
Sustainable Provision of URLLC Services for V2N:
Analysis and Optimal Configuration

Livia Elena Chatzieleftheriou

livia.chatzieleftheriou@imdea.org

IMDEA Networks Institute

Madrid, Spain

Jesus Perez-Valero

jesperez@pa.uc3m.es

Universidad Carlos III de Madrid

Madrid, Spain

Jorge Martín-Pérez

jorge.martin.perez@upm.es

Universidad Politécnica de Madrid

Madrid, Spain

Pablo Serrano

pablo@it.uc3m.es

Universidad Carlos III de Madrid

Madrid, Spain

ABSTRACT
The rising popularity of Vehicle-to-Network (V2N) applications is

driven by the Ultra-Reliable Low-Latency Communications (URLLC)

service offered by 5G. The availability of distributed resources could

be leveraged to handle the enormous traffic arising from these ap-

plications, but introduces complexity in deciding where to steer

traffic under the stringent delay requirements of URLLC. In this

paper, we introduce the V2N Computation Offloading and CPU

Activation (V2N-COCA) problem, which aims at finding the com-

putation offloading and the edge/cloud CPU activation decisions

that minimize the operational costs, both monetary and energetic,

under stringent latency constraints. Some challenges are the proven

non-monotonicity of the objective function w.r.t. offloading deci-

sions, and the no-existence of closed-formulas for the sojourn time

of tasks. We present a provably tight approximation for the lat-

ter, and we design BiQui, a provably asymptotically optimal and

with linear computational complexity w.r.t. computing resources

algorithm for the V2N-COCA problem. We assess BiQui over real-

world vehicular traffic traces, performing a sensitivity analysis and

a stress-test. Results show that BiQui significantly outperforms

state-of-the-art solutions, achieving optimal performance (found

through exhaustive searches) in most of the scenarios.

CCS CONCEPTS
• Networks → Network performance modeling; Network
management.

KEYWORDS
Vehicle-to-Network, V2N, Ultra-reliable Low-Latency Communica-

tions, URLLC, Queueing Theory, Algorithm design, Optimization

problem, Asymptotic optimality.

1 INTRODUCTION
Network intelligence has emerged as a pivotal goal for 6G. In

conjunction with recent advancements in the automotive sector,

Vehicle-to-Network (V2N) applications attract significant interest

from both academia and industry [30]. A notable instance of V2N

communication is Tele-operated Driving (ToD), wherein vehicles

MobiHoc’24, October 14-17, 2024, Athens, Greece
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

are remotely controlled by operators who rely on inputs from the

vehicles, including augmented video feeds from the vehicle’s front

camera that highlight recognized objects or obstacles to be avoided.

For safety-critical applications like these an Ultra-Reliable Low

Latency Communication (URLLC) service is indispensable [5], be-

cause it will ensure that the delay experienced by any task between

the vehicle and the network remains below a specific threshold

with a probability exceeding a predefined reliability threshold. For

example, ToD services mandate that transmissions are completed

within 100 ms with a 99.999% reliability [5], encompassing trans-

mission and propagation delays, as well as the sojourn time (i.e.,
waiting plus service time) at the servers. Given the stringent na-

ture of these requirements, any delay could potentially result in

vehicular crashes, including those involving pedestrians.

To ensure timely processing of vehicular tasks, these can be of-

floaded to servers located either in the cloud or at the network edge.

While cloud servers offer greater computational power, their rela-

tive distance from the vehicles could introduce significant delays.

On the other hand, edge servers, colocated with Road-Side Units

(RSUs) along roads, can provide more immediate services, albeit at

a potentially higher cost or with less computational power [20].

This presents a challenging trade-off due to the dynamic scaling

of computing resources. Dimensioning the system to handle peak

traffic ensures URLLC service availability but leads to resource

wastage during off-peak hours. Adapting resources based on de-

mand could result in significant savings for service providers, yet

maintaining URLLC guarantees for vehicular applications remains

paramount. The challenge is scaling computing resources effec-

tively, determining the appropriate number of processing units at

both edge and cloud that guarantees an appropriate performance.

This work tackles the challenges above. In a nutshell, our con-

tributions can be summarised as follows:

• We introduce the V2N Computation Offloading and CPU

Activation (V2N-COCA) Problem, a novel problem that aims

at minimising the operational costs (monetary, energetic)

of distributed resources while ensuring the latency and re-

liability requirements of V2N URLLC services, by decid-

ing which tasks to offload at the edge or at the cloud, and

how many CPUs to activate. We rigorously study the prob-

lem’s structural properties, proving, among others, the non-

monotonicity of the objective function and the non-continuity

of the feasible space boundary w.r.t the offloading decisions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

MobiHoc’24, October 14-17, 2024, Athens, Greece Livia Elena Chatzieleftheriou, Jesus Perez-Valero, Jorge Martín-Pérez, and Pablo Serrano

• Motivated by experimental evidence, we propose an approx-

imation of the sojourn time (i.e., the sum of the waiting and

service time), for which it currently does not exist a closed-

form, challenging the URLLC requirement guarantee. Our

approximation exploits the waiting time of 𝑀/𝐷/𝑘 queues.

We thoroughly examine our proposal comparing against the

optimal oracle found via exhaustive searches. We rigorously

demonstrate that our approximation works perfectly when

targeting vehicular applications based on tasks stemming

from video frames, and we discuss why and how our pro-

posal can be applied to different domains.

• We exploit the V2N-COCA Problem derived structural prop-

erties and its feasibility region, and design an efficient al-

gorithm for its solution. We prove its correctness, its low

computational complexity, and its asymptotic optimality.

• We evaluate our algorithm using real-world traces to evalu-

ate its behaviour under realistic scenarios, while assessing its

performance under a variety of conditions. We also perform

an extensive sensitivity analysis on our system’s parame-

ters. The system parameterization is dictated by the related

literature.

The rest of the paper is structured as follows: In §2 we discuss

the related works. In §3 we present our system model. In §4 we

introduce and analyse our optimization problem. In §5 we introduce

and evaluate our proposal for the characterisation of the sojourn

time of the tasks at the servers. In §6 we design and analyse our

algorithm and its computing and approximability properties. In §7

we evaluate our algorithm, and in §8 we conclude the paper.

2 RELATEDWORKS
Vehicles-to-anything (V2X) conveys communications among vehi-

cles (V2V), with pedestrians (V2P) and the network/infrastructure

(V2N), being a superset of all of them. Although our work tackles

the latter, resource provisioning and offloading techniques for V2V

and V2P are also of interest in V2N, as both vehicles and phones

have computing capacity within the network. In the following we

overview the existing literature regarding V2X offloading, V2X

resource scaling/allocation, joint task offloading and resource allo-

cation even in non-V2X contexts, URLLC service provisioning, and

the𝑀/𝐺/𝑘 literature that is related to waiting times.

Traffic Offloading in V2X Scenarios. The literature proposes
offloading tasks to other vehicles [24] and edge premises [9] and

[16], even leveraging Reinforcement Learning (RL) approaches [16,

23], and aim at minimizing the average waiting time [15] consider-

ing the channel quality [9]. Our work also considers (𝑖) the resource
provisioning; and (𝑖𝑖) processing time of each task at the edge/cloud.
Hence, guaranteeing URLLC constraints are met in an end-to-end
fashion.

Resource Scaling and Allocation in V2X Scenarios. Works

as [21, 33] aim at accommodating enough radio resource blocks

for V2X services, while [18] allocates enough resources in the V2X

channel resorting to RL. However, such works [18, 21, 33] just

analyze the radio link and oversee the tight 99.999-percentile delay

requirement of URLLC services. Our work accounts for queuing and

processing delays, and allocates edge/cloud resources to ensure that
queuing and processing delays meet the 99.999 percentile.

Joint task offloading and resource allocation. To the best of

our knowledge, [10, 27] and [19] are the only works that jointly

tackle task offloading and resource allocation in V2X scenarios.

However, they oversee the stochastic nature of the delay, consid-

ering it as a ratio between the demand and computing resources

[10, 27], or ignoring the URLLC requirements of V2X services [19]

. Only [22] keeps track of the stochastic nature of how queues

grow to maintain them with a stable length, but considering only

average metrics that do not capture reliability requirements. Our
work tackles the joint task offloading and allocation problem consid-
ering the inherent stochasticity of queuing and processing delays, and
guaranteing delay and reliability constraints imposed by V2X.

URLLC Service Provisioning. Works [6, 31] leverage Stochastic

Network Calculus (SNC) to infer the delay violation probability in

URLLC to: (𝑖) scale the slice radio resources accordingly [6]; or (𝑖𝑖)

decide where to process the tasks [31]. Rather than just considering
the radio network, our work accounts for the end-to-end delay of
URLLC services and advocates to queuing theory instead of SNC.
Hence, we capture the packetized nature of internet traffic and provide
tighter bounds than SNC.

M/G/k literature. Existing works [28] and [14] leverage deficit

renewal equations and difference-differential equations, respec-

tively, to approximate the M/G/k waiting time distribution. How-

ever, their approximations have errors in the order of 10
−2
, which

do not suffice for URLLC services as ToD. Rather, we exploit the
small variance of the gamma mixture to propose a new approxima-
tion that convolves the M/D/k waiting time with the gamma mixture
service time and ensures URLLC with errors lower than 10

−5.

3 SYSTEM MODEL
We illustrate in Fig. 1 the considered scenario: passing vehicles are

provided wireless connectivity by Road Side Units (RSUs) deployed

along the road or street. Vehicles use a remote driving service where

highly-accurate computationally-intensive Artificial Intelligent (AI)

algorithms decide which actions vehicles should take based on their

surroundings [5]. Vehicles hold a CPU in which some computations

can be performed, e.g., to preprocess frames before actually perform-

ing heavier AI-related tasks [1]. However, given the complexity of

these algorithms and the possible inter-vehicle interactions, the

complex AI tasks are offloaded to external resources, either at the

edge or the cloud: edge resources might provide shorter Round-Trip

Times (RTTs), but there might not be enough computing capacity

for peak-hour conditions or they may become too expensive, and

therefore cloud resources might be preferable despite their longer

RTTs. The main objective of the service provider is to activate the

computation resources that minimize the operational costs while

ensuring the URLLC service guarantees.

URLLC application and offloading decisions. Each vehicle 𝑣

generates a flow of computing tasks at a rate 𝜆𝑣 , e.g., a flow of video

frames taken from a front camera to be processed. For simplicity,

we assume a single URLLC service, which implies that all vehicles

generate traffic following the same model and there is a single

Sustainable Provision of URLLC Services for V2N: Analysis and Optimal Configuration MobiHoc’24, October 14-17, 2024, Athens, Greece

Notation Description

𝑉 Number of vehicles

𝜆𝑣 Frame rate from vehicle 𝑣

𝜆𝐶 , 𝜆𝐸 Incoming rate at cloud and edge

𝑠, 𝑆𝑖 (·) , 𝑆𝑐 (·) Task avg. service time, and service time at edge and cloud

𝐷𝑠𝑜 𝑗𝑜 Sojourn time to process the task

𝐷𝑡𝑟𝑎𝑛, 𝐷𝑝𝑟𝑜𝑝 Transmission time and frame propagation delay

𝐷𝑖 Total delay experienced by a task i

𝐸,𝐶 Maximum CPUs at the edge and cloud

𝑐0𝑐 , 𝑐0𝑒 Subscription cost at cloud and edge

𝑐1𝑐 , 𝑐1𝑒 Usage cost at cloud and edge

𝑥, 𝑦 CPUs activated at edge and cloud - DECISION

𝑧 Offloading policy - DECISION

𝑃𝐺 ,𝑇 Reliability requirement and maximum delay

Ω Feasibility region

𝑙𝑖 Frame length of task i

Table 1: Notation Table

service requirement (however, our analysis can be generalised to

capture multiple services with different rates and requirements).

We assume that the URLLC service requires that for each task 𝑖 , its

total delay 𝐷𝑖 (·) must be less than a maximum delay𝑇 with at least

𝑃𝐺 probability [5]. This can be formalised as

P(𝐷𝑖 (·) ≤ 𝑇) ≥ 𝑃𝐺 ,∀ task 𝑖 . (1)

We will refer to 𝑇 as the delay requirement and to 𝑃𝐺 as the relia-

bility requirement. Following [17], the length 𝑙𝑖 of frame 𝑖 follows

a distribution that is specific to the service type and video format.

The terms “frames” and “tasks” will be used interchangeably.

In order to avoid conflicts with apps with less stringent delay ap-

plications, URLLC services in practice can be assigned to a dedicated

slice in the network. To ensure a high-quality URLLC vehicular

service, we must preserve the order of the packets within each flow

(i.e., for each vehicle). This can be ensured by implementing a per-

flow traffic split between the edge and the cloud at the RSU, using

e.g., flow hashing [7]. In practice, this implies that the computing

load generated by a portion 𝑧 ∈ [0, 1] of flows is offloaded to the

cloud, and the computing load of the remaining portion (1 − 𝑧)
of flows is executed at the edge

1
. Let 𝜆𝐸 and 𝜆𝐶 be the incoming

computing demand at the edge and the cloud server, respectively.

Both 𝜆𝐸 and 𝜆𝐶 are, naturally, functions of our offloading decisions

𝑧 and the number 𝑉 of vehicles, and can be computed as:

𝜆𝐸 (𝑧,𝑉) = 𝑉𝜆𝑣 (1 − 𝑧) and 𝜆𝐶 (𝑧,𝑉) = 𝑉𝜆𝑣𝑧. (2)

Computing resources, activation decisions, service model.
In practice, edge facilities comprise areas of 10-20km [8], hence

one edge pool covers a whole urban area. We assume that there are

up to 𝐸 CPUs available at the edge, and up to 𝐶 CPUs available at

the cloud, whose computing capacity is dedicated to the URLLC

vehicular app. We denote by 𝑥 ∈ {1, . . . , 𝐸} and 𝑦 ∈ {1, . . . ,𝐶}
the number of CPUs to be activated at the edge and at the cloud,

respectively, which correspond to our activation decisions. We

1
For cases that the offloading decision may not result in integer solutions, e.g., when
𝑧 = 0.5 and the number 𝑁 of vehicles is odd, it will be needed to round 𝑧 to the

closest value that results in an integer split of vehicles to the edge or to the cloud,

and a confirmation or adjustment that the activated CPUs can handle the incoming

computational load after this rounding.

RSU

edge

CPU

CPU

𝑥
=
1

cloud

CPU

CPU

CPU

CPU

𝑦
=
2

Net

.

𝑧

1 − 𝑧

tasks

Figure 1: Vehicles produce tasks. We offload the task flows
either to the cloud (with probability 𝑧) or to the edge (with
probability 1 − 𝑧). We process the frames by activating 𝑥 =

1 CPU at the edge or 𝑦 = 2 CPUs at the cloud. Maximum
available CPUs: 𝐸 = 2 (edge) and 𝐶 = 4 (cloud).

assume that all CPUs have the same computational capacity 𝐾

cycles per unit of time, and therefore what essentially distinguishes

the edge from the cloud is the number of available CPUs [32, Sec.

2] and their distances to the vehicles (these assumptions could

be relaxed as well). Assuming that the number of cycles required

to process a task is proportional to its length [26] with constant

𝑐 cycles/bit, the service time to process a task of length 𝑙𝑖 equals

𝑆 (𝑙𝑖) = 𝑙𝑖
𝑐

𝐾
. (3)

Edge and cloud servers as M/G/k queues. We assume that

there are a large enough group of 𝑉 vehicles using the URLLC

service, each one generating an independent flow of tasks, e.g.,
a video flow. In practice, this will be the most common scenario

in a few years, since most of the vehicles are now manufactured

with such features. Under these conditions, the Palm-Khintchine

Theorem ensures that the aggregated video arrival process follows

a Poisson process at a rate 𝜆 = 𝑉𝜆𝑣 . Given that the offloading

mechanism is based on hashing [7], the resulting flows towards

the edge and the cloud are also two Poisson process (at rates 𝜆𝐸
and 𝜆𝐶 , respectively) since they are the result of a random thinning
of a Poisson process. Frames at each server are enqueued using a

publish/subscribe protocol, and thus each CPU processes frames in

a sequential fashion. As a result, both the edge and cloud servers

can be modeled as two different M/G/k systems: the edge with 𝑥

active servers and arrival rate 𝜆𝐸 = 𝜆(1 − 𝑧), and the cloud with 𝑦

active servers and arrival rate 𝜆𝐶 = 𝜆𝑧. The M/G/k queue is one of

the most general models and does not have closed-form expressions

to characterize the tasks sojourn time (apart from approximations

such as Kingman’s law). In section 4 we present our approximation

to characterize the CDF of the sojourn time.

Total delay experienced by a task. The total delay 𝐷𝑖 expe-
rienced by a task 𝑖 is defined as the total time since the task is

generated, processed, and sent back to the vehicle. It can be ex-

pressed as a function of the number of vehicles 𝑉 in the system,

and the activation and offloading decisions taken by the service

provider, i.e., variables 𝑥,𝑦 and 𝑧, respectively. Formally:

𝐷𝑖 (𝑉 , 𝑥,𝑦, 𝑧) = 𝐷𝑡𝑟𝑎𝑛 (𝑙𝑖) + 𝐷𝑝𝑟𝑜𝑝 + 𝐷𝑠𝑜 𝑗𝑜 (𝑉 , 𝑥,𝑦, 𝑧), (4)

where 𝐷𝑡𝑟𝑎𝑛, 𝐷𝑝𝑟𝑜𝑝 , 𝐷𝑠𝑜 𝑗𝑜 the radio transmission delay, radio-to-

server propagation time (back and forth), and sojourn time of a

task (i.e., waiting plus service time), respectively. We ensure a

MobiHoc’24, October 14-17, 2024, Athens, Greece Livia Elena Chatzieleftheriou, Jesus Perez-Valero, Jorge Martín-Pérez, and Pablo Serrano

bounded and reliable transmission latency 𝐷𝑡𝑟𝑎𝑛 through a 3GPP-

compliant NR deployment [4, Sec. 7] and Type B frame repeti-

tions [3, Sec. 6.1.2.3.2]. Using a dedicated V2X slice for the service

provider, propagation delays 𝐷𝑝𝑟𝑜𝑝 can also be bounded. Due to

𝐷𝑝𝑟𝑜𝑝 and 𝐷𝑡𝑟𝑎𝑛 being bounded, we focus our analysis on the com-

plex 𝐷𝑠𝑜 𝑗𝑜 (𝑉 , 𝑥,𝑦, 𝑧), and we perform a sensitivity analysis w.r.t.

𝐷𝑝𝑟𝑜𝑝 and 𝐷𝑡𝑟𝑎𝑛 in Sec. 7.

Infrastructure costs. Our analytical framework is able to cap-

ture both different economic models for the cost of the infrastruc-

ture usage, and its energy consumption. Regarding the energy

consumption, the literature [29] identifies two main components:

(i) an energy consumption term caused by the activation of the

servers, which is proportional to the number of activated CPUs,

and (ii) an energy consumption term that is proportional to the

time the servers are busy with executing tasks, i.e., the service

time. Regarding the cost of the infrastructure usage, current pricing

plans [2] also take into account two terms: (i) a “subscription” cost

for accessing a number of resources, which is proportional to the

number of activated CPUs, and (ii) a “usage” cost that is propor-

tional to the time the servers are used. Based on the above, we

define the total cost 𝐾 as a linear combination of the number of

activated CPUs and their service time as follows:

𝐾 (𝑉 , 𝑥,𝑦, 𝑧) := 𝑐0𝑒𝑥 + 𝑐0𝑐𝑦 + 𝑐1𝑐𝜆𝐶 (𝑧,𝑉)𝑠 + 𝑐1𝑒𝜆𝐸 (𝑧,𝑉)𝑠, (5)

where the constants 𝑐0𝑒 and 𝑐0𝑐 capture the subscription cost per

CPU at the edge and the cloud, respectively, the constants 𝑐1𝑒 and

𝑐1𝑐 capture the usage cost per time unit at the edge and the cloud,

respectively, and 𝜆𝐶 (𝑧,𝑉)𝑠, 𝜆𝐸 (𝑧,𝑉)𝑠 represent the product of the
incoming rate (at the cloud and edge) by the service time. Specif-

ically, 𝑠 = 𝑆 (𝑙𝑖) denotes the service time for the average packet

length 𝑙𝑖 , i.e., the average service time. Our cost function is spe-

cific enough to accurately capture existing energetic and monetary

costs. At the same time, it is generic enough to allow for specific

particularizations to be incorporated in it, e.g., by considering a

variety of specific functions for the service time, such as a that in

eq. (3) or a fixed time per task (irrespectively of its length).

4 THE V2N COMPUTATION OFFLOADING
AND CPU ACTIVATION PROBLEM

In this section we first introduce our optimization problem, and

next analyse its structural properties and associated challenges.

Optimization problem. We formalize it as follows:

Problem 1 (V2N Computation Offloading and CPU Activation

(V2N-COCA) Problem).

min

𝑥,𝑦,𝑧
𝐾 (𝑉 , 𝑥,𝑦, 𝑧) (6)

s.t. Eq. (1),

𝑥 ∈ {0, 1, . . . , 𝐸}, and 𝑦 ∈ {0, 1, . . . ,𝐶}, (7)

𝑧 ∈ [0, 1] . (8)

The objective in (6) corresponds to finding the CPU activation

decisions 𝑥 and 𝑦 and offloading decision 𝑧 that minimise the total

operational cost defined in (5). Eq. (1) ensures the URLLC require-

ments of vehicular applications are met. Eq. (7) capture the upper

Param Value

𝑇 100ms

𝑃𝐺 99.999%

𝐷𝑒
prop

18.2ms

𝐷𝑐
prop

22.8ms

𝑐0𝑐 , 𝑐1𝑐 15, 2

𝑐0𝑒 , 𝑐1𝑒 30, 4

𝑠𝑖 , 𝜆 22.5, 1.87 ppms
0.6 0.7 0.8 0.9

900

1,000

1,100

Ω

m
o
r
e
C
P
U
s

(𝑥2, 𝑦2, 𝑧2) = (16, 32, .685)

(𝑥1, 𝑦1, 𝑧1)
= (16, 31, .672)

(𝑥3, 𝑦3, 𝑧3)
= (15, 32, .692)

𝑧

𝐾
(𝑉
,𝑥
,𝑦
,𝑧
)

Figure 2: Total costs vs. offloading decision 𝑧 for the feasibil-
ity region and boundary, depicted for an instance considering
a ToD service [5] and real-world propagation delays [32].

bounds on the available CPU resources at the edge and the cloud.

Finally, Eq. (8) describes the offloading decision 𝑧 as a ratio in [0, 1].

V2N-COCA Problem’s Structural Properties. We use these in

Section 6, to design and analyse our computationally efficient and

asymptotically optimal algorithm for its solution. It holds that:

Proposition 1. The cost function in (5) is increasingly mono-
tone w.r.t. CPU activation decisions 𝑥, 𝑦.

This proposition implies that the minimum cost will be in the

boundary of the feasible region w.r.t. activation decisions.

Proof. We only prove the increasing monotonicity w.r.t. deci-

sion 𝑥 , i.e., CPU activation at the edge. However, exactly the same

arguments can be used to prove the monotonicity w.r.t. decisions 𝑦

of CPU activation at the cloud. Fix𝑉 = 𝑉0, 𝑦 = 𝑦0 and 𝑧 = 𝑧0, and let

𝑓 (𝑥) := 𝐾 (𝑉0, 𝑥,𝑦0, 𝑧0) . By definition, 𝑓 (𝑥) is monotone increasing

in 𝑥 if and only if 𝑥1 > 𝑥2 ⇐⇒ 𝑓 (𝑥1) > 𝑓 (𝑥2) . Observe that the
total service time 𝑆𝐸 = 𝜆𝐸 (𝑧0,𝑉)𝑠 at the edge, i.e., the aggregate
over all activated CPUs at the edge, is independent of the CPU

activation decisions, since it essentially depends on the amount of

tasks that are sent there, i.e., from the offloading decisions 𝑧0, which

we previously fixed. Similarly for the service time 𝑆𝐶 = 𝜆𝐶 (𝑧0,𝑉)𝑠
at the cloud. Observing the linearity of Eq. (5) w.r.t. the number 𝑥

of activated CPUs at the edge, we confirm that the monotonicity

condition holds, which concludes the proof. □

Wenext study the feasibility region, with our motivation being to

better understand which points (i.e., decisions) would be preferable

as solutions, to drive the design of our algorithm. The feasibility

region Ω of Problem 1 is defined as Ω :=

{
(𝑥,𝑦, 𝑧) : (1), (7), (8)

}
, i.e.,

intuitivelly, as the set of all those combinations of decisions (𝑥,𝑦, 𝑧)
that meet the URLLC requirements, upper bounds on available

computing resources, and percentage of offloaded computing load.

We illustrate in Fig. 2 the feasibility region for the scenario described

in its caption. In general, it holds that:

Proposition 2. For the feasibility region Ω dictated by eqs.
(1), (7), and (8), it holds that:

(1) It is not continuous w.r.t. the offloading policy 𝑧. In
fact, its boundary is a step function.

(2) It is not monotone w.r.t. the offloading policy 𝑧.

Sustainable Provision of URLLC Services for V2N: Analysis and Optimal Configuration MobiHoc’24, October 14-17, 2024, Athens, Greece

(3) Between two consecutive steps, the boundary is linear
w.r.t. any offloading policy 𝑧.

Prop. 2 implies that we cannot exploit the continuous nature of

the offloading decisions 𝑧 to find the optimal solution. Still, point

(3) will be useful to design an asymptotically optimal algorithm.

Proof. (1) - (2): non-monotonicity/non-continuity w.r.t. z.
We perform a proof by finding a counterexample for which the

continuity and monotonicity properties do not hold. We want to

stress that Fig. 2 was produced by performing exhaustive searches,

and can be thus treated as an oracle. Although this proof relies

on a particular parametrization, in fact it suffices to show that

the monotonicity and continuity properties do not hold in gen-

eral. Also, we provide arguments that expose the characteristics

of the the feasible region for any other instance of the problem,

i.e., for any parametrization. In our counterexample, let 𝑧1 = 0.672,

𝑧2 = 0.685, and 𝑧3 = 0.692. Clearly, it holds that 𝑧1 < 𝑧2 < 𝑧3 .

However, from Fig. 2, which depicts the feasible region found by

exhaustive searches, we observe that 𝐾 (𝑉 , 𝑥,𝑦, 𝑧1) < 𝐾 (𝑉 , 𝑥,𝑦, 𝑧2),
and 𝐾 (𝑉 , 𝑥,𝑦, 𝑧2) > 𝐾 (𝑉 , 𝑥,𝑦, 𝑧3), which contradicts the definition

of monotonicity, and thus concludes the proof for (1). We remark

that by the monotonicity definition, all other parameters except of

the offloading policy 𝑧 should have been fixed, while in our example

the number of CPUs at the cloud increases from 𝑦1 = 31 to 𝑦2 = 32

as we move offloading from 𝑧1 = 0.672 to 𝑧2 = 0.685. The reason

for this jump is the URLLC requirement, which implies that an

additional CPU needs to be activated in order to obtain a feasible

solution. This concludes the proof for (2), and the description of

our counterexample.

(3): continuity and linearity w.r.t. 𝑧 between consecutive
steps. As identified above, the reason that these steps in the bound-

ary occur is the change in the number of minimum CPUs that

need to be activated in order to ensure an URLLC. While being in

between of two consecutive jumps in the boundary of the region,

i.e., when fixing the number 𝑥 and 𝑦 of activated CPUs at the edge

and at the cloud, respectively, the subscription cost given by the

terms 𝑐0𝑒 and 𝑐0𝑐 in Eq. (5) is fixed. However, the total service time

depends on the amount of tasks that are assigned at the edge and

at the cloud, i.e., by the offloading policy 𝑧. By combining eqs. (2),

(3), and (5), we conclude the proof. □

Challenges for the design of an efficient solution. The V2N-
COCA Problem is a mixed integer programming problem, with

non-monotone objective function w.r.t. one of its decisions (Prop.

2). An additional major challenge for the design of efficient algo-

rithms to solve it, is the quantification of the total delay𝐷𝑖 (𝑉 , 𝑥,𝑦, 𝑧)
experienced by any task 𝑖 (defined in Eq. (4)), and is the first of

the problem’s constraints, to ensure that URLLC requirements are

met. More specifically, the challenge stems from the fact that, to the

best of our knowledge, no closed-form expressions are available to

quantify the sojourn time 𝐷𝑠𝑜 𝑗𝑜 (𝑉 , 𝑥,𝑦, 𝑧) in M/G/k systems. The

existing approximations for the M/G/k average waiting time do

not suffice in URLLC, and we will compare against them in section

7. However, due to the safety concerns involved in V2N applica-

tions, it is of critical importance to know the distribution of the

sojourn time in the M/G/k system to ensure that V2N tasks are

Type 𝑤𝑖 𝛼𝑖 𝛽𝑖

I 1/12 16.487 21499

B 5/12 15.584 14608

P 6/12 17 15895

Table 2: Parameters for frame
length distribution 𝑙𝑖 [17]

 0

 0.04

 0.08

 0 10 20 30 40 50

P
D

F

si [ms]

Figure 3: PDF of
the service time 𝑠𝑖

timely processed, respecting both the target delay and the reliability

requirements. We now present and validate our approximation for

the M/G/k sojourn time distribution.

5 OUR SOJOURN TIME APPROXIMATION
We start by presenting initial thoughts stemming from experimental

evidence, we then discuss the structure of the URLLC requirement

and our approximation proposal, and we validate it both in terms

of accuracy and of impact w.r.t. solving the V2N-COCA Problem.

Remark: We focus on V2N computing tasks performed over

video frames taken e.g., from the front/back camera of autonomous

vehicles [1], and we rely on evidence from the real-world traces

in [17]. Our sojourn time approximation can be generalized and

transferred to any scenario and domain whose data has similar

characteristics. Given the generality of ourmodel, it could also apply

in different settings. For instance, it could be used for augmented

reality applications, such as a remote surgery operation.

Initial thoughts stemming from experimental evidence.
Each vehicle 𝑣 generates an H.264/AVC flow, i.e., a flow of I, B, and

P frames that are arranged in a Group of Pictures (GOP) [17]. The

frame length of each type 𝑖 ∈ {𝐼 , 𝐵, 𝑃} follows a Gamma distribution

with parameters 𝛼𝑖 (shape) and 𝛽𝑖 (scale) in Table 2, and thus the

frame length of the flow follows a mixture of them where each type

𝑖 is weighted with weight𝑤𝑖 therein. Then, the average video frame

length equals 𝑙 = 𝑤𝐼𝑎𝐼 𝛽𝐼 +𝑤𝐵𝑎𝐵𝛽𝐵+𝑤𝑃𝑎𝑃 𝛽𝑃 ≈ 260 kb. The number

of cycles to process a video frame is proportional to its length, with a

constant of approx. 21.42 cycles/bit [26]. The service time to process

a video frame of length 𝑙𝑖 is given by 𝑠𝑖 = 𝑙𝑖 × 21.42/250 𝜇s, and
therefore the average service time per task for a CPU operating at

250MHz is 𝑠 = 22.3ms.We depict 𝑠𝑖 ’s Probability Density Function

(PDF) in Fig. 3.

The structure of the URLLC requirement in eq. (1) and our
approximation of the sojourn time. M/G/k systems are one of

the most general frameworks for modelling queuing systems, but

there are no closed-form expressions to characterise the distribution

of their total sojourn time 𝑓𝑠𝑜 𝑗𝑜 , which captures the sum of the

waiting and service time. This time equals to the addition of waiting

and service times, and therefore its distribution is given by the

convolution of the distribution of the waiting time 𝑓𝑊 and the

distribution of the service time 𝑓𝑆 , i.e., , 𝑓𝑠𝑜 𝑗𝑜 = 𝑓𝑊 ∗ 𝑓𝑆 . In the

case of V2N applications, the service time could relate to the time

that is needed to process video frames captured by the vehicle

cameras. Such time is directly proportional to the video frame

length which, as discussed above, is distributed as a mixture of

gamma distributions. Motivated by the small variance of such tasks

(see Fig. 3) we make the following proposition to approximate the

sojourn times based on the waiting times of an M/D/k:

MobiHoc’24, October 14-17, 2024, Athens, Greece Livia Elena Chatzieleftheriou, Jesus Perez-Valero, Jorge Martín-Pérez, and Pablo Serrano

Proposition 3. The distribution 𝑓𝑠𝑜 𝑗𝑜 of the sojourn time
𝐷𝑠𝑜 𝑗𝑜 in an M/G/k queue, for video tasks [17], can be approx-
imated with a significance factor 𝛼 = 0.01 by the convolution
of the queuing time distribution 𝑓𝑊 of an M/D/k queue with
deterministic service times, and the service time distribution
𝑓𝑆 defined by [17] (i.e., a mixture of Gamma distributions).
We formulate this as:

𝑓𝑠𝑜 𝑗𝑜 := 𝑓𝑊 (𝑀/𝐺/𝑘) ∗ 𝑓𝑆 (𝑀/𝐺/𝑘)
≈ 𝑓𝑊 (𝑀/𝐷/𝑘) ∗ 𝑓𝑆 (𝑀/𝐺/𝑘) . (9)

This proposition provides a closed-form expression to approx-

imate with accuracy 𝛼 = 0.01 the sojourn time, i.e., with a 99%

confidence level in the estimation. The importance of this propo-

sition is two-fold. First, it opens the way for solving Problem

1 by using existing results in the literature. Indeed, we can get

𝑓𝑊 (𝑀/𝐷/𝑘) (𝑡) = 𝑑/𝑑𝑡𝐹𝑊 (𝑀/𝐷/𝑘) (𝑡) using the following closed-

form expression [11, Eq. (4.4)]

𝐹𝑊 (𝑀/𝐷/𝑘) (𝑡) = 𝑒−𝜆 (𝑘𝐷−𝑡)
𝑘𝑐−1∑︁
𝑗=0

𝑄𝑘𝑐− 𝑗−1
𝜆 𝑗 (𝑘𝐷 − 𝑡) 𝑗

𝑗 !
,

where 𝑘 ∈ N, 𝑡 ∈ [(𝑘 − 1)𝐷,𝑘𝐷), and 𝐷 = E[𝑆 (𝑙𝑖)], and 𝑄 𝑗 the
probability of having up to 𝑗 tasks in the queue in an M/D/k sys-

tem [11]. This supports dynamically scaling the computing re-

sources as needed based on the computing load, thus resulting

in minimisation of their operational costs. We now validate our

proposition.

Kolmogorov-Smirnov test to rigorously validate Prop. 3. We

compare the Cumulative Distribution Function (CDF) of the so-

journ time obtained by convoluting the service times of 𝑀/𝐺/𝑘
queueing systems with the waiting times of (i) 𝑀/𝐺/𝑘 systems

(obtained through exhaustive simulations), and (ii)𝑀/𝐷/𝑘 systems

(obtained using eq. (4.4) from [11]). We perform the comparison

for different values of the intensity factor 𝐼 = 𝜆/𝜇 (erlangs) and

number of servers 𝑐 , but due to space limitations we include only

for 𝑐 = 3 servers. We note that the values considered for 𝑐 are in

the order of magnitude of those required when experimenting with

data from a real-trace dataset (see Section 7). We employ the well-

established non-parametric statistical Kolmogorov-Smirnov (KS)

test, which determines whether two samples originate from the

same distribution or not. Our null hypothesis is 𝐻0 : "the CDF from

our approximation is slightly below the actual CDF". It implies that

our analysis could be more conservative in terms of the URLLC,

possibly resulting in a higher probability of being within the target

delay, thus possibly being even more stringent than the URLLC

requirement – and never resulting in latency not within the URLLC

threshold. In the KS test, we accept the null hypothesis 𝐻0 when

the 𝑝-value is greater than the selected threshold 𝛼 , which indicates

that there is no significant difference between the two CDFs.

Results are presented in Table 3: In all cases, the p-value remains

above the significance level (𝛼), leading to acceptance of 𝐻0. In

Fig. 4 we plot with lines our approximation, and with markers the

exhaustive simulations, for 𝑐 = 3 servers at the edge and cloud. We

observe that our approximation of the CDF of the sojourn time that

is obtained in the𝑀/𝐺/𝑘 simulations, regardless of the load of the

C
D

F
w

it
h
 3

 C
P
U

s

Sojourn time [ms]

ρ=0.2
ρ=0.4

ρ=0.6
ρ=0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

0.999990

0.999992

0.999994

0.999996

0.999998

1.000000

 50 100 150 200 250

Take-away: Our ap-

proximation is tight

& conservative regard-

less of the load 𝜌 (col-

ors) and number of

servers.

Figure 4: Sojourn time of Proposition 3 approximation (lines)
and𝑀/𝐺/𝑐 simulations (markers).

c (servers) I (Erlang)

I=1 I=2 I=4 I=8

c = 10 (0,1) (0,1) (0,1) (0,1)

c = 15 (0,1) (0,1) (0,1) (0,1)

c = 20 (0,1) (0,1) (0,1) (0,1)

Take-away: in all

scenarios, 𝐻0: “The

CDF from analysis is

slightly below from

the CDF from simula-

tions” is accepted.

Table 3: Comparison of (KS Statistics, P-value) parameters
of the Kolmogorov-Smirnov test for different loads (I) and
number of servers (c) with a significance level 𝛼 = 0.01.

system, is both tight and conservative. We want to note that we

have similar results for 𝑐 = 5 and 𝑐 = 10 in the system, but due to

space limitations we omit them.

The impact of the sojourn time approximation. We evaluate

the effectiveness of our approximation of the sojourn time of M/G/k

in Prop. 3, vs. the actual sojourn time of the M/G/k, in terms of its

results when solving Problem 1. In Table 4 we present the results

of different combinations of URLLC requirements expressed in

terms of the maximum accepted delay 𝑇 and the reliability 𝑃𝐺 [5]

(rows), and different traffic intensities captured as 𝐼 = 𝜆𝑠 , where

𝑠 the average service time of tasks (columns). Each pair (𝑘1, 𝑘2)
captures the minimum number of servers needed to guarantee the

corresponding requirements in the first row. The results of Table 4

suggest that the optimal solution of the V2N-COCA problem found

using ourM/G/k approximation of Prop. 3 requires the same number

of CPUs as when exhaustive M/G/k simulations are used, i.e., when
having perfect knowledge of the sojourn times in advance. In only

a few cases it is conservative, overestimating the number of CPUs

to activate by one, which in all cases results in difference ∼1%
compared to the oracle. These cases (marked in the table with bold)

have high load, high reliability requirement, and low target delay.

From the above, we conclude that using the approximation in

Proposition 3 leads to near-optimal results and, given that is a closed

formula, opens the way for the design of our efficient solution.

6 OUR JOINT OFFLOADING AND CPU
ACTIVATION ALGORITHM

We now design BiQui2: an efficient BInary search solution over

the QueUIng theory approximation of Prop. 3 for solving the V2N-

COCA Problem. Then we analyse its correctness, computational

complexity, and prove its asymptotic optimality.

2
https://github.com/MartinPJorge/biqui

https://github.com/MartinPJorge/biqui

Sustainable Provision of URLLC Services for V2N: Analysis and Optimal Configuration MobiHoc’24, October 14-17, 2024, Athens, Greece

Reliability Load (Erlang)

Requirement I=1 I=2 I=4 I=8 I=16 I=32

100ms, 99.999% (3,3) (4,4) (6,6) (10,10) (18,18) (34,34)

100ms, 99.9% (2,2) (3,3) (5,5) (9,9) (18,17) (34,34)

50ms, 99.9% (3,3) (5,5) (7,7) (11,11) (20,19) (36,35)
50ms, 99% (3,3) (4,4) (6,6) (10,10) (18,18) (35,34)

Table 4: Comparison (𝑘1, 𝑘2) of the minimum CPUs required
by Proposition 3 (𝑘1) and M/G/k simulations (𝑘2) to meet V2N
service requirements upon different loads 𝐼 .

Algorithm 1 BiQui

Input: Granularity 𝑧𝑔𝑟𝑎𝑛 for partitioning offloading space, number

𝑉 of vehicles, target delay 𝑇 , reliability requirement 𝑃𝐺
Output: number 𝑥0 and 𝑦0 of CPUs to be activated at the edge and

the cloud, and offloading policy 𝑧0
1: Initialize: 𝑧0 = 1 and 𝑥0 = 0

2: Binary search on 𝑦 using our𝑀/𝐺/𝑘 approx. in eq. (9)

𝑦0 = argmin

𝑦=1,...,𝐶

{𝐾 (𝑉 , 𝑥0, 𝑦, 𝑧0) : P(𝐷𝑖 ≤ 𝑇) ≥ 𝑃𝐺 }

3: for z = 1, . . . , 1/𝑧𝑔𝑟𝑎𝑛 do
4: while (x,y,z) not feasible and 𝑥 ∈ {0, 1, . . . , 𝐸−1} do x=x+1

5: while (x,y-1,z) feasible and 𝑦 ∈ {1, . . . ,𝐶} do y=y-1

6: if 𝐾 (𝑉 , 𝑥, 𝑦, 𝑧) < 𝐾 (𝑉 , 𝑥0, 𝑦0, 𝑧0) then (𝑥0, 𝑦0, 𝑧0) = (𝑥, 𝑦, 𝑧)
7: end for

6.1 Algorithm Design and Intuitive Explanation
BiQui exploits the properties of the objective function (Proposi-

tion 1) and of the feasible set (Proposition 2), and relies on the

closed-form approximation of the sojourn time of tasks in the sys-

tem (Proposition 3). We now present in detail BiQui’s steps, which

are divided in three phases. For each phase we provide a high-level

rationale and intuition behind it, and refer to the specific lines in

the pseudocode in Algorithm 1.

Phase 1: Initialization. (lines 1). Initialize offloading policy as 𝑧 =

1 and number of edge CPU activation as 𝑥 = 0, motivated by the

typically lower prices of the cloud servers, as compared to those

specifically placed at the edge [32]. In case the opposite holds, the

initialization is inverted as per 𝑧 = 0 and 𝑦 = 0.

Phase 2: Binary search.We perform a binary search in the num-

ber of available CPUs at the cloud (line 2), to find the minimum

number that should be activated to obtain a feasible solution, i.e.,
a solution that satisfies the reliability constraint. Binary search

ensures minimum computational complexity in the worst case.

Phase 3: walking down the feasibility region. We exploit Prop. 1,

i.e., the cost function monotonicity w.r.t. CPU activation decisions,

which implies that the minimum cost will be in this boundary.

Although offloading decisions 𝑧 are continuous, we sample for a

finite number of discretized values: over the interval [0, 1] and in

steps of 𝑧𝑔𝑟𝑎𝑛 ∈ (0, 1], i.e., with a granularity 𝑧𝑔𝑟𝑎𝑛 . In Section 6.2

we detail the trade-off that emerges by this discretization choice,

and prove BiQui’s asymptotic optimality. Given these 1/𝑧𝑔𝑟𝑎𝑛 values,

we run a for loop (line 3) considering all sampled values of 𝑧. For

each value we: (i) increase the activated CPUs at the edge until the

reliability requirement is met (line 4), (ii) decrease the activated

CPUs at the cloud while the reliability requirement is met (line 5).

If the current configuration is better than the provisional one, we

update the provisional one (line 6).

6.2 Correctness, Computational complexity,
and Approximation properties

We now discuss BiQui’s correctness, computational complexity,

and we finally prove its asymptotic optimality.

Correctness: BiQui provides a correct (i.e., feasible) solution for

Problem 1. The reliability requirement imposed in eq. (1) is ensured

by Line 2. The upper and lower bounds on the available resources

are ensured in lines 4 and 5. The offloading decision 𝑧 is guaranteed

to lie with in [0, 1] because of the for-loop range in line 3.

Computational complexity. We examine the computational

complexity of each step of the algorithm, and then conclude to

BiQui’s total computational complexity. Phase 1 has a time complex-

ity of O(1) . Phase 2 has complexity O(log𝐶) for the binary search

(line 22). Phase 3 is a for-loop with 1/𝑧𝑔𝑟𝑎𝑛 iterations. Although lines
4-5 are two while-loops nested within it, in practice the total num-

ber of times that the related commands will run is bounded from the

number 𝐸 and𝐶 of maximum available servers at the edge and at the

cloud. The reason is that these lines increase/decrease the number of

used resources at the edge and the cloud, respectively. For line 6, the

complexity of the action to be taken should the condition be positive

is O(1), and it will be run 1/𝑧𝑔𝑟𝑎𝑛 times. Thus, in total, for Phase 3 we

have O(𝐸)+O(𝐶)+O(1/𝑧𝑔𝑟𝑎𝑛) = O(𝐸+𝐶+1/𝑧𝑔𝑟𝑎𝑛). That is, the total
computational complexity of BiQui equals O(log𝐶 +𝐶 +𝐸+1/𝑧𝑔𝑟𝑎𝑛),
i.e., O(𝐶 + 𝐸 + 1/𝑧𝑔𝑟𝑎𝑛).

Asymptotic optimality. Let𝐾𝑂𝑃𝑇 (𝑉 , 𝑥∗, 𝑦∗, 𝑧∗) be the cost achi-
eved by the optimal solution of Problem 1 and 𝐾𝐵𝑖𝑄𝑢𝑖 (𝑉 , 𝑥,𝑦, 𝑧) be
that achieved by BiQui. The computational complexity of the opti-

mal solution is high, as it requires exhaustively searching the entire

solution space. By changing the granularity 𝑧𝑔𝑟𝑎𝑛 of partitioning

of the decision space for the offloading decisions 𝑧, we can create a

trade-off between the computational complexity of BiQui and how

much it approximates the optimum solution. It holds that:

Proposition 4. Given the CDF of the sojourn time of tasks
in the queuing system, BiQui is asymptotically optimal w.r.t.
the offloading decisions 𝑧. That is,

lim

𝑧𝑔𝑟𝑎𝑛→0

𝐾𝐵𝑖𝑄𝑢𝑖 (𝑉 , 𝑥,𝑦, 𝑧) = 𝐾𝑂𝑃𝑇 (𝑉 , 𝑥∗, 𝑦∗, 𝑧∗). (10)

The CDF of the sojourn time ensures that the reliability require-

ment can be handled accordingly. Of course, in case of scarce ap-

proximation of the sojourn time, both the optimal solution and

BiQui will deviate from the respective solutions under perfect ap-

proximations of the sojourn time.

Proof. The CDF of the sojourn time will allow the reliability

requirement to be perfectly described, and thus the binary search

in line 2 of Alg. 1 to find the optimal number 𝑦 of CPUs to activate

at the cloud. The next phase that BiQui continues with is walking

down the feasibility region boundary. Since from Prop. 1 the objec-

tive function is monotone w.r.t. the CPU activation decisions, the

optimal CPU activation configurations will lie in the boundary w.r.t.

MobiHoc’24, October 14-17, 2024, Athens, Greece Livia Elena Chatzieleftheriou, Jesus Perez-Valero, Jorge Martín-Pérez, and Pablo Serrano

them. Combining this with the linearity of the feasibility region

boundary w.r.t. the offloading decision 𝑧 (third property in Prop. 2),

and considering 𝑧𝑔𝑟𝑎𝑛 → 0, we obtain the result. □

7 PERFORMANCE EVALUATION
We assess BiQui’s performance using real-world traffic traces, pric-

ing plans currently used in the market by big industry players,

and propagation delay setups drawn from previous related work

on the topic. We consider reliability constraints imposed by 5G-

Americas [5] for V2N applications.

7.1 Setting, Traces, and Benchmarks
Setting. In this section, unless otherwise specified, we consider

𝑧gran = 10
−2

granularity, target delay 𝑇𝐺 = 100ms, and 𝑃𝐺 =

99.999 % reliability [5]. We consider propagation delays from real-

world providers [32]: edge Round Trip Time (RTT) 𝐷𝑒
prop

= 18.2ms

and cloud RTT𝐷𝑐
prop

= 22.8ms.We assume that the vehicular H.264

video flows are processed on AWS EC2 G4 instances, optimised for

intense video-processing, and with pricing the hourly cost of EC2

G4 [2]: 𝑐0𝑒 = 0.0052, 𝑐1𝑒 = 1.363 $/h. Similarly, we consider the EC2

G4 instances price in Regional premises as reference for the cloud

pricing, i.e., we take 𝑐0𝑐 = 0.0052, 𝑐1𝑐 = 0.94 $/h.

Real-world Traces. The traffic data
3
was recorded by 6 road

probes located in streets in Torino, and comprises traffic flow mea-

surements aggregated over 5 minutes. We present the geographical

distribution in Fig. 5a, representing streets using points sized pro-

portionally to their respective maximum traffic intensities. Fig. 5b

depicts the traffic flows over the streets for one entire day. The

aggregated demand achieves peaks 𝜆 ≤ 2.5 pkt/ms (Fig. 5b), and

we thus consider demands 𝜆 within [0, 2.5].

Benchmarks. We compare BiQui performance against:

OPT: found through exhaustive search on (𝑥,𝑦, 𝑧). Although
inefficient by means of running time and could not be used in

practice in real systems, it shows the system’s limits and allows us

to compare BiQui against them.

AVG: finds optimal decisions (𝑥,𝑦, 𝑧) ensuring that the total avg
delay of tasks remains below the delay constraint 𝑇 [13, 25].

KNG: uses Kingman law of congestion to approximate the aver-

age waiting time in an M/G/k system [12].

SNC: adaptation of [31] that uses Stochastic Network Calculus

(SNC), to capture the stochasticity of the service times for video

processing tasks. We resort to the affine arrival/service curves [6]

to bound the arrival/service excess/deficit.

OffAll: uses cloud as much as possible, then starts using edge.

LocAll: uses edge as much as possible, then starts using cloud.

7.2 Results
We evaluate BiQui against the benchmarks above by doing a sensi-

tivity analysis on the problem’s parameters, and over real traces.

The impact of varying RTTs. We consider high and low Round-

Trip-Times (RTTs) for cloud servers. In Fig. 6 we depict normalized

costs, offloading decisions 𝑧, number of activated CPUs at the edge

3
https://github.com/MartinPJorge/biqui/blob/master/data/traffic_torino_v02.csv

and the cloud, vs. different generated computing load 𝜆. Our main

observations and insights per scheme are:

OPT: The max. supported computing load is up to 2.5 pkt/ms for

low (Fig. 6a) and up to 0.75 pkt/ms for large (Fig. 6e) cloud RTTs.

High RTTs at some point lead the total delay to exceed the target

delay𝑇 , leading to infeasible solutions, as the reliability requirement

is not met anymore, thus indicating the system’s limits.

BiQui: it matches the costs and decisions taken by the OPT, for

both smaller and larger cloud RTTs. This happens for all the possible

computing loads except for those at the very high limit BiQui, i.e.,
for 𝜆 → 2.5 for low RTTs (Fig. 6a) and for 𝜆 → 0.75 for large RTTs

(Fig. 6b). However, the reason for this is the conservativeness of

the sojourn time approximation of Proposition 3 (discussed above).

AVG: it is infeasible for all RTTs. From Fig. 7, the 99.999% delay

experienced by the tasks processed at the edge or cloud exceed the

𝑇 = 100ms target delay. This is the main drawback of the existing

approaches in the literature, e.g., [13, 25], which fail to capture the

strict latency and reliability requirements of V2X services.

KNG: it only finds a solution under small RTT and 𝜆 = 2.376 (see

Fig. 6a-d). Such artifact is caused due to the decreasing saw-tooth

behaviour of the delay – see Fig. 7. KNG turns out to be a loose and

optimistic approximation of the 99.999% delay, and it reduces the

error as 𝜆 increases. For accommodating demands 𝜆 > 2.5, CPU

setups 𝐶 > 40 are needed.

SNC: it appears too conservative. From Fig. 6a-d (low RTT), it

eats up all CPUs with loads 𝜆 ≤ 0.71, not finding feasible solutions

for higher loads. From Fig. 6e-h (high RTT), it never finds feasible

solutions. We conjecture that SNC provides rather loose bounds for

the reliability 𝑃𝐺 , hence pitfalls into resource over-provisioning.

OffAll: its behaviour highly depends on RTTs. From Figs. 6a-d

(low RTT) it matches OPT, as cloud is cheaper. However, in Figs. 6e-f

(high RTT), feasible solutions are not possible due to delay viola-

tions stemming from high RTTs.

LocAll: is an optimal approachwith large cloud RTT (as in Fig. 6e-

h), for the only feasible solution is to locally process all tasks at the

edge. Upon small cloud RTT (as in Fig. 6a-d), it leads to suboptimal

deployments because it does not use first cheap CPUs at the cloud.

The impact of the target delay, 𝑇 . We investigate on the

lower possible target delay that BiQui could handle, revealing its

potential, while being relevant for more stringent scenarios that

may be considered in future 6G applications. Table 5 compares

BiQui decisions under the ToD target delay (𝑇 = 100ms)[5], and

𝑇 = 77ms, upon different loads 𝜆. As intuitively expected, in order

to handle the tighter target delay, BiQui exploits the faster edge

resources starting from lower computing loads 𝜆 (despite their

higher costs). This consumes available resources earlier, and leads

to unfeasible solutions for 𝑇 = 77ms and load 𝜆 = 2.5 pkt/ms.

The impact of the granularity of the offloading decisions,
𝑧𝑔𝑟𝑎𝑛 . We use the same experimental setup as that for low cloud

RTT. In Fig. 8 we depict BiQui for 𝑧gran = {0.01, 0.1, 0.2, 0.3, 0.4}
vs. varying computing load 𝜆. From Fig. 8b we observe that the

offloading decision remains 𝑧 = 1 when 𝜆 ∈ [0, 1.73], i.e. until then
BiQui offloads the load to the cloud (irrespectively of the granularity

𝑧gran), thus producing the same solutions for all of these values

of 𝑧𝑔𝑟𝑎𝑛 . We observe that BiQui matches OPT in Fig. 8. For loads

𝜆 > 1.73, both BiQui and OPT have consumed all the cloud CPUs,

https://github.com/MartinPJorge/biqui/blob/master/data/traffic_torino_v02.csv

Sustainable Provision of URLLC Services for V2N: Analysis and Optimal Configuration MobiHoc’24, October 14-17, 2024, Athens, Greece

lmax
0.40
0.45
0.50
0.55
0.60
0.65

[pkt/ms]

(a) Torino streets

 0

 0.5

 1

 1.5

 2

03:00 09:00 15:00 21:00

λ
 [

p
kt

/m
s]

time [hour]

aggregated

(b) Streets demand

 40
 45
 50
 55
 60
 65
 70
 75
 80
 85

03:00 09:00 15:00 21:00

d
e
la

y
 [

m
s]

time [hour]

99.999
avg

 76
 78
 80
 82
 84

15:00 18:00

 43.5
 44

 44.5
 45

 45.4

09:00

(c)Average & 99.999 delay

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

03:00 09:00 15:00 21:00

rush hours

z

time [hour]

(d)Offloading decision 𝑧

Figure 5: BiQui over real traces: The traffic demand (b) corresponds to that of five streets from Torino (a). Results show the
delay experienced (c) by a ToD service [5] as BiQui changes the offloading decision (d) throughout a day.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.5 1 1.5 2 2.5

N
o
rm

.
C

o
st

λ [pkt/ms]

OffAll
LocAll

AVG

SNC
KING
BiQui

OPT

C
lo

u
d

E
x
h
a
u
st

e
d

(a)Normalized cost vs. 𝜆

0.00

0.20

0.40

0.60

0.80

1.00

 0 0.5 1 1.5 2 2.5

z

λ [pkt/ms]

OffAll
LocAll

AVG

SNC
KING
BiQui

OPT

C
lo

u
d

E
x
h
a
u
st

e
d

(b)Offloading decisions 𝑧 vs. 𝜆

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5

E
d

g
e
 C

P
U

s

λ [pkt/ms]

OffAll
LocAll

AVG

SNC
KING
BiQui

OPT

C
lo

u
d
 E

x
h
a
u
st

e
d

(c) Edge active CPUs 𝑥 vs. 𝜆

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5

C
lo

u
d

 C
P
U

s

λ [pkt/ms]

OffAll
LocAll

AVG

SNC
KING
BiQui

OPT

C
lo

u
d

E
x
h
a
u
st

e
d

(d) Cloud active CPUs 𝑦 vs. 𝜆

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5

Cannot offload
to far cloud

N
o
rm

.
C

o
st

λ [pkt/ms]

OffAll
LocAll

AVG

SNC
KING
BiQui

OPT

(e)Normalized cost vs. 𝜆

0.00

0.05

0.10

0.15

0.20

0.25

 0 0.5 1 1.5 2 2.5

Cannot offload
to far cloud

z

λ [pkt/ms]

OffAll
LocAll

AVG

SNC
KING
BiQui

OPT

(f)Offloading decisions 𝑧 vs. 𝜆

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5

Edge cannot
process more

E
d

g
e
 C

P
U

s

λ [pkt/ms]

OffAll
LocAll

AVG

SNC
KING
BiQui

OPT

(g) Edge active CPUs 𝑥 vs. 𝜆

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.5 1 1.5 2 2.5

Cloud too far
cannot meet delay

C
lo

u
d

 C
P
U

s

λ [pkt/ms]

OffAll
LocAll

AVG

SNC
KING
BiQui

OPT

(h) Cloud active CPUs 𝑦 vs. 𝜆

Figure 6: Impact of varying server RTT. Edge RTT: 𝐷𝑒prop = 18.2ms. Cloud RTT: 𝐷𝑐prop = 22.8ms (top); and 𝐷𝑐prop = 49.1ms
(bottom). All RTTs are from [32]. Target delay: 𝑇 = 100ms. Reliability requirement: 𝑃𝐺 = 99.999%.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 0.5 1 1.5 2 2.5E
d

g
e
 9

9
.9

9
9

 D
e
la

y

λ [pkt/ms]

OffAll
LocAll

SNC

KING
AVG

BiQui

OPT

Target Delay

(a) Delay at edge - low cloud RTT

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.5 1 1.5 2 2.5C
lo

u
d

 9
9

.9
9

9
 D

e
la

y

λ [pkt/ms]

OffAll
LocAll

SNC

KING
AVG

BiQui

OPT

Target Delay

(b)Delay at cloud - low cloudRTT

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 0.5 1 1.5 2 2.5E
d

g
e
 9

9
.9

9
9

 D
e
la

y

λ [pkt/ms]

OffAll
LocAll

SNC

KING
AVG

BiQui

OPT

Target Delay

(c)Delay at edge - high cloud RTT

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 0.5 1 1.5 2 2.5C
lo

u
d

 9
9

.9
9

9
 D

e
la

y

λ [pkt/ms]

OffAll
LocAll

SNC

KING
AVG

BiQui

OPT

Target Delay

(d)Delay at cloud-high cloudRTT

Figure 7: 99.999-th percentile of the delay experienced by a ToD service [5] when it is processed at the edge and cloud. For the
edge: 𝐷𝑒prop = 18.2. For how cloud RTT: 𝐷𝑐prop = 22.8ms. For high cloud RTT: 𝐷𝑐prop = 49.1ms [32].

i.e., 𝑥 = 𝐶 = 40, thus requiring CPUs at the edge reducing the

offloading decision (𝑧 < 1). If BiQui has e.g., 𝑧gran = 0.1 it will try

to reduce the offloading down to 1− 𝑧gran = 0.9 right after 𝜆 = 1.73

– see Fig. 8b. Such offloading reduction translates into turning on

𝑥 = 6 CPUs at the edge and reduce the CPUs at the cloud to 𝑦 = 37

– see Fig. 8e and Fig. 8d for 𝑧gran = 0.1, respectively. However, a

better solution would be to just turn on an additional “cheap” edge

CPU right after 𝜆 > 1.73, as both OPT and BiQui do when it has a

granularity 𝑧gran = 0.01.

Fig. 8a highlights the cost deviation that BiQui experiences as

we lower the granularity for 𝜆 ∈ [1.65, 1.8]. The reason behind

such cost deviation is the excess of CPUs turned on at the edge

due to excessive drops in the offloading 𝑧 evidenced in Fig. 8b.

Nevertheless, we observe that BiQui gets closer to the optimal as

MobiHoc’24, October 14-17, 2024, Athens, Greece Livia Elena Chatzieleftheriou, Jesus Perez-Valero, Jorge Martín-Pérez, and Pablo Serrano

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.5 1 1.5 2 2.5

N
o
rm

.
C

o
st

λ [pkt/ms]

zgran=0.01
zgran=0.1
zgran=0.2

zgran=0.3
zgran=0.4

OPT

 4.5

 5.5

 1.65 1.8

(a)Normalized costs vs. 𝜆

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0 0.5 1 1.5 2 2.5

z

λ [pkt/ms]

zgran=0.01
zgran=0.1
zgran=0.2

zgran=0.3
zgran=0.4

OPT

(b)Offloading decisions 𝑧 vs. 𝜆

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5

E
d
g
e
 C

P
U

s

λ [pkt/ms]

zgran=0.01
zgran=0.1
zgran=0.2

zgran=0.3
zgran=0.4

OPT

(c)Activation decision x (edge) vs. 𝜆

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5

C
lo

u
d
 C

P
U

s

λ [pkt/ms]

zgran=0.01
zgran=0.1
zgran=0.2

zgran=0.3
zgran=0.4

OPT

(d)Activat. decision y (cloud) vs. 𝜆

Figure 8: Impact of BiQui granularity 𝑧gran. Target delay 𝑇 = 100ms and reliability 𝑃𝐺 = 99.999%. We use 𝐷𝑒prop = 18.2 (edge),
𝐷𝑐prop = 22, 8ms (cloud) for propagation delays [32].

𝜆 (pkt/ms) 𝑥 (CPU) 𝑦 (CPU) 𝑧 (%) 𝐾 ($/hour)

1 (0, 0) (31, 26) (100, 100) (2.71, 2.70)

1.5 (6, 0) (40, 36) (91, 100) (4.13, 3.99)

2.25 (–, 16) (–, 40) (–, 74) (–, 6.69)

Table 5: Comparison (𝑎1, 𝑎2) BiQui’s decisions 𝑥,𝑦, 𝑧 and ob-
tained cost 𝐾 under target delay 77ms (𝑎1) and 100ms (𝑎2),
for different load 𝜆. Reliability: 𝑃𝐺 = 99.999%, propagation
delays: 𝐷𝑒prop = 18.2, 𝐷𝑐prop = 22.8ms [32].

we increase the granularity 𝑧gran → 0, confirming numerically

Proposition 4 in section 6.2.

Varying the granularity of the offloading decisions also impacts

BiQui’s runtime, ranging from 6.3 to 25 ms for 𝑧gran = {0.4, 0.3, 0.2,
0.1, 0.05}, and being 81ms and 119 ms for 𝑧gran = 0.01 and low and

high RTTs. Considering the constant flow of video frames in ToD

services, at most only the first frame of the entire video flow may

not meet the 100ms requirement of ToD, and this only for the case

that 𝑧𝑔𝑟𝑎𝑛 = 0.01 and high RTTs.

BiQui over a day. In Fig. 5c-d we plot an entire day, illustrating

the delay experienced by tasks, and the portion of tasks 𝑧 offloaded

by BiQui, whose 99, 999th delay percentile remains below the target

delay𝑇 = 100ms. Fig. 5c also illustrates how the average task delay

is half the 99.999 percentile, and that the task delay increase happens

during peak hours (∼8h and ∼18h). Moreover, during rush hours,

BiQui sends tasks to the edge to alleviate the saturated cloud –

see how the offloading drops to 𝑧 = 0.75 in Fig. 5d. The cloud

saturation is reflected in the delay bumps experienced by tasks

around the rush hours, for example, during 15:00-18:00 in Fig. 5c.

Overall, BiQui manages the load oscillations due to the traffic rush

hours leveraging the expensive edge resources when necessary.

8 CONCLUSION
We introduce the V2N Computation Offloading and CPU Activa-

tion (V2N-COCA) problem, aiming at minimizing operational costs

(both monetary and energetic) while ensuring URLLC, by making

decisions related to task offloading and CPU activation between the

edge and the cloud. To overcome the non-existence of closed-form

expressions to model the URLLC requirement, we resort to queuing

theory expressions to approximate the service and waiting times of

tasks in edge/cloud servers. We thoroughly and rigorously validate

this approximation, in terms of both accuracy and effectiveness of

solving the V2N-COCA Problem. Based on its structural properties,

we design BiQui, a provably asymptotically optimal algorithm that

is also computationally efficient (linear w.r.t. number of servers).

Results show that BiQui outperforms the state of the art and meets

the stringent V2N service requirements, meeting the target delay

the 99.999% of the time. Future directions for research include ex-

ploring the performance of our approach in different contexts, such

as aiming at the delay minimisation, to validate our intuition that

BiQui will be an equally good solution for other cost functions.

ACKNOWLEDGMENTS
L.E. Chatzieleftheriou is a Juan de la Cierva awardee (JDC2022-

050266-I), funded by MCIU/AEI/10.13039/501100011033 and the

European Union “NextGenerationEU”/PRTR. This work was sup-

ported by the Remote Driver project (TSI-065100-2022-003) funded

by Spanish Ministry of Economic Affairs and Digital Transforma-

tion, and is also partially supported by the Spanish Ministry of Eco-

nomic Affairs and Digital Transformation and the European Union-

NextGenerationEU through the UNICO 5G I+D SORUS project.

REFERENCES
[1] [n. d.]. Nexar. https://www.getnexar.com/nexar-app/. Accessed: 16/01/2024.

[2] 2023. AWS EC2 calculator. https://calculator.aws/#/addService/ec2-enhancement.

[Online; accessed January 30, 2024].

[3] 2023. Physical layer procedures for data. Technical Report TS 38.214 v18.0.0.

3GPP.

[4] 3GPP TS 22.261 2023. Service requirements for the 5G system. Technical Specifica-

tion (TS) 22.261.v19.3.0. 3GPP.

[5] 5G Americas. 2021. Vehicular connectivity: C-V2X & 5G.

[6] Oscar Adamuz-Hinojosa, Lanfranco Zanzi, Vincenzo Sciancalepore, et al. 2024.

ORANUS: Latency-tailored Orchestration via Stochastic Network Calculus in 6G

O-RAN. arXiv:cs.NI/2401.03812 [ACCEPTED @INFOCOM2024].

[7] Zhiruo Cao, Zheng Wang, and E. Zegura. 2000. Performance of hashing-based

schemes for Internet load balancing. In IEEE INFOCOM, Vol. 1. 332–341 vol.1.

[8] Luca Cominardi, Luis M. Contreras, Carlos J. Bcrnardos, et al. 2018. Under-

standing QoS Applicability in 5G Transport Networks. In 2018 IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). 1–5.

[9] Penglin Dai, Kaiwen Hu, Xiao Wu, et al. 2021. Asynchronous Deep Reinforce-

ment Learning for Data-Driven Task Offloading in MEC-Empowered Vehicular

Networks. In IEEE INFOCOM. 1–10.

[10] Weiyang Feng, Siyu Lin, Ning Zhang, et al. 2023. Joint C-V2X Based Offloading

and Resource Allocation in Multi-Tier Vehicular Edge Computing System. IEEE
Journal on Selected Areas in Communications 41, 2 (2023), 432–445.

[11] G.J. Franx. 2001. A simple solution for the M/D/c waiting time distribution.

Operations Research Letters 29, 5 (2001), 221–229.
[12] Varun Gupta, Mor Harchol-Balter, Jim GDai, et al. 2010. On the inapproximability

of M/G/K: why two moments of job size distribution are not enough. Queueing
Systems 64 (2010), 5–48.

[13] Xingqiu He, Sheng Wang, Xiong Wang, et al. 2022. Age-Based Scheduling for

Monitoring and Control Applications in Mobile Edge Computing Systems. In

https://www.getnexar.com/nexar-app/
https://calculator.aws/#/addService/ec2-enhancement
https://arxiv.org/abs/cs.NI/2401.03812

Sustainable Provision of URLLC Services for V2N: Analysis and Optimal Configuration MobiHoc’24, October 14-17, 2024, Athens, Greece

IEEE INFOCOM. 1009–1018.

[14] Per Hokstad. 1978. Approximations for the M/G/m Queue. Operations Research
26, 3 (1978), 510–523. https://doi.org/10.1287/opre.26.3.510

[15] Yuyu Hu, Taiping Cui, Xiaoge Huang, et al. 2019. Task Offloading Based on

Lyapunov Optimization for MEC-assisted Platooning. In IEEE WCSP. 1–5.
[16] Hongchang Ke, Jian Wang, Lingyue Deng, et al. 2020. Deep Reinforcement

Learning-Based Adaptive Computation Offloading for MEC in Heterogeneous

Vehicular Networks. IEEE Transactions on Vehicular Technology 69, 7 (2020),

7916–7929. https://doi.org/10.1109/TVT.2020.2993849

[17] H Koumaras, C Skianis, G Gardikis, et al. 2005. Analysis of H. 264 video encoded

traffic. In Proceedings of the 5th International Network Conference (INC2005). 441–
448.

[18] Anitha Saravana Kumar, Lian Zhao, and Xavier Fernando. 2022. Multi-Agent Deep

Reinforcement Learning-Empowered Channel Allocation in Vehicular Networks.

IEEE Transactions on Vehicular Technology 71, 2 (2022), 1726–1736.

[19] Qian Liu, Rui Luo, Hairong Liang, et al. 2023. Energy-Efficient Joint Computation

Offloading and Resource Allocation Strategy for ISAC-Aided 6G V2X Networks.

IEEE Transactions on Green Communications and Networking 7, 1 (2023), 413–423.

https://doi.org/10.1109/TGCN.2023.3234263

[20] Md. Noor-A-Rahim, Zilong Liu, Haeyoung Lee, et al. 2022. 6G for Vehicle-to-

Everything (V2X) Communications: Enabling Technologies, Challenges, and

Opportunities. Proc. IEEE 110, 6 (2022), 712–734.

[21] Armin Okic, Lanfranco Zanzi, Vincenzo Sciancalepore, et al. 2021. 𝜋 -ROAD: a

Learn-as-You-Go Framework for On-Demand Emergency Slices in V2X Scenarios.

In IEEE INFOCOM. 1–10.

[22] Tao Ouyang, Kongyange Zhao, Xiaoxi Zhang, et al. 2023. Dynamic Edge-centric

Resource Provisioning for Online and Offline Services Co-location. In IEEE INFO-
COM. 1–10.

[23] Qi Qi, Jingyu Wang, Zhanyu Ma, et al. 2019. Knowledge-Driven Service Offload-

ing Decision for Vehicular Edge Computing: A Deep Reinforcement Learning

Approach. IEEE Transactions on Vehicular Technology 68, 5 (2019), 4192–4203.

[24] Iftikhar Rasheed. 2022. Dynamic mode selection and resource allocation ap-

proach for 5G-vehicle-to-everything (V2X) communication using asynchronous

federated deep reinforcement learning method. Vehicular Communications 38
(2022), 100532.

[25] Ju Ren, Jiani Liu, Yongmin Zhang, et al. 2022. An Efficient Two-Layer Task

Offloading Scheme for MEC System with Multiple Services Providers. In IEEE
INFOCOM. 1519–1528.

[26] Michael Roitzsch and Martin Pohlack. 2006. Principles for the prediction of video

decoding times applied to mpeg-1/2 and mpeg-4 part 2 video. In 2006 27th IEEE
International Real-Time Systems Symposium (RTSS’06). IEEE, 271–280.

[27] Tuyen X. Tran and Dario Pompili. 2019. Joint Task Offloading and Resource

Allocation for Multi-Server Mobile-Edge Computing Networks. IEEE Transactions
on Vehicular Technology 68, 1 (2019), 856–868.

[28] M.H van Hoorn and H.C Tijms. 1982. Approximations for the waiting time

distribution of the M/G/c queue. Performance Evaluation 2, 1 (1982), 22–28.

https://doi.org/10.1016/0166-5316(82)90018-9

[29] A. Vasan, A. Sivasubramaniam, V. Shimpi, et al. 2010. Worth their watts? - an

empirical study of datacenter servers. In Proceedings of the Sixteenth International
Symposium on High-Performance Computer Architecture (HPCA 2010). Bangalore,
India.

[30] Jiadai Wang, Jiajia Liu, and Nei Kato. 2019. Networking and Communications in

Autonomous Driving: A Survey. IEEE Communications Surveys Tutorials 21, 2
(2019), 1243–1274.

[31] Kai Xiong, Supeng Leng, Chongwen Huang, et al. 2021. Intelligent Task Offload-

ing for Heterogeneous V2X Communications. IEEE Transactions on Intelligent
Transportation Systems 22, 4 (2021), 2226–2238. https://doi.org/10.1109/TITS.

2020.3015210

[32] Mengwei Xu, Zhe Fu, Xiao Ma, et al. 2021. From Cloud to Edge: A First Look

at Public Edge Platforms. In ACM IMC (IMC ’21). Association for Computing

Machinery, New York, NY, USA, 37–53.

[33] Tinghan Yang, Rongqing Zhang, Xiang Cheng, et al. 2016. A graph coloring

resource sharing scheme for full-duplex cellular-VANET heterogeneous networks.

In 2016 International Conference on Computing, Networking and Communications
(ICNC). 1–5.

https://doi.org/10.1287/opre.26.3.510
https://doi.org/10.1109/TVT.2020.2993849
https://doi.org/10.1109/TGCN.2023.3234263
https://doi.org/10.1016/0166-5316(82)90018-9
https://doi.org/10.1109/TITS.2020.3015210
https://doi.org/10.1109/TITS.2020.3015210

	Abstract
	1 Introduction
	2 Related works
	3 System Model
	4 The V2N Computation Offloading and CPU Activation Problem
	5 Our Sojourn Time Approximation
	6 Our Joint Offloading and CPU Activation Algorithm
	6.1 Algorithm Design and Intuitive Explanation
	6.2 Correctness, Computational complexity, and Approximation properties

	7 Performance evaluation
	7.1 Setting, Traces, and Benchmarks
	7.2 Results

	8 Conclusion
	Acknowledgments
	References

