
Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date
of current version 11 January, 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.011100

Minimum-Cost Design of Auto-Scaling
Server Farms Providing Reliability

Guarantees
Jesus Perez-Valero1, Pablo Serrano 2(Senior Member, IEEE), Jaime Garcia-Reinoso3,
Albert Banchs2,4(Senior Member, IEEE), Xavier Costa-Perez5,6, 7(Senior Member, IEEE)

1Department of Information and Communications Engineering, University of Murcia, 30100 Murcia, Spain
2Department of Telematic Engineering, University Carlos III of Madrid, 28911 Leganés, Spain

3Department of Automatic, University of Alcalá, 28871 Alcalá, Spain.
4IMDEA Networks Institute, 28911 Leganés, Spain

5NEC Laboratories Europe, 69115 Heidelberg, Germany
6ICREA, 08010 Barcelona, Spain

7i2cat, 08034 Barcelona, Spain

CORRESPONDING AUTHOR: Jesus Perez-Valero (e-mail: jesus.perezvalero@um.es).

ABSTRACT As next-generation mobile networks increasingly rely on virtualized infrastructure
to deliver critical services, ensuring both the efficiency and reliability of server farms becomes
essential. These infrastructures must meet stringent reliability guarantees to support time-sensitive
applications in emerging 5G and beyond networks. In this paper, we address the design of auto-
scaling server farms –specifically, selecting the most suitable server type and corresponding number
of servers–by considering both service requirements and associated operational and infrastructure
costs. To this end, we develop an optimization algorithm that combines (i) a queueing-theoretic
model to estimate the resources needed to meet reliability constraints, and (ii) a general cost
model that captures both capital and operational expenditures. We validate our approach through
extensive simulations, comparing it against classical queueing-based methods and exhaustive
numerical searches: our proposal reduces costs by 22% as compared against the benchmark, with
solutions that are within 3% of numerical searches at 10% of the computational complexity, offering
a new scalable and cost-effective methodology for designing reliable server farms.

INDEX TERMS URLLC, B5G, Auto-scaling, NFV, Reliability

I. INTRODUCTION
With the arrival of Network Function Virtualization
(NFV) [1], mobile services will be implemented as in-
terconnected virtual network functions (VNFs) hosted
by cloud servers [2]. To make an efficient use of the
resources, these VNFs need to be scaled up and down
based on their load [3]. This scaling does not impose
several challenges when dealing with traditional best
effort services, and therefore the impact of non-zero
activation times, or the fallibility of servers, is negligi-
ble. However, when dealing with services with stringent
reliability requirements, such as e.g. Ultra Reliable Low
Latency Communications (with reliability levels of up to
5 or 6 nines [4]), the impact of these parameters cannot
be neglected.

In fact, in our previous work we analyzed the non-
negligible impact of non-zero start-up times and finite

server lifetimes on the reliability of services provided by
an auto-scaling server farm [5], [6]. We first assumed a
fixed scenario with a given server farm and developed an
analytical model to optimize its activation and deactiva-
tion thresholds [5]. Later, we proposed a configuration
mechanism that dynamically adjusts these thresholds to
ensure a given reliability guarantee [6] to the observed
conditions. In these works we illustrate that, depending
on traffic conditions and service requirements, a few
carrier-grade servers (which are powerful and reliable
but consume more energy) may be less efficient than
many consumer-grade servers (which are less powerful
but more energy-efficient).

Motivated by the above finding, in this paper we tackle
the design problem: given (i) a specific service to be
supported in a server farm, characterized by a target
reliability guarantee and an arrival and service rate; and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

:

(ii) a set of candidate server types, each one with a
given set of characteristics, the challenge is to determine
the optimal deployment configuration (i.e., number of
servers and their type) that ensures that the service is
provided with the required guarantee while minimizing
the total cost. To compute this cost we assume a generic
cost model that assumes some infrastructure ownership,
and therefore includes capital expenditure (CapEx) and
operating expenditure (OpEx) terms, but it could be
used in other scenarios such as e.g., a cloud-based ser-
vice provision, which requires pre-booking resources with
different cost and performance characteristics.

We illustrate the effectiveness of our proposal assum-
ing five different types of servers, which are modeled
after existing equipment. According to the results, our
proposal reduces costs by 22% as compared against the
benchmark based on classical queueing theory, with solu-
tions that are within 3% of exhaustive numerical searches
at 10% of the computational complexity. As compared
against previous works considering scaling farms for
NFV with reliability requirements (duly reviewed in
Section VI), the main novelties and contributions of this
work as are follows:

• We develop an analytical model to estimate the
number of resources that a server farm requires
to support a given service with certain reliability
requirements.

• We present a cost model to estimate the cost of
providing the service, including CapEx and OpEx
terms and leveraging the analytical model to esti-
mate the server occupation.

• We formalize the optimal design of a server farm,
which given a set of different server types, selects
the type and number of servers that minimize the
cost while guaranteeing the required reliability.

• We illustrate how to extend the design for the case
of heterogeneous scenarios, where different services
with different reliability requirements are supported
by different type of services.

• We assess the accuracy of the analytical model and
validate the server farm design algorithm through
extensive simulations, which assume five different
types of servers modeled after real-life service types
and equipment.

The rest of the paper is organized as follows. Section II
outlines the key motivations and challenges addressed in
this work. Section III describes the system model, defin-
ing the key components and assumptions. Section IV
introduces the cost model used throughout the study,
followed by an analytical characterization of the sys-
tem’s key performance variables, and concluding with
the proposed algorithm for server farm design. Section V
evaluates the accuracy of our analytical model and the
effectiveness of the proposed approach through extensive

simulations. Section VI provides a comprehensive review
of related work on the performance analysis and config-
uration of auto-scaling server farms. Finally, Section VII
summarizes our key findings and conclusions.

II. Motivation and challenge
The growing reliance on virtualized infrastructures to
support critical services in next-generation mobile net-
works introduces significant challenges, particularly in
ensuring the reliability of auto-scaling server farms [7],
[8]. Unlike traditional best-effort services, where minor
delays in resource activation or occasional hardware
failures have little impact, mission-critical applications
demand stringent reliability guarantees. Services such as
industrial automation, autonomous driving, and remote
healthcare require failure probabilities as low as one
in a million (99.9999%), making even brief disruptions
unacceptable. These requirements impose not only an
operational challenge but also a design challenge: the
number of active resources must be dynamically adapted
to the observed traffic, and the type and number of
servers must be selected to meet reliability goals without
incurring excessive cost.

Regarding the operational challenges, since traffic
loads fluctuate dynamically, adaptive resource allocation
is needed to prevent service interruptions while minimiz-
ing Operational Expenditures (OpEx). Some solutions
rely on auto-scaling techniques to adapt to the traffic
load [9], [10] but often assume instantaneous activa-
tion of pshysical machines (PMs), which is unrealistic
in practical deployments, while other solutions rely on
analytical tools while taking into account the non-zero
boot up times and fallability of servers [5], [11] (we review
the related work in Section VI). Since these works do
not tackle the design challenge, one possible strategy
would be over-provisioning, where additional servers are
deployed to ensure redundancy. While this approach
improves reliability, it may result in significant Capital
Expenditures (CapEx).

In this paper, we develop a cost-aware optimization
framework that selects the optimal type and number
of servers, minimizing both CapEx and OpEx while
meeting stringent reliability constraints. We focus on the
worst-case scenario, assuming that the peak traffic load
corresponds to the average traffic load as this imposes the
most demanding operational constraints, ensuring that
our methodology remains applicable to other scenarios.

III. System model
We assume the same system as in [5], [6], i.e., an auto-
scaling server farm for NFV, comprising a centralized
infrastructure manager (IM) and several physical ma-
chines (PMs). Initially, we assume a homogeneous server
deployment (i.e., server homogeneity), meaning that all
PMs are modeled after the same type of server. This as-

2 VOLUME ,

sumption simplifies the operational procedures, as main-
taining a uniform hardware profile reduces management
complexity and operational costs, making heterogeneous
deployments more costly [12]. We describe how our
framework can be adapted to heterogeneous scenarios in
Section E.

In our paper, we refer with “task” to a traffic session,
which refers to an instance of a stringent URLLC service
such as remote-assisted driving, an industrial slice in a
factory environment, or tele-operated driving. Assum-
ing independence among traffic sessions, following the
Palm–Khintchine theorem the aggregate arrival process
asymptotically behaves like a Poisson process.

Following the above, a deployment can be modeled
with a set of parameters that characterizes its perfor-
mance: each PM can support a maximum of M tasks,
which we refer to as server capacity, and has an expo-
nential lifetime1 and boot up times, with average 1/β
and 1/α, respectively (the key variables in our paper
are summarized in Table 1). Following [14], [15], we
assume a load-proportional power consumption model
for the PMs, characterized by a fixed term Pidle, and
the proportional term Pload, which can be computed as
the difference in tasks between the so-called peak power
consumption Ppeak and the idle term, i.e.,

Pload = Ppeak − Pidle

M
. (1)

Each server has a monetary cost K and a lifes-
pan R. We denote with τi the set of parame-
ters that characterizes a given server type i, i.e.,
τi = {Mi, βi, αi, Pidle,i, Pload,i, K, R}, and with T =
{τ1, τ2, . . .} the set of candidate server types.

Tasks arrive to the system following a Poisson process
(note that this assumption is relaxed in our performance
evaluation) at a rate λ and require an exponential service
time of average 1/µ. During the initial planning phase,
we rely on parameter estimates to dimension the system
as optimally as possible, while at runtime, we employ
adaptive mechanisms (such as stochastic optimization
[11]) to guide operational decisions, including deter-
mining the number of active servers. Moreover, system
measurements collected during operation can be used to
iteratively refine parameter estimates, thereby improving
system dimensioning over time.

The IM balances the load across PMs, seamlessly
migrates tasks whenever needed (e.g., a machine is about

1Additional experiments (not reported here due to space con-
straints) indicate that our framework also applies to other sce-
narios. These include: (i) correlated failures, modeled as a two-
state Markov chain with distinct average lifetimes in each state
[13]; and (ii) non-exponential distributions for boot-up times and
lifetimes. Specifically, we tested constant and Weibull-distributed
boot-up times, and Weibull-distributed lifetimes across multiple
server classes, using parameters chosen to match the same mean
values as in the exponential case.

to fail), and powers PMs on and off as needed. Each
PM can be in one of three states: active (serving tasks),
booting up (initiating due to a need for more resources),
or stopped (either due to a crash or because they are
not needed to handle the current traffic load). To power
on/off the PMs, the IM implements the following policy.
At least one server is kept active at all times to avoid
any delay to serve in arriving tasks. For the rest of the
servers, a threshold-based policy is followed, where the
thresholds to power on or off a server depend on the
number of active servers, denoted by m: a new server
is activated when the number of tasks in the system
reaches sm, and deactivated when the number of tasks
reaches sm − 1. The motivation behind this lack of
hysteresis is motivated by the objective of achieving the
largest possible energy savings, which is accomplished by
keeping the absolute minimum number of servers active
at any given moment to meet performance guarantees [5].
These energy savings are gained at the expense of a
higher frequency of server state transitions, which might
lead to some hardware wear-and-tear.

The farm serves tasks with high reliability require-
ments, e.g., an industry 4.0 service [4] or autonomous
driving services [16]. When a task arrives, the IM selects
an active PM with sufficient resources to handle it. If
no PMs are available to handle the task, the IM queues
it until either a task finishes service or a PM boots up.
In any case, this results in a service disruption, which
negatively affects the committed reliability of the task.
Since PMs are prone to failure, an active PM may crash
at any time. If it was processing tasks, we assume that
these can be seamlessly (i.e., with negligible latency and
energy overheads) migrated to another active PM, where
sufficient resources are available –note that this is already
supported in Linux environments [17] with open-source
technologies such as ACHO [18].2 In case there are not
enough active PMs, the affected tasks are placed on hold
until sufficient PMs are activated again, which again is
considered a service disruption.

We assume that the successful provisioning of the ser-
vice requires a minimum reliability level. This reliability
level is determined by the probability of a task being
disrupted, which is denoted as Pf , being below a maxi-
mum threshold, denoted as Tf . Although the terms “reli-
ability” and “failure probability” refer to complementary
terms, e.g., a reliability of 3 nines (99,9%) corresponds
to a failure probability of 10−3, for readability reasons
we will use them interchangeably throughout the paper.

2For instance, assuming a failover mechanism over a reliable
wired network, as in [18], and a memory transfer of 64 MB over
a 1 Gbps link, each migration requires approx. 500 ms, which
is significantly shorter than typical session durations. Based on
our simulation results and the power model in [19], this results
in an additional power consumption of approx. 0.18 W, which is
negligible compared to the idle consumption of a server.

VOLUME , 3

:

Variable Description

N Maximum number of physical servers
M Capacity of one server
λ Task arrival rate
1/µ Average service time of a task
1/β Average lifetime of a server
1/α Average boot time of a server
sm Activation threshold with m active servers
C Total cost
CCap Cost associated to CapEx
COp Cost associated to OpEx
K Equipment cost
R Equipment lifespan
Nu Average number of users in the system
Na Average number of active servers
Pload Energy consumption due to resource usage
Pidle Energy consumption due to active server count
Pf Failure probability of the server farm
Tf Target failure probability

TABLE 1: Key variables used throughout the paper.

To guarantee the required reliability, we assume that
the server farm executes the algorithm presented in [6],
which automatically drives the (de)activation thresholds
{sm} to an adequate point of operation (note that in [6]
we illustrate that the algorithm provides the most energy
saving operation, but we did not provide the actual
values of these parameters). In this paper, we address
the optimal design of the server farm, i.e., given the
set of available candidate server types T , determine the
most appropriate server type, which is denoted by τ∗,
and the required number of servers, denoted by N , that
guarantees the required performance while minimizing
the cost.

IV. Analysis and design of the server farm
In this section, we formalize the optimization problem
that we address in this paper, which is the choice of the
optimal server type and the number of servers to support
a given service while minimizing the cost. To this aim,
we first introduce our cost model, and then an analytical
model to characterize the operation of the server farm,
which is used by the algorithm to select the best server
type.

A. Cost model
Following the usual assumptions in the literature
(e.g., [20]), we assume that the total cost of the server
farm composed of PMs of type τ is given by the sum
of the Capital Expenditure (CapEx) and Operating Ex-
penditure (OpEx).

C(τ) = CCap(τ) + COp(τ) (2)

where the CapEx term CCap is determined by initial
investments in infrastructure, while the OpEx term COp
is determined by the cost of running and maintaining
the service. More specifically, CCap is determined by the
number of servers required to provide a service N , their
cost K, and the equipment lifespan in hours R, according
to:

CCap = N ×
⌈

K

R

⌉
, (3)

where R is the average lifespan for the type of server
considered, taking into account the expected load and
wear-and-tear effects; the OpEx term is determined by
the resource consumption due to the service provisioning.
Following our previous work [6], this is given by the
amount of resources required to process the tasks, and
therefore the OpEx term can be expressed as

COp = (PloadNu + PidleNa)× kWh (4)

where Nu denotes the average number of users in the
server farm, Na denotes the average number of active
servers, and kWh represents the monetary cost of energy
per hour.3 Note that we consider that the server farm is
working continuously in a time span of a year.

Both (3) and (4) depend on several parameters: a
subset of them corresponds to numerical figures that are
determined for a given server type τi, i.e., K, R, Pload,
and Pidle, while the rest of them depend on the operation
conditions, i.e., the average number of users Nu, the
total number of servers N , and the average number of
active servers Na. We next present an analytical model
to compute these.

B. Average number of users Nu and user distribution
To compute the average number of tasks and their
distribution, we make the approximation that incoming
tasks never wait to be attended. This approximation is
motivated by the fact that the number of tasks that will
have to wait is very small and hence this approximation
will have a very small impact on the resulting task
distribution. Assuming that the impact of server failures
is negligible, the system behaves as an M/M/∞ system
[21], and therefore the probability of having n users in
the system, denoted by pn, follows a Poisson distribution
given by the following expression

pn =
(

λ

µ

)n 1
n!e

− λ
µ (5)

where the average number of users is

Nu = λ

µ
. (6)

3For simplicity, our cost model assumes a fixed average energy
price. This could be extended to incorporate dynamic pricing (e.g.,
time-of-day tariffs) by adjusting for load and cost variations across
time periods.

4 VOLUME ,

C. Total number of servers N

To compute the required number of servers, we look at
the number of servers that are needed to be able to serve
all tasks with a very high probability (provided that all
servers are active). In particular, we enforce that the
probability that an arriving task does not have to wait,
when all servers are active, is well above 1−Tf , i.e., the
failure due to all servers being busy is much smaller than
the failure due to other reasons, which can be as large as
Tf . More specifically, we enforce that the probability that
a task does not have to wait is equal to s = 1 − Tf /X,
where X is a sufficiently large value (unless otherwise
stated, in the rest of the paper we take X = 10).

Note that following (5) the s-percentile of the total
number of users in the system, denoted as Nu(s), is given
by

Nu(s) = min
{

Q ∈ N

∣∣∣∣∣
Q∑

n=0

1
n!

(
λ

µ

)n

e− λ
µ ≥ s

}
(7)

To meet the requirements stated above, we need to
ensure that the system can host up to Nu(s). This means
that, if the size of a server in tasks is given by M , the
number of servers in the system needs to be dimensioned
as follows:

N =
⌈

Nu(s)
M

⌉
(8)

D. Average number of active servers Na

Given the user distribution probability {pn} provided by
(5), and the set of activation thresholds {sm}, which is
computed below, the average number of active servers
Na is given by

Na = 1 +
N∑

m=2
m

sm+1−1∑
n=sm

pn. (9)

where the first term accounts for the fact that there is
always at least one active server active, and the second
term computes the weighted average of a number of
servers m and the probability of having that number of
servers active (there are m active servers if the number
of users is between sm and sm+1 − 1).

E. Computation of the activation thresholds
As described in Section III, the activation thresholds
{sm} are automatically configured using a control the-
oretical mechanism [6] that guarantees that the failure
probability Pf is below the target Tf while minimizing
the energy consumption. In this section, we provide
a theoretical analysis to estimate the value of these
thresholds.

To perform the analysis, again we neglect the impact of
the finite server lifetime on failures, i.e., we assume that
all service failures are due users arriving to the system
with not enough resources to immediately start service.
This assumption reflects the server farm’s operation,

where the auto-scaling scheme enables re-routing tasks
from a failing server to other available resources; our
simulations confirm such direct failures have a negli-
gible impact on overall system reliability. We consider
a scenario with m active servers, and assume that the
activation threshold for an additional server is set to
k. Following the above, a failure will occur right after
the system has k users (and triggers the activation of
a new server) if the total number of users exceeds the
current total capacity of the farm (m×M) before another
server has been fully activated, which requires a time
Ton. We denote this conditional probability upon arrival
as Pf (k, Ton), which corresponds to the probability of
reaching a state with more than m×M users in less than
Ton, starting from a state with k users. By denoting with
Pi,j(t) the probability of reaching state j from i in less
than t, the probability Pf (k, Ton) can be computed as

Pf (k, Ton) =
NM∑

j=mM+1
Pk,j(Ton) (10)

We exemplify the above formulation with the toy ex-
ample depicted in Fig. 1. The figure illustrates a scenario
with m = 2 active servers, where each server has a
capacity M = 5. Assuming that the activation threshold
for the third server is k = 9 and a total of N = 10
servers (i.e., a maximum of 50 simultaneous tasks), the
conditional probability of a failure when the system is in
state k = 9 is given by

Pf (9, Ton) =
50∑

j=11
P9,j(Ton) (11)

To compute Pi,j(t), we assume that the transition
matrix of the system Q is the same as the one from a
classical M/M/c queue [22] with c = N .

Based on this, assuming an initial probability distri-
bution vector P(0), the probability distribution vector
after t is given by [23]

P(t) = P(0)etQ, (12)
and therefore Pi,j(t) can be computed by substituting
P(0) with a distribution vector with 1 in the i-th posi-
tion.

To determine the activation thresholds, we assume
that the impact of each threshold is independent of the
others. We also assume that all tasks that arrive while
server m is booting are assumed to have arrived when the
number of users in the system was exactly equal to its ac-
tivation threshold k (rather than during states with fewer
users). Under these conditions, Eq. (10) can be used to
compute the failure probability associated with server m
when threshold k is applied. Under these assumptions,
the actual failure probability Pf is upper-bounded by
the conditional failure probabilities associated with the
activation of each server. As a result, if we ensure that
each of these conditional probabilities remains below Tf ,

VOLUME , 5

:

· · · 9

P9,11

99

P9,12

>>

P9,13

((

P9,14

%%

P9,k

$$
10 11 12 13 14 · · · k · · ·

Server 2 Server 3
. . .

Server j
FIGURE 1: Failure probability with activation threshold k = 9 for m = 2 servers with capacity M = 5.

so will be the actual failure probability. Following this
reasoning, we estimate the optimal activation thresholds
s∗

m as

s∗
m = max k ∈ [(m− 2)M + 1, . . . , (m− 1)M] (13a)

s. t. Pf (k, Ton) < Tf (13b)

where we select the largest activation threshold out of
those fulfilling the reliability requirement to minimize
the activation of servers and therefore the energy con-
sumption.

F. Optimal design of the server farm
Following the above, the optimization problem can be
formalized as follows. Let T denote the set of all possible
server types, C(τ) denote the cost of using server type
τ to support the service, and Pf (τ) the corresponding
failure probability. The optimization problem is to find
the optimal server type τ∗ defined as follows:

τ∗ = min
τ∈T

C(τ) (14a)

s. t. Pf (τ) ≤ Tf (14b)

Since server types have no relation with each other,
nor between the parameters that characterize their per-
formance, there is no alternative to performing an ex-
haustive search on all server types. We summarize the
operation of the mechanism to design the server farm in
Algorithm 1, which is described next.

The algorithm begins by computing the s-th percentile
of the number of users (line 1). It then iterates over each
server type (line 2), computing: the number of required
servers (line 3), the activation thresholds (line 4), used
to estimate the average number of active servers (line 5),
and finally the total cost per server type (line 6). The
computational complexity is dominated by the loop over
all server types, which requires |T | iterations. For each
server type, the algorithm computes N thresholds, each
involving the solution of a system of N equations, re-
sulting in an overall complexity of O(|T |N4). Assuming
that the s-th percentile grows linearly with the system
load λ/µ, the complexity becomes O(|T |(λ/µ)4). Despite

Algorithm 1 Server Farm Design
Input: Set τi = {Mi, βi, αi, Pidle,i, Pload,i, K, R}, target

failure Tf , service rate µ, arrival rate λ
Output: Optimal server type τ∗

1: Nu(s)← Using (7) ▷ Compute s-percentile of Nu

2: for τ ∈ T do
3: N ← Using (8) ▷ Compute number of servers
4: {s∗

m} ← Using (13b) and (13a) ▷ Compute
activation thresholds

5: Na ← Using (9) ▷ Compute avg. number of
active servers

6: C(τ)← Using (2), (3) and (4) ▷ Compute total
cost

7: end for
8: τ∗ = minτ∈T C(τ) s. t. Pf (τ) ≤ Tf ▷ Select

optimal deployment

this theoretical increase with the load, the results below
(Fig. 6) show that the computational time remains prac-
tically constant across the tested load values, indicating
that the algorithm scales efficiently in practice.

V. Performance evaluation
In this section, we first assess the accuracy of the ana-
lytical model, and then validate the proposed algorithm
to design the server farm. Results from the analytical
model are obtained using MATLAB Release 2023a, while
simulation results are obtained using a discrete event
simulation written in C++. This simulator was also used
in our previous works [5], [6], [24]. We perform as many
replications as required until the confidence intervals are
below 1% of the average (not shown for clarity). Note
that the simulation does not relax certain assumptions
of the analytical model such as the server infallibility. All
computations are performed on a server equipped with
an Intel Core i7 CPU with 4 cores, 8 threads, operating
at a base frequency of 1.30GHz, and supported by 16 GB
of RAM.

6 VOLUME ,

Carrier Enterprise Consumer Rack Blade

Capacity M (tasks) 16 4 2 12 32
Boot-up 1/α (min) 3 8 18 2 1
Lifetime 1/β (days) 32 16 8 7 4
Ppeak (W) 270 78 7.6 70 241
Pload (W) 7.5 18.22 1.5 3.33 22.84
Pidle (W) 150 5.1 4.6 30 20
Cost K (€) 2000 500 100 1000 300
Lifespan R (years) 10 6 2 8 4

TABLE 2: Deployments considered in the performance
evaluation.

We assume that boot up times and lifetimes are expo-
nential random variables too, with an average that de-
pends on the server type τ . We focus on the following set
of target failure probabilities Tf = {10−3, 10−4, 10−5},
which correspond to a reliability between three nines
(99.9%) and five nines (99.999%).

A. Server types
In our experiments, we consider five different server
types, ranging from cost-effective consumer-grade ma-
chines to high-performance blade servers. These configu-
rations were previously defined in [6], [24], and for com-
pleteness, we summarize their performance parameters in
Table 2. The selected server types cover a broad range of
characteristics, ensuring that our analysis and design are
validated under diverse conditions. However, our analysis
is not tied to these specific configurations, i.e., our model
can be applied to assess the performance of alternative
parameterizations and support the design of other server
farm architectures. Lastly, we emphasize that this list is
not an exhaustive catalog of possible server types.

B. Model validation
We first confirm the validity of the analytical model to
estimate the required performance figures to compute
the cost for a given configuration τ , namely, the av-
erage number of users Nu, the number of servers N ,
and the average number of active servers Na, which in
turn depends on the activation thresholds {sm}. To this
aim, we next compare the results obtained using the
analytical model with those obtained using simulations.
To obtain these, we use the following methodology. For
a given value of λ and µ, we initially set the number
of servers to N = λ/µ (i.e., the load in Erlangs), and
run the simulations using the configuration algorithm
in [6] that aims at minimizing resource consumption
while ensuring that the failure probability Pf is below
the target value Tf . If Pf is above Tf , we increase the
number of servers N by one and repeat the process, until
Pf is below Tf . Throughout or model validation, we
consider three different inter-arrival distributions, each
represented with a distinct symbol in the figures:

0

50

100

150

200

250

0 1 2 3 4
λ

A
ve

ra
ge

 n
um

be
r

of
 u

se
rs

Analysis

Exponential
Pareto
Weibull

FIGURE 2: Average number of users vs. λ using analysis
(lines) and simulation (symbols).

• Exponential distribution, with rate λ =
{0.2, 0.4, . . . , 4.0} tasks/min.

• Pareto distribution, with shape parameter α = 2
and scale parameter xm = {2.5, 1.25, . . . , 0.125}
min/tasks.

• Weibull distribution, with shape pa-
rameter k = 2 and scale parameter
θ = {5.6, 1.12, . . . , 0.28} min/tasks.

1) Average number of users and distribution of users
We start our model validation by comparing the an-
alytical results of Section B with those obtained via
simulations. We first compare the average number of
users obtained using (6) with those computed using sim-
ulations, for all considered server types and the different
arrival rates considered.

We present the results in Fig. 2, using points for the
simulation results and lines for the analytical values.
The figure confirms the good accuracy of the analytical
model, since the results practically overlap.

We also compare the distribution of users using (5)
with those computed using simulations, for all the server
types and three selected values of λ. We depict the
probability mass function of the user distribution in
Fig. 3, using bins for simulation results and black lines
for the analytical values obtained using (5). These results
also confirm the accuracy of the distribution of users of
the analytical model, as the differences between the the-
oretical and experimental distributions are very small.

VOLUME , 7

:

Exponential
Pareto
Weibull

0.00

0.03

0.06

0.09

0.12

Users

P
D

F

Analysis

= 0.2=
= 1.0=
= 4.0=

1000 200 300

FIGURE 3: User distribution for different λ values:
analysis (line) and simulation (bins and symbols).

2) Total number of servers
Here we assess the validity of our analysis to dimension
the server farm. To this aim, we compare the total
number of servers N required to guarantee Pf < Tf

using the methodology described for the simulations with
the values obtained via (8). We perform the comparison
for the same values of λ as before and all server types
using Tf = 10−4, and depict the corresponding results
in Fig. 4, using lines for the analytical results and points
for those obtained using simulations.

0

50

100

150

1 2 3 4
�

M
ax

. a
ct

iv
e

se
rv

er
s

Rack
Blade
Carrier
Enterprise
Consumer

Exponential
Pareto
Weibull

FIGURE 4: Maximum number of servers vs. λ using
analysis (lines) and simulation (symbols).

Like in the previous case, the results confirm the
accuracy of the model, as the results practically overlap
for all considered values of λ and server type, with an
average error of 4.6% and the maximum error being
below 10%. As expected, the number of required servers
grows with the inverse of the server capacity M , with
the consumer-grade server type requiring the maximum

λ (tasks/min) s2 s3 s4 s5 s6 s7 s8 s9

0.2 Sim. 22 34 46 58 70 82 94 106
Ana. 21 33 45 57 70 82 94 106

∆s 1 1 1 1 0 0 0 0

0.4 Sim. 21 33 45 57 69 82 94 106
Ana. 20 32 44 56 68 80 93 105

∆s 1 1 1 1 1 2 1 1

1.0 Sim. 16 28 40 52 64 76 88 100
Ana. 16 28 41 53 65 77 90 102

∆s 0 0 -1 -1 -1 -1 -2 -2

2.0 Sim. 14 26 38 50 62 74 86 98
Ana. 13 25 37 49 61 73 85 98

∆s 1 1 1 1 1 1 1 0

3.0 Sim. 13 25 37 49 61 73 85 97
Ana. 13 25 37 49 61 73 85 97

∆s 0 0 0 0 0 0 0 0

4.0 Sim. 12 24 36 48 60 72 84 96
Ana. 12 24 36 48 60 72 83 96

∆s 0 0 0 0 0 0 1 0

TABLE 3: Activation thresholds for the rack server
deployment and different values of λ.

number of servers, and the blade type the minimum.
We find that the analytical figures are always above
the ones obtained using simulations, and therefore the
total number of servers according to our design never
falls below the required number of servers. Finally, we
conducted the same experiment for the rest of server
types and Tf values, obtaining an average error of 4.8%
and a maximum error below 12%.

3) Activation thresholds
Here we validate the analysis presented in Section E to
estimate the values of the activation thresholds {sm}
configured by the algorithm. To this aim, we first focus
on the configurations using the rack server type and set
Tf = 10−3 as the maximum failure probability, and
compare the first eight values of the vector {sm} for
different values of the arrival rate λ as in the previous
sections. The simulation (Sim.) and analytical (Ana.)
results are presented in Table 3, as well as the difference
(∆s).

The table illustrates that as the load grows, the ac-
tivation thresholds decrease, since servers need to be
activated with more anticipation to accommodate the
incoming tasks. It also shows a good match between the
results predicted by the model and those obtained using
simulations, with a mean absolute difference of 0.6 tasks
and a maximum difference of 2 tasks. We repeated the
same experiment for the other types of servers and the

8 VOLUME ,

0

40

80

120

0 1 2 3 4
l

A
ve

ra
ge

 a
ct

iv
e

se
rv

er
s

Rack
Blade
Carrier
Enterprise
Consumer

Exponential
Pareto
Weibull

FIGURE 5: Average number of active servers vs. λ using
analysis (lines) and simulation (symbols).

considered Tf values, with the mean absolute difference
being 0.7 tasks and the maximum absolute difference
being 2 tasks. These results again confirm the accuracy
of the analytical model to estimate the configuration of
the server farm.

4) Average number of active servers
Finally, we assess the accuracy of (9) to estimate the
average number of active servers, using the same method-
ology as before. As in the previous cases, we first assume
Tf = 10−4 and different values of the traffic load.
We represent in Fig. 5 with lines the results from the
analytical model and with points those using simulations.
The figure confirms the accuracy of the model, with an
average absolute error of 0.45 servers and a maximum
absolute error of 0.62 servers. Like in the case of Fig. 4,
the larger the capacity M of the server type, the smaller
the average number of active servers.

Based on the above results, we confirm the accuracy
of the analytical model to predict the performance of a
server farm for different traffic loads, reliability require-
ments, and server types. We next assess the performance
of the algorithm proposed to design the server farm.

C. Design of the server farm
Following the validation of the analytical model, we next
assess the performance of the algorithm presented in
Section F to design a server farm. To this aim, we assume
the same set of traffic rate values λ and target failure
probability levels Tf = {10−3, 10−4, 10−5} considered
before. To provide an adequate context, we compare the
results from our algorithm against two benchmarks:

• An exhaustive search in the configuration space.
• A benchmark based on the Erlang-C [25], which

determines for each type of server the number of
resources required to ensure that the probability
of blocking meets a specific reliability target (i.e.,
PB = 1−R), and selects the minimum.

For each considered scenario, we compute:

• For each of the five server types considered, the
minimum cost (Cs) obtained via simulations using
a search on the total number of servers.

• The optimal server type τ∗ and corresponding cost
(Ca) according to our algorithm.

• The difference between the minimum cost obtained
with the numerical search and the one obtained with
our algorithm (∆C).

• The cost of the benchmark design Cb based on the
Erlang-C, and the corresponding difference vs. Ca,
denoted as ∆B.

We provide the resulting figures for the λ and Tf values
considered in Table 4. For each scenario, we highlight in
gray the minimum cost obtained using simulations, and
in bold font the resulting τ∗ whenever the best type of
server according to our method corresponds to the one
that minimizes costs using simulations.

There are several results that can be derived from
Table 4. First, both for simulations and analysis, the
minimum cost increases as the load increases, since more
resources are needed to accommodate the incoming traf-
fic. Second, there is no optimal server configuration for
all scenarios, as the best server type alternates between
the five considered types depending on the load and
reliability considered. Third, we note that our config-
uration algorithm provides the optimal server type in
16 out of the 18 scenarios considered (i.e., 88.8% of the
scenarios), and that for those two scenarios the relative
error in terms of cost is smaller than 2%. The average
cost difference between the configuration provided by
the algorithm and the simulations is 3%, which confirms
the effectiveness of our proposal to design a server farm.
Fourth, the comparison of the cost between the analysis
(Ca) and benchmark (Cb) highlights the advantages of
using our proposed method over a predefined benchmark
configuration. We note that the absolute cost for the
benchmark is notably higher than the one by the analysis
for all combinations. The benchmark consistently results
in a higher number of servers due to its more pessimistic
assumptions. The relative cost difference (∆B) demon-
strates that relying on a fixed server configuration can
lead to significant cost inefficiencies, with the bench-
mark costing on average 22% more than the optimized
analysis-based approach. In some cases, such as λ = 0.2
and Tf = 10−4, the cost increase reaches 54%, reinforcing
the importance of dynamically selecting the optimal
server type rather than adhering to a static deployment

VOLUME , 9

:

Simulation Cost (Cs) Analysis Benchmark
λ Tf Carrier Enterprise Consumer Rack Blade τ∗ Ca ∆C Cb ∆B

0.2 10-3 495.98 256.26 665.26 855.40 260.03 Blade 260.62 1.70% 388.35 49.01%
10-4 498.17 268.04 668.52 858.25 261.73 Enterprise 265.13 1.30% 408.30 54.00%
10-5 502.53 275.78 671.83 861.07 265.21 Blade 269.69 1.66% 474.01 75.76%

0.4 10-3 824.32 712.03 1006.47 1569.52 706.90 Blade 716.08 1.28% 776.71 8.47%
10-4 828.42 763.08 1110.23 1573.58 710.14 Enterprise 766.43 0.44% 840.32 9.64%
10-5 835.07 770.93 1125.36 1580.05 770.55 Blade 787.81 2.24% 1084.30 37.63%

1.0 10-3 1634.76 1557.30 1360.30 1860.12 1631.93 Consumer 1365.19 0.36% 1516.15 11.06%
10-4 1840.56 1729.00 1747.32 1865.57 1731.43 Enterprise 1747.15 1.05% 1860.23 6.47%
10-5 2055.09 2028.34 2022.25 2056.09 2031.67 Consumer 2189.73 6.50% 2430.62 11.00%

2.0 10-3 2995.68 3131.26 2804.93 2812.14 3121.38 Consumer 3008.56 7.26% 3118.77 3.66%
10-4 3010.08 3150.12 2899.54 2892.20 3135.09 Rack 3051.56 5.51% 3343.76 9.58%
10-5 3140.14 3175.16 3126.13 3198.45 3150.17 Consumer 3219.60 2.99% 3684.36 14.44%

3.0 10-3 3861.44 3891.09 3917.21 3901.75 4611.36 Carrier 4100.84 6.20% 4888.86 19.22%
10-4 3975.12 4005.11 3990.17 3947.93 4625.20 Rack 4148.09 5.07% 5120.98 23.45%
10-5 4210.21 4188.63 4147.31 4167.34 4660.33 Consumer 4333.52 4.49% 5876.56 35.61%

4.0 10-3 5321.68 5561.98 5432.71 5412.82 5871.76 Carrier 5587.76 5.01% 6006.73 7.50%
10-4 5640.19 5580.29 5559.92 5512.15 5890.42 Rack 5643.89 2.39% 6345.41 12.43%
10-5 5980.31 5821.87 5820.19 5847.63 5930.54 Consumer 5899.34 1.36% 6640.85 12.57%

TABLE 4: Minimum cost desgin using simulations (Cs), our analysis (Ca), and the benchmark (Cb).

strategy. Finally, the table also highlights the importance
of an adequate selection of the best server type, in
addition to its optimal configuration, since there are
substantial differences in terms of cost between optimal
server deployments with different types. For instance, for
λ = 0.2 and Tf = 10−3 (first row of the table), there is
a factor of 3.33× between the minimum cost using the
Enterprise type of server and the one using the Rack type
of server, while the average difference is 1.64×.

D. Computational time
Finally, we compare the time to determine the optimal
design using the method presented in Section IV with
a exhaustive search using simulations. To this aim, we
compute the total execution time required for each ap-
proach. We assume the same scenarios as before with
different values of λ and the reliability levels Tf =
{10−3, 10−4, 10−5}. We illustrate the results in Fig. 6,
using a logarithmic scale on the y axis.

According to the figure, the proposed method results
in significantly shorter execution times for all values
of λ and Tf . Furthermore, these times are practically
constant, while simulation times increase with the traffic
load, and with the inverse of Tf . Based on these results,
we conclude that the analysis developed in Section IV
offers a cost-effective solution, particularly well suited
for scenarios demanding robust, scalable, and resource-
efficient methodologies.

102

104

106

1 2 3 4
l

E
xe

cu
tio

n
T

im
e

(s
eg

)

Analysis, Tf = 10-3

Analysis, Tf = 10-4

Analysis, Tf = 10-5

Simulation, Tf = 10-3

Simulation, Tf = 10-4

Simulation, Tf = 10-5

FIGURE 6: Execution time vs. lambda required by
simulation (dashed lines) and analysis (continuous lines)
for different values of Tf .

E. Heterogeneous scenarios
As discussed in Section III, we initially consider ho-
mogeneous scenarios, where a single type of service is
provided by a single type of server. In this section, we
relax this assumption to demonstrate how the proposed
framework can be extended to design heterogeneous

10 VOLUME ,

scenarios. Specifically, we consider a case with two types
of services, labeled 1 and 2. Both have the same service
rate µ, but differ in their reliability requirements, T1 and
T2, as well as their arrival rates, λ1 and λ2, respectively.

One way to design a heterogeneous server farm using
our framework is to independently determine the optimal
server type for each type of traffic. We denote these as τ∗

i

for i ∈ 1, 2. Assuming that the Infrastructure Manager
(IM) redirects each type of task to the corresponding
server type, the total cost of this heterogeneous design
is given by:

Chet = C(τ∗
1) + C(τ∗

2) (15)

As a benchmark, we assume a homogeneous design to
support the total traffic λ1 + λ2 and the most stringent
reliability requirement, min(T1, T2). The resulting cost
of this design is denoted as Chom. Table 5 presents the
resulting values of Chet and Chom for different values of
λ1, λ2, T1, and T2. It also reports the relative difference
between the homogeneous and the heterogeneous design,
∆B. Note that for some scenarios, the cost Chom is
reused from Table 4.

λ1 T1 λ2 T2 Chet Chom ∆B

0.3 10-3 0.7 10-4 1831.92 1729.00 -5.95%
0.3 10-4 0.7 10-3 1714.34 1729.00 0.85%
0.3 10-4 0.7 10-5 2032.31 2022.25 -0.50%

1.5 10-3 1.5 10-4 3892.55 3947.93 1.40%
1.5 10-4 1.5 10-3 3892.55 3947.93 1.40%
1.5 10-4 1.5 10-5 4422.17 4147.31 -6.63%

1.5 10-3 2.5 10-4 5218.46 5512.15 5.33%
1.5 10-4 2.5 10-3 5159.25 5512.15 6.40%
1.5 10-4 2.5 10-5 5509.08 5820.19 5.35%

TABLE 5: Heterogeneous scenarios.

The results confirm that our proposal can be extended
to heterogeneous scenarios, as most configurations yield
additional cost savings –up to 6.4% in some cases.
However, these gains remain moderate due to two main
factors. First, traffic is isolated across server types, which
prevents potential multiplexing gains. Second, our ho-
mogeneous design already performs well, leaving limited
room for further improvement except in specific scenar-
ios. As discussed in Section VII, our ongoing work focuses
on developing novel analytical models to more effectively
address the design of heterogeneous server farms.

VI. Related work
A. Resource Allocation for NFV
The research community has shown significant interest
in dynamically managing cloud resources to minimize

consumption. For example, in [26], the authors analyze
the impact of various static algorithms for activating
and deactivating resources, as well as reallocating tasks
within a data center, with a focus on reducing energy
consumption and minimizing service violations. In a
subsequent study [27], they suggest adapting thresholds
based on estimated conditions. Finally, control theory
has historically been leveraged for energy-efficient re-
source allocation in cloud computing systems, as outlined
in [28]. For example, [29] applies control theory principles
for load balancing and CPU frequency selection, which
differ from our previous work [6] where control theory is
applied to drive the system to the desired reliability lev-
els while minimizing energy consumption. However, the
techniques proposed therein tackle distinct challenges
compared to those addressed in our paper, and none
specifically account for both the waiting queue time of
the tasks and the fact that servers has non-zero boot up
times.

B. Analysis of reliability in NFV
The study by [30] meticulously examines the reliability
of a carrier-grade server system, employing a fault tree
model at a high level that intricately links various lower-
level Markov models. These models account for the
inherent fallibility of hardware components such as CPUs
and memory modules. A similar methodology is pursued
in [31], where the authors examine the reliability of both
virtualized and non-virtualized systems comprising two
hosts. Furthermore, [32] delves into a related system,
conducting a sensitivity analysis to pinpoint parameters
that significantly impact reliability. A closer examination
akin to our research is presented in [33], where a Markov
chain is used to model a server farm, factoring in setup
delays concerning response time and power consumption.
Similarly, [3] explores the analysis within the realm of
5G/6G networks, using thresholds to manage instance
power and performance evaluation in terms of power
consumption and waiting time. However, none of these
works have proposed a theoretical model to asses the
design of an optimal server farm, targeting a desired level
of reliability while minimizing infrastructure costs.

C. NFV and Reliability
In prior works [5], [6], [24], we have addressed a system
similar to the one studied in this paper. In [5], we
characterized service reliability and derived an optimal
configuration of the server farm to support a required
reliability while minimizing the resource consumption. In
[24], we studied the trade-offs of a server farms in terms
of reliability and power consumption based on a static
configuration. Our analyses of [5], [24] are static and
require knowledge about the system load, while other
proposal rely on stochastic optimization [11] to find the
best trade-off between resource consumption and average

VOLUME , 11

:

waiting time. In [6], we introduced a control theory
algorithm that dynamically adapted the configuration to
reach the desired point of operation. However, all these
papers assumed a fixed server farm where machines are
characterized in terms of a number of parameters (e.g.
energy consumption, capacity, lifetime). In contrast to
this analysis and configuration problems, in this paper
we address the design problem: given a given a set of
parameters defining a service and a list of candidate
server types, that could be used to deploy the server
farm, select the most adequate server type to support
the service.

VII. Conclusions and future work
Designing auto-scaling server farms requires balancing
reliability and cost, complicated by activation delays,
finite lifespans, and failure risks. Traditional methods
often ignore these factors or over-provision, raising costs.
In this paper, we present a framework that combines
queueing theory, cost modeling, and server selection to
identify minimum-cost deployments. Our approach con-
siders boot-up times and failure probabilities, ensuring
reliable service at minimal cost. The proposed methodol-
ogy is particularly well suited for latency- and reliability-
sensitive applications, such as industrial automation,
autonomous vehicle coordination, and mission-critical
IoT deployments in 5G and beyond networks.

As part of our ongoing and future work, we are
exploring several key directions to enhance the appli-
cability and realism of our framework. First, we aim to
improve the design of heterogeneous scenarios. While the
current approach assigns a dedicated and independently
optimized server type to each service class, we plan to de-
velop more sophisticated strategies that enable resource
sharing and exploit multiplexing gains across services.
Second, we intend to incorporate network latency into
the optimization process by accounting for the perfor-
mance characteristics of the RAN [34], the underlying
network topology, and the VNF chaining architectures.
This will involve probabilistic modeling of end-to-end
latency to better support URLLC requirements. Finally,
we are extending our implementation over Linux-based
architectures [17] integrating a load balancing mecha-
nism with ACHO’s [18] seamless migration capabilities,
enabling more efficient and resilient deployment of vir-
tualized services.

ACKNOWLEDGMENT
This publication is part of the project
6GINSPIRE PID2022-137329OB-C42, funded by
MCIN/AEI/10.13039/501100011033/. This work has
been partly funded by NEC Laboratories Europe
Student Research Fellowship program of 2021. This
work is also partially supported by the Spanish Ministry
of Economic Affairs and Digital Transformation and

the European Union-NextGenerationEU through the
UNICO 5G I+D SORUS project. The work of Jaime
Garcia-Reinoso has been partly funded by the Spanish
Ministry for Science and Innovation through the
ADMINISTER (TED2021-131301B-I00) project.

REFERENCES
[1] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori,

V. Sciancalepore, N. Sastry, O. Holland, S. Tayade, B. Han,
D. Bega, D. Aziz, and H. Bakker, “Network slicing to en-
able scalability and flexibility in 5g mobile networks,” IEEE
Communications Magazine, vol. 55, no. 5, pp. 72–79, 2017.

[2] M. Gramaglia, P. Serrano, A. Banchs, G. Garcia-Aviles,
A. Garcia-Saavedra, and R. Perez, “The case for serverless
mobile networking,” in 2020 IFIP Networking Conference
(Networking), 2020, pp. 779–784.

[3] Y. Ren, T. Phung-Duc, J. Chen, and Z. Yu, “Dynamic
Auto Scaling Algorithm (DASA) for 5G Mobile Networks,” in
Proceedings of the IEEE Global Communications Conference
(GLOBECOM 2016), Washington DC, USA, Dec. 2016.

[4] Č. Stefanović, “Industry 4.0 from 5g perspective: Use-cases,
requirements, challenges and approaches,” in 2018 11th CMI
International Conference: Prospects and Challenges Towards
Developing a Digital Economy within the EU. IEEE, 2018,
pp. 44–48.

[5] J. Ortin, P. Serrano, J. Garcia-Reinoso, and A. Banchs, “Anal-
ysis of scaling policies for nfv providing 5g/6g reliability levels
with fallible servers,” IEEE Transactions on Network and
Service Management, vol. 19, no. 2, pp. 1287–1305, 2022.

[6] J. Perez-Valero, A. Banchs, P. Serrano, J. Ortín, J. Garcia-
Reinoso, and X. Costa-Pérez, “Energy-aware adaptive scaling
of server farms for nfv with reliability requirements,” IEEE
Transactions on Mobile Computing, vol. 23, no. 5, pp. 4273–
4284, 2024.

[7] J. Liu, Z. Jiang, N. Kato, O. Akashi, and A. Takahara, “Reli-
ability evaluation for nfv deployment of future mobile broad-
band networks,” IEEE Wireless Communications, vol. 23,
no. 3, pp. 90–96, 2016.

[8] L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz, “A reliability-
aware network service chain provisioning with delay guar-
antees in nfv-enabled enterprise datacenter networks,” IEEE
Transactions on Network and Service Management, vol. 14,
no. 3, pp. 554–568, 2017.

[9] Y. Ren, T. Phung-Duc, J.-C. Chen, and Z.-W. Yu, “Dynamic
auto scaling algorithm (dasa) for 5g mobile networks,” in 2016
IEEE Global Communications Conference (GLOBECOM),
2016, pp. 1–6.

[10] A. Gandhi, M. Harchol-Balter, and I. Adan, “Server
farms with setup costs,” Performance Evaluation,
vol. 67, no. 11, pp. 1123–1138, 2010, performance 2010.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0166531610000957

[11] A. Song, W. Wang, and J. Luo, “Stochastic modeling of
dynamic power management policies in server farms with
setup times and server failures,” International Journal of
Communication Systems, vol. 27, no. 4, pp. 680–703, 2014.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/dac.2761

[12] J. Burge, P. Ranganathan, and J. L. Wiener, “Cost-aware
scheduling for heterogeneous enterprise machines (cash’em),”
in 2007 IEEE International Conference on Cluster Computing,
2007, pp. 481–487.

[13] K. Goseva-Popstojanova and K. Trivedi, “Failure correla-
tion in software reliability models,” in Proceedings 10th
International Symposium on Software Reliability Engineering
(Cat. No.PR00443), 1999, pp. 232–241.

[14] A. Vasan, A. Sivasubramaniam, V. Shimpi, T. Sivabalan,
and R. Subbiah, “Worth their watts? - an empirical study
of datacenter servers,” in HPCA - 16 2010 The Sixteenth
International Symposium on High-Performance Computer
Architecture, 2010, pp. 1–10.

12 VOLUME ,

https://www.sciencedirect.com/science/article/pii/S0166531610000957
https://www.sciencedirect.com/science/article/pii/S0166531610000957
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.2761
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.2761

[15] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao, “Energy-aware server provisioning and load dispatch-
ing for connection-intensive internet services,” in Proceedings
of the 5th USENIX Symposium on Networked Systems Design
and Implementation, ser. NSDI’08. USA: USENIX Associa-
tion, 2008, p. 337–350.

[16] 5G Americas, ““Vehicular Connectivity: C-V2X and 5G,”
Technical White Paper, 2021.

[17] S. K. Singh, Linux Yourself: Concept and Programming,
1st ed. Chapman and Hall/CRC, 2021. [Online]. Available:
https://doi.org/10.1201/9780429446047

[18] G. Garcia-Aviles, C. Donato, M. Gramaglia, P. Serrano, and
A. Banchs, “Acho: A framework for flexible re-orchestration of
virtual network functions,” Computer Networks, vol. 180, p.
107382, 2020.

[19] J. A. Aroca, A. Chatzipapas, A. F. Anta, and V. Mancuso, “A
measurement-based characterization of the energy consump-
tion in data center servers,” IEEE Journal on Selected Areas
in Communications, vol. 33, no. 12, pp. 2863–2877, 2015.

[20] M. Ananth and R. Sharma, “Cloud management using net-
work function virtualization to reduce capex and opex,”
in 2016 8th International Conference on Computational
Intelligence and Communication Networks (CICN). IEEE,
2016, pp. 43–47.

[21] L. Kleinrock, Theory, Volume 1, Queueing Systems. USA:
Wiley-Interscience, 1975.

[22] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing
networks and Markov chains: modeling and performance
evaluation with computer science applications. John Wiley
& Sons, 2006.

[23] K. Rupp, R. Schill, J. Süskind, P. Georg, M. Klever, A. Lösch,
L. Grasedyck, T. Wettig, and R. Spang, “Differentiated uni-
formization: A new method for inferring markov chains on
combinatorial state spaces including stochastic epidemic mod-
els,” Computational Statistics, pp. 1–21, 2024.

[24] J. Perez-Valero, J. Garcia-Reinoso, A. Banchs, P. Serrano,
J. Ortin, and X. Costa-Perez, “Performance trade-offs of
auto scaling schemes for nfv with reliability requirements,”
Computer Communications, vol. 212, pp. 251–261, 2023.

[25] T. R. Robbins, D. J. Medeiros, and T. P. Harrison, “Does the
erlang c model fit in real call centers?” in Proceedings of the
2010 Winter Simulation Conference. IEEE, 2010, pp. 2853–
2864.

[26] A. Beloglazov and R. Buyya, “Energy efficient allocation
of virtual machines in cloud data centers,” in 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, 2010, pp. 577–578.

[27] A. Beloglazov and R. Buyya, “Adaptive threshold-based ap-
proach for energy-efficient consolidation of virtual machines
in cloud data centers,” in Proceedings of the 8th International
Workshop on Middleware for Grids, Clouds and e-Science, ser.
MGC ’10. New York, NY, USA: Association for Computing
Machinery, 2010.

[28] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. P. Ja-
yaraman, J. Kolodziej, P. Balaji, S. Zeadally, Q. M. Malluhi,
N. Tziritas, A. Vishnu, S. U. Khan, and A. Zomaya, “A
survey and taxonomy on energy efficient resource allocation
techniques for cloud computing systems,” Computing, vol. 98,
no. 7, pp. 751–774, Jun. 2014.

[29] Y. Wang, X. Wang, M. Chen, and X. Zhu, “Power-efficient
response time guarantees for virtualized enterprise servers,”
in 2008 Real-Time Systems Symposium, 2008, pp. 303–312.

[30] W. E. Smith, K. S. Trivedi, L. A. Tomek, and J. Ackaret,
“Availability analysis of blade server systems,” IBM Systems
Journal, vol. 47, no. 4, pp. 621–640, 2008.

[31] D. S. Kim, F. Machida, and K. S. Trivedi, “Availability
modeling and analysis of a virtualized system,” in 2009 15th
IEEE Pacific Rim International Symposium on Dependable
Computing, 2009, pp. 365–371.

[32] R. d. S. Matos, P. R. M. Maciel, F. Machida, D. S. Kim, and
K. S. Trivedi, “Sensitivity analysis of server virtualized system
availability,” IEEE Transactions on Reliability, vol. 61, no. 4,
pp. 994–1006, 2012.

[33] A. Gandhi, M. Harchol-Balter, and I. Adan, “Server farms
with setup costs,” Performance Evaluation, vol. 67, no. 11, pp.
1123 – 1138, Nov. 2010.

[34] O. Adamuz-Hinojosa, L. Zanzi, V. Sciancalepore, A. Garcia-
Saavedra, and X. Costa-Pérez, “Oranus: Latency-tailored or-
chestration via stochastic network calculus in 6g o-ran,” in
IEEE INFOCOM 2024 - IEEE Conference on Computer
Communications, 2024, pp. 61–70.

Jesus Perez-Valero received the Ph.D. degree
from the Universidad Carlos III de Madrid
(UC3M) in 2024. He is currently a Postdoc-
toral Researcher and lecturer with Universi-
dad de Murcia (UMU). He has been involved
in several projects funded by the European
Commission through the SNS. His main re-
search interests lie in the performance anal-
ysis and optimization of communication sys-
tems.

Pablo Serrano(M’09, SM’16) is an Associate
Professor at the University Carlos III de
Madrid. His research interests lie in the anal-
ysis of wireless networks and the design of
network protocols and systems. He currently
serves as Editor for IEEE Open Journal
of the Communication Society and IEEE
Transactions on Mobile Computing.

Jaime Garcia-Reinoso(M’04) received the
Telecommunications Engineering degree in
2000 from the University of Vigo, Spain and
the Ph.D. in Telecommunications in 2003
from the University Carlos III of Madrid,
Spain. He is an associate professor at Univer-
sity of Alcala, Spain since 2021 and he has
published over 60 papers in top magazines
and conferences. He has been involved in
many international projects on next gener-
ation networks, 5G, SDN and NFV.

Albert Banchs has a double affiliation as
Professor at the University Carlos III of
Madrid and Deputy Director of the IMDEA
Networks institute. Prof. Banchs has served
in many TPCs and has also served in the
editorial board of a number of journals, in-
cluding IEEE Transactions in Wireless Com-
munications and IEEE/ACM Transactions
on Networking. Dr. Banchs has participated
in many European projects and industry
contracts.

Xavier Costa-Perez is ICREA Research Pro-
fessor, Scientific Director at the i2cat Re-
search Center and Head of 5G Networks
R&D at NEC Laboratories Europe. His re-
search focuses on the transformation of so-
ciety driven by the interplay of mobile net-
works and AI. Currently, he is serving as As-
sociate Editor at IEEE Transactions on Mo-
bile Computing, IEEE Transactions on Com-
munications and Elsevier Computer Com-
munications journals.

VOLUME , 13

https://doi.org/10.1201/9780429446047

	INTRODUCTION
	Motivation and challenge
	System model
	Analysis and design of the server farm
	Cost model
	Average number of users Nu and user distribution
	Total number of servers N
	Average number of active servers Na
	Computation of the activation thresholds
	Optimal design of the server farm

	Performance evaluation
	Server types
	Model validation
	Average number of users and distribution of users
	Total number of servers
	Activation thresholds
	Average number of active servers

	Design of the server farm
	Computational time
	Heterogeneous scenarios

	Related work
	Resource Allocation for NFV
	Analysis of reliability in NFV
	NFV and Reliability

	Conclusions and future work
	REFERENCES
	Biographies
	Jesus Perez-Valero
	Pablo Serrano
	Jaime Garcia-Reinoso
	Albert Banchs
	Xavier Costa-Perez

