very good trade-off between speed of reaction
to changes and stability. An overly large setting of these
parameters (top subplot) turns the system unstable, with
strong oscillations across the desired point of operation of
the system that brings the activation thresholds from very
small values to very large ones. On the other hand, an overly
small setting (bottom subplot) leads to very long conver-
gence times; in the figure, the ‘Kp/10,Ki/10’ configuration
does not reach the steady state. In contrast to these two
settings, with the proposed configuration the control signal
c(t) reaches the desired point of operation fairly quickly
(marked with a vertical dashed line in the figure) and has
minor variations around the desired point of operation. We
have repeated the experiment for different configurations of
λ and µ, with the results being very similar. Based on this,
we conclude that our control theoretic analysis is effective
in providing a good configuration for {Kp,Ki}.

We have repeated the above experiment for Tf = 10−5.
We have observed that in that case, convergence time (i.e.,

8

0

40

80

120

160
c(

t)
[Kp, Ki]x10

0

40

80

120

160

c(
t)

[Kp, Ki]

0

40

80

120

160

0 100 200 300
Slots

c(
t)

[Kp, Ki]/10

Fig. 5: Behavior of the control signal for different configura-
tions of the controller parameters.

the time until c(t) reaches a stable value) is 54 slots, while
for Tf = 10−3 convergence time was of 40 slots (as can
be seen in Fig. 5). Given that the convergence time is very
similar in both cases when measured in slots, this means that
convergence is about 100 times more slower for Tf = 10−5

than for Tf = 10−3, as the slot duration of the former is 100
times longer. This is in line with intuition: since A3S learns
from failures and with Tf = 10−5 there are 100 time less
failures, it is to be expected that in that case it takes 100
more time to learn.

In sum, the presented results show that A3S converges
very quickly in terms of controller iterations, as it reaches
steady-state just in a few tens of iterations, where an itera-
tion of the controller corresponds to a slot. In terms of time,
however, convergence becomes slower as the target failure
probability decreases. We argue that this is unavoidable:
since an adaptive algorithm necessarily learns from failures,
it will need more time to learn as the failure rate decreases.

4.4 Comparison vs. reinforcement learning

We next compare the performance of A3S against a state-
of-the-art technique based on reinforcement learning (RL).
To this end, we adapt the approach proposed in [21], which
uses Q-learning to minimize the available resources while
ensuring a given SLA. The state st of the system is defined
by the number of tasks n and the number of active servers
m, and the action at is chosen from three possibilities: switch
on a server, switch off a server, or keep the current number
of active servers. At each update step ∆, which we set to
1/2λ (half the inter-arrival time), we observe the current
state st and choose action at, resulting in a penalty pt+1. The
Q-values for the state and actions are updated following the
usual rule:

Q(st, at) = (1−α)Q(st, at)+α

[
pt + γmin

at+1

Q(st+1, at+1)

]
,

(15)

while the penalty is given by the a weighted sum of the
number of failures during the update interval nt and the
power consumption over the same period ωt, i.e.,

pt = βnt + (1− β)ωt. (16)

The different parameters for the Q-learning approach are
set as follows. The discount factor γ is set to 0.9, and the β
factor is set to 0.9 to provide the same failure probability as
A3S (which we set to Tf = 10−3).6 To compute the Q-values
we follow standard techniques in RL [22] and employ an
ϵ-greedy strategy with an exploration parameter ϵ = 0.1,
while the parameter α is set to 10−4 to obtain a meaningful
average of the values.

Next, we analyze the convergence time of the RL mecha-
nism. To this aim, we focus on the “rack servers” scenario,
with a load of λ = 0.2 task/min. We depict in Fig. 6 the
fraction of Q-values that have converged over all the Q-
values visited (discarding those with a very low number
of visits). Given that the exploration period should be long
enough to allow the Q-values to converge, we set it to
40 000 slots, since at this point more than 90% of the values
have converged. 7 Fig. 7 depicts the failure probability Pf

of the RL approach for this exploration period (using a
moving average for ease of visualization) and compares it
against A3S. The figure shows that RL takes much more
time to converge: while A3S already meets the target failure
probability after 40 slots, Q-learning only reaches Tf after
40 000 slots (i.e., when finishing the exploration phase).

The above shows that Q-learning is not an appropriate
tool for the problem addressed in this paper, as it takes far
too much time to converge and thus risks not meeting the
failure probability target over long transients. Note that,
while we have focused on the behavior of one particular
Q-learning approach, we would expect that any other tech-
nique based on reinforcement learning would likely suffer
from similar issues, as the system addressed by this paper
is a fairly complex system relying on many states.

4.5 Stationary real life traces
The design of A3S does not rely on any assumption on
the task and server models, and hence should work for
any task and server behavior. To confirm this, we perform
a similar experiment to the one of Section 4.2 but instead
of exponential inter-arrivals and service times, we take the
task arrival and service times from the “Workflow Trace
Archive Google trace” [24]. In particular, we select three 24-
h periods from those traces with traffic load I = λ/µ = {30,
44, 64} Erlangs which, given the capacity of our system
of S × T = 128, correspond to small, medium and high
load, respectively. For each of these traces, we consider the

6. Note that Q-learning cannot be configured a priori to provide a
target Tf since there is no clear relation between the parameters and
the resulting failure probability. In this paper, we have performed
an exhaustive search on the configuration space for the sake of this
comparison, but this approach is clearly impractical.

7. While in theory the exploration period should be such that the
majority of Q-values have converged (as we have done here), in practice
this period is typically set following a rule of thumb criterion (e.g.,
with trial and error). In any case, even when following a rule of
thumb criterion, for systems with many states such as the one here,
the exploration period needs to be set to very large values to ensure
that the system behaves well in steady state (see e.g. [23]).

9

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Slots [x103]

C
on

ve
rg

ed
 Q

-v
al

ue
s

(%
)

Fig. 6: Convergence of the Q-values for the Reinforcement-
Learning (RL) technique: percentage of Q-values that have
converged as a function of time.

0.000

0.001

0.002

0.003

0.004

0.005

0 10 20 30 40 50 60

Slots [x103]

F
ai

lu
re

 p
ro

ba
bi

lit
y

A3S
RL

Fig. 7: Comparison of A3S and RL: failure probability over
time. The figure shows that A3S converges much more
quickly than Reinforcement-Learning (RL).

target failure probabilities Tf = {10−3, 10−5} and evaluate
the resulting failure probability and power consumption
provided by A3S for the ‘rack servers’ configuration. As
a benchmark, we consider the static optimal configuration
provided by our previous work [25], which assumes Poisson
arrivals and exponential service times. We summarize the
obtained results in Table 2.

The results confirm the good performance of A3S under
realistic traffic loads, as in all cases the obtained failure
probability coincides with the target one. In contrast, the
optimal configuration assuming Markovian arrivals and de-
partures results overly conservative, leading to Pf smaller
than the target Tf which results in wastage of resources.
Furthermore, the approach of [25] requires estimating in

A3S Static
Load Pf ω (W) Pf ω (W)

Small 10-3 516.1 0.3·10-3 665.2
10-5 687.4 0.8·10-5 710.8

Medium 10-3 727.5 0.4·10-3 773.5
10-5 880.8 0.4·10-5 942.3

High 10-3 1 020.3 0.5·10-3 1 062.1
10-5 1 212.8 0.8·10-5 1 232.5

TABLE 2: Performance with stationary real-life traffic

0 12

400
600
800

1000
1200

N
u
m

.
o
f
T
a
sk

s

Sun Mon Tue Wed Thu Fri Sat

12 instances 2 1 2 1 2 1 2 1 2 1 2 1 2

3 3 1 2 1 2 1 2 1 2 1 2 3 3

0 12 0 12 0 12 0 12 0 12 0 12 0

3 instances

Fig. 8: A3S with multiple instances.

advance the average arrival rate and service times, which
limits its practicality. Based on these results, we conclude
that A3S is well suited for stationary practical scenarios.

4.6 Non-stationary real life traces

Next, we analyze the performance of A3S under non-
stationary real-life traffic, taking the multiple instance ap-
proach presented in Section 3.4. We take as input a trace
from a large “Alibaba” production cluster [26], spanning a
period between July and August of 2020, with an average
arrival rate of λ = 9.2 tasks/min and an average service
time of 1/µ = 61 min/task. The task arrival pattern, which
is illustrated in Fig. 8 for one week, shows the “rough di-
urnal patterns” of the trace, with some distinction between
weekdays and weekends.

Given the traffic load of the trace (I = 570 Erlangs),
we have to redimension the server farms. To this aim, we
increase the number of servers S to ensure that the number
of resources available is enough to serve the traffic with no
failures when all servers are active (Ton = 0),8 which results
in 75 rack servers or 300 nano servers. We then evaluate the
following two configurations of A3S in terms of the number
of instances:

• Two instances: we run two instances of A3S, one for
the 0-12 h period, and another one for the 12-0 h
period. They are denoted as ‘1’ and ‘2’, respectively,
in the first row at the bottom of Fig. 8.

• Three instances: we run three instances of A3S, one
instance for the weekends (instance ‘3’ at the bottom
row) and two instances for the weekdays like in the
previous case (instances ‘1’ and ‘2’).

We assess the performance of each of the above mul-
tiple instance configurations of A3S, as well as for the

8. By ensuring that no failures happen with all servers active, all
failures produced during the execution of A3S are caused by the
configuration of the activation thresholds.

10

Rack servers

2800

2825

2850

2875

2900

Static One instance Two instances Three instances

P
ow

er
 c

on
su

m
pt

io
n

(�
)

Nano servers

1700

1710

1720

1730

1740

Static One instance Two instances Three instances

P
ow

er
 c

on
su

m
pt

io
n

(�
)

Fig. 9: Performance with non-stationary real-life traffic.

configuration with only one instance, for a target failure
probability Tf = 10−4, and provide the resulting average
power consumption in Fig. 9. Like in the previous case, we
also provide as a benchmark the performance of the static
optimal configuration provided by [25]. Like in the previous
case, the figure confirms that A3S provides a more efficient
operation than a static configuration (which, in contrast to
our approach, requires estimating the values of λ and µ).
Furthermore, it also illustrates that the use of more instances
of A3S can result in a more efficient operation, since they
provide additional energy savings as compared to the use
of one instance. We observe that there are some gains when
moving from one to two instances, while the gains from
moving to three instances are very small; this suggests that
having two instances may be a good choice for A3S.

5 RELATED WORK

5.1 NFV and reliability

The softwarization of networks introduces a great deal of
flexibility to deciding where to instantiate a VNF, and how
to interconnect them. This has motivated a lot of work on
network function placement, see e.g. the survey [27], with
the aim of maximizing resource efficiency while providing
mild service guarantees (e.g., CPU availability, inter-VNF
delays). For instance, [28] presents a mixed integer linear
programming to minimize the power consumption while
guaranteeing traffic constraints which optimizes the VNF
locations. In contrast to these works, we propose an adap-
tive algorithm for auto-scaling that ensures strict service
guarantees in terms of failure probability. For the particu-
lar challenge of providing a reliable service, [29] presents
some heuristics for a routing optimization problem, where
redundant VNFs are used to ensure an average reliability
level. Another contribution also addressing the reliability of
a softwarized deployment is that in [30], but in that case,
the focus is on the understanding of the interconnection
of virtual and physical resources and identifying when a
single node failure results in large-scale network collapse.
The scope and objective of these papers are different from
ours: here, our adaptive algorithm targets a data center and
provides hard guarantees on reliability.

5.2 Analytical modeling of reliability

The seminal work of [31] analyzes the reliability of a blade
server system. This is done with a high-level fault tree
model that interconnects a number of lower-level Markov
models, which serve to account for the fallibility of the
various hardware modules such as e.g. the CPU or the mem-
ory. A similar approach is followed in [32], where authors
analyze the reliability of a virtualized and non-virtualized
system composed of two hosts. A related system is later
considered in [33], where a sensitivity analysis is performed
to identify the parameters that more critically affect reliabil-
ity. A closer work to ours is [34], where a Markov chain is
used to model a server farm with setup delays in terms of
the response time and its power consumption. A related
analysis in the context of 5G/6G networks is presented
in [1], where thresholds are used to power up and down
instances, and the performance is characterized in terms of
power consumption and waiting time. None of these works
takes into account the fallible nature of the servers, which is
essential in order to meet the very stringent requirements of
5G/6G networks. In a previous work, we studied a similar
system to the one analyzed in this paper in [25] by extending
the analysis of [1], [34] to take into account fallible servers.
Based on the analysis, [25] characterizes service reliability
and derives an optimal policy for the configuration of the
server farm. The key differences between [25] and this paper
are: (i) the approach of [25] relies on strong assumptions on
the arrival processes and service times, while our approach
works for general arrival processes and service times, and
(ii) the policy derived in [25] is static and cannot dynami-
cally adapt to changing conditions, while here we design an
adaptive algorithm based on control theory. Finally, other
approaches such as parallel queues with vacations [35] do
not fit our problem as they do not include a policy to
(de)activate servers depending on the number of tasks.

5.3 Adaptive auto-scaling of server farms

The dynamic management of cloud resources to reduce
consumption has received notable attention from the re-
search community. For instance, in [36] authors assess the
impact of different static algorithms to (de)activate resources
and reallocate tasks in a data center focusing on energy
consumption and service violations. In a follow-up paper
[37], they propose to adapt the thresholds to the estimated
conditions. A key difference between our work and these
cloud techniques [7] is that they cannot provide high levels
of reliability, such as the ones required in 5G/6G. Some
approaches have been proposed that use of machine learn-
ing to tune the auto-scaling of server farms. The work
in [21] considers a similar scenario to ours, with a global
manager that switches on/off physical machines using a Q-
learning approach. However, it targets a penalty function
given by a weighted sum of power consumption and SLA
violations and cannot easily be tuned to provide strict
reliability guarantees. Furthermore, convergence times can
be extremely large. Another Q-learning approach has been
proposed in [38] for a similar purpose, although based
on a more complex penalty function, which suffers from
similar issues. Finally, control theory has been used in the
past to perform energy-efficient resource allocation in cloud

11

computing systems (see [39] for a survey). However, the
techniques proposed address different problems than the
ones we focus on in this paper and none of them focuses
on systems with fallible servers and very high-reliability
requirements. For instance, [40] leverages control theory to
perform load balancing and to select the CPU frequency.

6 CONCLUSIONS

In light of the very stringent reliability requirements of
5G/6G and the network operators’ concerns on energy
consumption, in NFV it is very critical to derive appropri-
ate scaling techniques that power on resources in advance
in order to provide the desired levels of reliability while
keeping the overall power consumption as low as possible.
Given the high variability of traffic load in mobile networks,
such scaling techniques need to automatically adapt to
the current network conditions. To that end, an adaptive
algorithm is needed that, depending on the observed behav-
ior, adjusts the scaling parameters to dynamically optimize
performance. In this paper, we have addressed this problem
by relying on control theory. We have designed a closed-
loop system that measures the observed failure probability
and increases/decreases the aggressiveness of scaling in
order to drive the system to the target reliability, thus min-
imizing power consumption. The performance evaluation
conducted for our approach shows that the proposed is ef-
fective in providing the desired reliability while minimizing
power consumption. Equally importantly, the system reacts
as quickly as possible to changing conditions, minimizing
the impact of transients. This contrasts with the performance
of a widely used reinforcement learning technique, whose
reaction is much slower. This shows that, in spite of the
high popularity of machine learning, other techniques that
may be more suitable in problems where convergence times
are critical.

ACKNOWLEDGEMENTS

This work has been partly funded by the European Com-
mission through the H2020 project Hexa-X (Grant Agree-
ment no. 101015956), by NEC Laboratories Europe Student
Research Fellowship program of 2021, and by the Spanish
Ministry of Economic Affairs and Digital Transformation
and the European Union-NextGenerationEU through the
UNICO 5G I+D SORUS project. The work of Jorge Ortin
was funded in part by the University of Zaragoza through
project UZ2022-IAR-08, in part by the Gobierno de Aragon
through Research Group under Grant T31 20R, in part by
the European Social Fund (ESF), and in part by Centro
Universitario de la Defensa under Grant CUD-2023 14. The
work of Jaime Garcia-Reinoso has been partly funded by
the Spanish Ministry for Science and Innovation through
the ADMINISTER (TED2021-131301B-I00) project.

REFERENCES

[1] Y. Ren, T. Phung-Duc, J. Chen, and Z. Yu, “Dynamic Auto Scaling
Algorithm (DASA) for 5G Mobile Networks,” in Proceedings of
the IEEE Global Communications Conference (GLOBECOM 2016),
Washington DC, USA, Dec. 2016.

[2] M. Gramaglia, P. Serrano, A. Banchs, G. Garcı́a, A. Garcia-
Saavedra, and R. Perez, “The case for serverless mobile net-
working,” in Proceedings of IFIP Networking 2020 - Network Slicing
workshop, Paris, France (virtual conference), Jun. 2020.

[3] European Telecommunications Standards Institute (ETSI), “Net-
work Functions Virtualisation (NFV) Release2; Management
and Orchestration; Functional requirements specification MANO
Functional Rqmts Spec.” GS NFV-EVE 010, v. 2.4.1, 2019.

[4] 3rd Generation Partnership Project (3GPP), “Technical Specifi-
cation Group Services and System Aspects; Management and
orchestration; Provisioning,” TS 28.531, v. 15.0.0, 2019.

[5] ——, “Service requirements for the 5G system,” TS 22.261, v.
17.3.0, 2020.

[6] A. Gonzalez, P. Gronsund, K. Mahmood, B. Helvik, P. Heegaard,
and G. Nencioni, “Service availability in the nfv virtualized
evolved packet core,” in 2015 IEEE Global Communications Con-
ference (GLOBECOM), 2015, pp. 1–6.

[7] P. Singh, P. Gupta, K. Jyoti, and A. Nayyar, “Research on Auto-
Scaling of Web Applications in Cloud: Survey, Trends and Future
Directions,” Scalable Computing: Practice and Experience, vol. 20, pp.
399–432, May 2019.

[8] A. Vasan, A. Sivasubramaniam, V. Shimpi, T. Sivabalan, and
R. Subbiah, “Worth their watts? - an empirical study of datacenter
servers,” in Proceedings of the Sixteenth International Symposium on
High-Performance Computer Architecture (HPCA 2010), Bangalore,
India, Jan. 2010.

[9] Y. Jin, Y. Wen, and Q. Chen, “Energy efficiency and server virtual-
ization in data centers: An empirical investigation,” in Proceedings
of IEEE INFOCOM Workshops 2012, Orlando, FL, Mar. 2012, pp.
133–138.

[10] GSM Association. Energy Efficiency: An Overview,
available at https://www.gsma.com/futurenetworks/wiki/
energy-efficiency-2/. [Online]. Available: https://www.gsma.
com/futurenetworks/wiki/energy-efficiency-2/

[11] C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile
and Wireless Networking: A Survey,” IEEE Communications Sur-
veys Tutorials, vol. 21, no. 3, pp. 2224–2287, Mar. 2019.

[12] Gutierrez-Estevez, D. M. et al., “Artificial Intelligence for Elastic
Management and Orchestration of 5G Networks,” IEEE Wireless
Communications, vol. 26, no. 5, pp. 134–141, Aug. 2019.

[13] C. Gu, Z. Li, H. Huang, and X. Jia, “Energy efficient scheduling
of servers with multi-sleep modes for cloud data center,” IEEE
Transactions on Cloud Computing, 2018.

[14] VMware vSphere vMotion, “Architecture, Performance and Best
Practices in VMware vSphere 5: Performance Study,” Technical
White Paper, 2019.

[15] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete
Container State Migration,” in Proceedings of the 37th IEEE nterna-
tional Conference on Distributed Computing Systems (ICDCS 2017),
Jun. 2017, pp. 2137–2142.

[16] J. A. Aroca, A. Chatzipapas, A. F. Anta, and V. Mancuso, “A
measurement-based characterization of the energy consumption
in data center servers,” IEEE Journal on Selected Areas in Communi-
cations, vol. 33, no. 12, pp. 2863–2877, 2015.

[17] P. Patras, A. Banchs, and P. Serrano, “A control theoretic scheme
for efficient video transmission over ieee 802.11e edca wlans,”
ACM Trans. Multimedia Comput. Commun. Appl., vol. 8, no. 3,
Aug. 2012. [Online]. Available: https://doi.org/10.1145/2240136.
2240142

[18] A. Garcia-Saavedra, A. Banchs, P. Serrano, and J. Widmer, “Adap-
tive mechanism for distributed opportunistic scheduling,” IEEE
Transactions on Wireless Communications, vol. 14, no. 6, pp. 3494–
3508, 2015.

[19] F. Jalali, R. Ayre, A. Vishwanath, K. Hinton, T. Alpcan, and
R. Tucker, “Energy consumption comparison of nano and central-
ized data centers,” in Proceedings of ACM Greenmetrics, Austin, TX,
Jun. 2014.

[20] K. N. Khan, Z. Ou, M. Hirki, J. K. Nurminen, and T. Niemi, “How
much power does your server consume? Estimating wall socket
power using RAPL measurements,” Computer Science-Research and
Development, vol. 31, no. 4, pp. 207–214, Aug. 2016.

[21] S. Telenyk, E. Zharikov, and O. Rolik, “Modeling of the Data
Center Resource Management Using Reinforcement Learning,” in
Proceedings of the International Scientific-Practical Conference Prob-
lems of Infocommunications. Science and Technology (PIC S&T 2018),
Kharkiv, Ukraine, Oct. 2018, pp. 289–296.

12

[22] A. D. Tijsma, M. M. Drugan, and M. A. Wiering, “Comparing
exploration strategies for q-learning in random stochastic mazes,”
in 2016 IEEE Symposium Series on Computational Intelligence (SSCI),
2016, pp. 1–8.

[23] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“Deepcog: Cognitive network management in sliced 5g networks
with deep learning,” in IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, 2019, pp. 280–288.

[24] Google, “Workflow Trace Archive Google trace [Data set],
available at https://doi.org/10.5281/zenodo.3254540,” Jun. 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.3254540

[25] J. Ortin, P. Serrano, J. Garcia-Reinoso, and A. Banchs, “Analysis of
scaling policies for nfv providing 5g/6g reliability levels with falli-
ble servers,” IEEE Transactions on Network and Service Management,
vol. 19, no. 2, pp. 1287–1305, 2022.

[26] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding, “MLaaS in the wild: Workload analysis and
scheduling in large-scale heterogeneous GPU clusters,” in 19th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 22), 2022.

[27] Xin Li and Chen Qian, “A survey of network function placement,”
in Proceedings of the 13th IEEE Annual Consumer Communications
Networking Conference (CCNC 2016), Las Vegas, NV, Jan. 2016, pp.
948–953.

[28] A. N. Al-Quzweeni, A. Q. Lawey, T. E. H. Elgorashi, and J. M. H.
Elmirghani, “Optimized Energy Aware 5G Network Function
Virtualization,” IEEE Access, vol. 7, pp. 44 939–44 958, Mar. 2019.

[29] L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz, “A Reliability-Aware
Network Service Chain Provisioning With Delay Guarantees in
NFV-Enabled Enterprise Datacenter Networks,” IEEE Transactions
on Network and Service Management, vol. 14, no. 3, p. 554–568, Sep.
2017.

[30] J. Liu, Z. Jiang, N. Kato, O. Akashi, and A. Takahara, “Reliability
evaluation for nfv deployment of future mobile broadband net-
works,” IEEE Wireless Communications, vol. 23, no. 3, p. 90–96, Jun.
2016.

[31] W. E. Smith, K. S. Trivedi, L. A. Tomek, and J. Ackaret, “Availabil-
ity analysis of blade server systems,” IBM Systems Journal, vol. 47,
no. 4, pp. 621–640, 2008.

[32] D. S. Kim, F. Machida, and K. S. Trivedi, “Availability modeling
and analysis of a virtualized system,” in 2009 15th IEEE Pacific
Rim International Symposium on Dependable Computing, 2009, pp.
365–371.

[33] R. d. S. Matos, P. R. M. Maciel, F. Machida, D. S. Kim, and
K. S. Trivedi, “Sensitivity analysis of server virtualized system
availability,” IEEE Transactions on Reliability, vol. 61, no. 4, pp. 994–
1006, 2012.

[34] A. Gandhi, M. Harchol-Balter, and I. Adan, “Server farms with
setup costs,” Performance Evaluation, vol. 67, no. 11, pp. 1123 –
1138, Nov. 2010.

[35] P. Wartenhorst, “N parallel queueing systems with server break-
down and repair,” European Journal of Operational Research, vol. 82,
no. 2, pp. 302–322, 1995.

[36] A. Beloglazov and R. Buyya, “Energy efficient allocation of virtual
machines in cloud data centers,” in 2010 10th IEEE/ACM Interna-
tional Conference on Cluster, Cloud and Grid Computing, 2010, pp.
577–578.

[37] A. Beloglazov and R. Buyya, “Adaptive threshold-based approach
for energy-efficient consolidation of virtual machines in cloud
data centers,” in Proceedings of the 8th International Workshop on
Middleware for Grids, Clouds and e-Science, ser. MGC ’10. New
York, NY, USA: Association for Computing Machinery, 2010.

[38] S. Horovitz and Y. Arian, “Efficient cloud auto-scaling with sla
objective using q-learning,” in Proceedings of the 6th IEEE Inter-
national Conference on Future Internet of Things and Cloud (FiCloud
2018), Barcelona, Spain, 2018, pp. 85–92.

[39] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. P. Jayaraman,
J. Kolodziej, P. Balaji, S. Zeadally, Q. M. Malluhi, N. Tziritas,
A. Vishnu, S. U. Khan, and A. Zomaya, “A survey and taxon-
omy on energy efficient resource allocation techniques for cloud
computing systems,” Computing, vol. 98, no. 7, pp. 751–774, Jun.
2014.

[40] Y. Wang, X. Wang, M. Chen, and X. Zhu, “Power-efficient response
time guarantees for virtualized enterprise servers,” in 2008 Real-
Time Systems Symposium, 2008, pp. 303–312.

Jesús Pérez-Valero got his B.Sc. and M.Sc.
degrees in 2019 and 2020, respectively, from
the Universidad Politécnica de Cartagena. He is
currently a Ph.D. candidate at the Universidad
Carlos III of Madrid. His main research interests
lie in the performance analysis and optimization
of communication systems.

Albert Banchs has a double affiliation as Pro-
fessor at the University Carlos III of Madrid and
Deputy Director of the IMDEA Networks institute.
Prof. Banchs has served in many TPCs and has
also served in the editorial board of a number
of journals, including IEEE Transactions in Wire-
less Communications and IEEE/ACM Transac-
tions on Networking. Dr. Banchs has participated
in many European projects and industry con-
tracts.

Pablo Serrano (M’09, SM’16) is an Associate
Professor at the University Carlos III de Madrid.
His research interests lie in the analysis of wire-
less networks and the design of network pro-
tocols and systems. He has over 100 scientific
papers in peer-reviewed international journals
and conferences and has served on the TPC of
many conferences. He currently serves as Editor
for IEEE Open Journal of the Communication
Society.

Jorge Ortı́n is an Associate Professor at the
Centro Universitario de la Defensa Zaragoza,
Spain. He received his MS degree in Telecom-
munications and his Ph.D. degree from the Uni-
versidad de Zaragoza in 2005 and 2011 respec-
tively. In 2012 he joined the Universidad Carlos
III of Madrid as a postdoc research fellow. From
2013, he works at Centro Universitario de la
Defensa Zaragoza. His research interests focus
on the optimization of communications systems.

Jaime Garcia-Reinoso (M’04) received the
Telecommunications Engineering degree in
2000 from the University of Vigo, Spain and the
Ph.D. in Telecommunications in 2003 from the
University Carlos III of Madrid, Spain. He is an
associate professor at University of Alcala, Spain
since 2021 and he has published over 60 papers
in top magazines and conferences. He has been
involved in many international projects on next
generation networks, 5G, SDN and NFV.

13

Xavier Costa-Perez Xavier Costa-Pérez is
ICREA Research Professor, Scientific Director at
the i2cat Research Center and Head of 5G Net-
works R&D at NEC Laboratories Europe. His re-
search focuses on the transformation of society
driven by the interplay of mobile networks and
AI. Currently, he is serving as Associate Editor at
IEEE Transactions on Mobile Computing, IEEE
Transactions on Communications and Elsevier
Computer Communications journals.

