Greening Wireless Communications: A Top-Down Overview

Pablo Serrano

Dept. Ing. Telemática Univ. Carlos III de Madrid http://www.it.uc3m.es/pablo/

Motivation: Green all the things

Global warming CO₂ emissions Cost reduction More efficient operation

Motivation

• Cisco Visual Networking Index: Forecast of mobile data traffic

Pablo Serrano – Greening Wireless... University of Edinburgh, March 7th, 2014

Energy consumption decomposition

Timescales

- Usage pattern
- Flow
- Super-frame
- Frame

Timescale vs. Wireless tech

Timescales

- Usage pattern
- Flow
- Super-frame
- Frame

Resource on Demand schemes

Power on/off the infrastructure as required

Powering on/off a device

 Linksys WRT54GL with OpenWRT 10.03.1

From	То	Time
OFF	ON (3 W)	55 s
ON	OFF (0 W)	5 s
IDLE	ON	< 1 s
ON	IDLE (1 W)	< 1 s

System Model: regenerative process

System Model

- Three different chains (BW is shared)
- Performance figures
 - Average delay
 - Power
 consumption

Results

Pablo Serrano – Greening Wireless... University of Edinburgh, March 7th, 2014

Timescales

- Usage pattern
- Flow
- Super-frame
- Frame

Generalizing the Perf. Anomaly solution

Performance Anomaly: a node far away reduces the overall performance

Usual Solution

- Opportunistic relaying can alleviate the issue, depending on the topology
 - Based on e.g. Wi-Fi Direct

Yet Another Solution

• Degrees of freedom: the relay can decide how to spend its time: tx, relay, sleep

Problem Formulation

- 1 AP, legacy nodes, relay-capable nodes
- Topology: paths used to reach the AP
- Schedule: timing of the relays
- For every topology, find the *best* schedule

Problem Formulation

• Throughput

$$X_n = \sum_{\mathcal{V} \in \mathbb{W}^{A_n}} R_{\mathcal{V}}(n) F_{\mathcal{V}}^{A_n}.$$

$$X_s = \sum_{\substack{\mathcal{V} \in \mathbb{W}^{A_s} \\ s \in \mathcal{V}}} F_{\mathcal{V}}^{A_s} R_{\mathcal{V}}(s) - \sum_{t \in \mathcal{T}_s} X_t.$$

$$Y_n = \sum_{\mathcal{V} \in \mathbb{W}^{A_n}} F_{\mathcal{V}}^{A_n} P_{\mathcal{V}}^T(n) + (1 - \sum_{\mathcal{V} \in \mathbb{W}^{A_n}} F_{\mathcal{V}}^{A_n}) \rho_s.$$

$$Y_{s} = \sum_{\substack{\mathcal{V} \in \mathbb{W}^{A_{s}} \\ s \in \mathcal{V}}} F_{\mathcal{V}}^{A_{s}} P_{\mathcal{V}}^{T}(s) + \sum_{\substack{\mathcal{V} \in \mathbb{W}^{s} \\ s \in \mathcal{V}}} F_{\mathcal{V}}^{s} P_{\mathcal{V}}^{R}(s) + (1 - \sum_{\substack{\mathcal{V} \in \mathbb{W}^{A_{s}} \\ s \in \mathcal{V}}} F_{\mathcal{V}}^{A_{s}} - \sum_{\substack{\mathcal{V} \in \mathbb{W}^{s}}} F_{\mathcal{V}}^{s}) \rho_{s}.$$

• Maximize

$$V_n = U_n(X_n) - L_n(Y_n) \qquad egin{array}{c} U_n(X_n) = lpha_n log(X_n) \ L_n(Y_n) = (1-lpha_n)Y_n, \end{array}$$

Finding a Solution

- Scheduling: maximize a concave objective function under a convex set of constraints and thus admits a unique optimum.
- Topology: combinatorial problem, and efficiently finding the optimal topology does not appear to be possible
 - Search, closest, heuristic

Results: 1 legacy, 2 relays

Pablo Serrano – Greening Wireless... University of Edinburgh, March 7th, 2014

Results: incremental deployment

Pablo Serrano – Greening Wireless... University of Edinburgh, March 7th, 2014

Opportunistic Relaying: Challenges

- Trade-off between throughput (performance) and cost (energy consumption)
 - Not that much explored
 - Heterogeneous settings
- Works in practice, but
 - Estimate network cond.

- Enabler: Wi-Fi Direct?
 - Not immediate (~5 s)

IEEE Wireless Communications, June 2013

80

Timescales

- Usage pattern
- Flow
- Super-frame
- Frame

Energy Efficiency of 802.11 MAC

- Usual model
 - Transmission, Reception, Idle

#	Card	$ ho^{tx}$	$ ho^{rx}$	$ ho^{id}$
Α	Lucent WaveLan	1.650	1.400	1.150
B	SoketCom CF	0.924	0.594	0.066
\mathbf{C}	Intel PRO 2200	1.450	0.850	0.080
D	Agilent Card Test	1.188	1.138	1.108

S. Chiaravalloti, F. Idzikowski, L. Budzisz, Power consumption of WLAN network elements, TKN Technical Report Series TKN-11-002, Telecommunication Networks Group, Technical University Berlin (Aug. 2011).

$$\eta_i = \frac{\text{bits successfully transmitted}}{\text{energy consumed}} = \frac{Throughput_i}{power_i}$$

Revisiting Channel Access

• Bianchi-based: $e_i = \sum_{j \in \Theta} E_i(j)p(j)$

$$p(e) = \prod (1 - \tau_j) \quad p(s, i) = \tau_i \prod_{j \neq i} (1 - \tau_j)$$

$$p(s,\neg i) = \sum_{j \neq i} \tau_j \prod_{k \neq j} (1 - \tau_k) \quad p(c,i) = \tau_i (1 - \prod_{j \neq i} (1 - \tau_j))$$
$$p(c,\neg i) = 1 - \tau_i - p_e - p_{s,\neg i}$$

• With $E_{i}(s,i) = \rho_{i}^{tx}T_{s} + \rho_{i}^{rx}T_{ack} + \rho_{i}^{id}(SIFS + DIFS)$ $E_{i}(s,\neg i) = \rho_{i}^{rx}(T_{s} + T_{ack}) + \rho_{i}^{id}(SIFS + DIFS)$ $E_{i}(e) = \rho_{i}^{id}T_{e}$ $E_{i}(c,i) = \rho_{i}^{tx}T_{s} + \rho_{i}^{id}EIFS$ $E_{i}(c,\neg i) = \rho_{i}^{rx}T_{s} + \rho_{i}^{id}EIFS$

Homogeneous scenario: search

* 10 stations

Pablo Serrano – Greening Wireless... University of Edinburgh, March 7th, 2014

27

Timescales

- Usage pattern
- Flow
- Super-frame
- Frame

Distributed Opportunistic Scheduling

• Revisiting DOS $E[R_i(\theta) - \bar{R}_i^*]^+ = \frac{R_i^* \tau}{\tau/e}$

Green DOS

• Like in the previous case, add the power consumption when probing, tx, etc.

$$E\left[R_i(\theta) - \bar{R}_i^*\right]^+ = \frac{\bar{R}_i^* \tau}{\mathcal{T}/e} \longrightarrow \bar{R}^* \frac{e_{cp}}{(\gamma_{xg} + \mathcal{T}\pi_{tx})} = E\left[R_N - \bar{R}^*\right]^+$$

Pablo Serrano – Greening Wireless... University of Edinburgh, March 7th, 2014

Review of existing mechanisms

 Typical savings achieved depending on network load for ~40 different mechanisms evaluated

Open Challenges

- Standardizing benchmarks
 - Otherwise, hard to compare
 - Understand trade-offs
 - Criterion? $\max \sum \log(\eta_i)$
- More experimentation
 - For WMAN
 - But not only! IoD for 802.11?
 - And new findings

A.P. Bianzino, A. K. Raju, D. Rossi, "Apples-to-apples: a framework analysis for energyefficiency in networks", ACM SIGMETRICS Perf. Ev. Review, Dec. 201

A. Garcia-Saavedra, P. Serrano, A. Banchs, M. Hollick, "Balancing Energy Efficiency and Throughput Fairness in IEEE 802.11 WLANs" Elsevier Pervasive and Mobile Computing, vol. 8, no. 5, October 2012.

32

Time for experimentation

Try to put well in practice what you already know; and in so doing, you will in good time, discover the hidden things which you now inquire about.

Practice what you know, and it will help to make clear what now you do not know.

Rembrandt

What we wanted to do...

- Huge research efforts dedicated to improve energy efficiency
- We need to understand the power behavior of our devices
 - Per-state measurements of power consumption in e.g. laptops, cell phones...

What we wanted to do...

- Huge research efforts dedicated to improve energy efficiency
- We need to understand the power behavior of our devices
 - Per-state measurements of power consumption in e.g. laptops, cell phones...
 - Fine-grained per-packet measurements in wireless interfaces only

Linksys WRT54GL WiFi router HW

Rantala et al. "Modeling energy efficiency in wireless internet communication" ACM Mobiheld, 2009

Pablo Serrano – Greening Wireless... University of Edinburgh, March 7th, 2014

What we wanted to do...

- Huge research efforts dedicated to improve energy efficiency
- We need to understand the power behavior of our devices
 - Per-state measurements of power consumption in e.g. laptops, cell phones...
 - Fine-grained per-packet measurements in wireless interfaces only

What we found out..

- Non-card operations can dominate
 - This questions previous schema's real performance
 - Opens the door to new designs

Andres Garcia-Saavedra, Pablo Serrano, Albert Banchs, Giuseppe Bianchi, "Energy consumption anatomy of 802.11 devices and its implication on modeling and design" ACM CoNEXT 2012, Nice, France, December 2012

Experimental characterization

- Experimental characterization in several devices
- Power generator/Power meter

TX characterization

Pablo Serrano – Greening Wireless... University of Edinburgh, March 7th, 2014

*Soekris, UDP, no acks

Energy consumption anatomy

Pablo Serrano – Greening Wireless... University of Edinburgh, March 7th, 2014

Energy consumption anatomy

The cross-factor

- Cross-factor: energy «toll» to process a frame
 - ~ independent of frame size
 - Total Power > base power + card power
- Consumption weights (soekris)

Арр	TCP/IP	Driver	NIC
24%	33%	21%	22%

- This packet processing cost is not negligible
 - Soekris: 37%-97% energy/frame

The cross-factor

Several other experiments

- Retransmissions
 - No X-Factor
- ACKs
 - No X-Factor
 - Very small impact (as expected)
- Reception
 - There is X-Factor

Model

Implications

What about those mechamisms that **do not consider** this?

• Packet relaying

• Relay & compress

Multicasting

Implications

Can we exploit this knowledge?

Packet batching

* Soekris, 100B, 48 Mbps Implications – e.g. batching

Conclusions and Future Directions, pt. 2

- Much effort has been devoted to reducing the energy consumption of wireless devices
- Most of the efforts conducted so far
 - Switching devices off
 - Reducing the consumption of the wireless card
- But ≥ 50% of the per-frame energy is consumed by the packet processing of the protocol stack
 - Need to revisit previous models
 - Explore new approaches to save energy

Many Thanks!

Greening Wireless Communications: A Top-Down Overview

Pablo Serrano Yáñez-Mingot pablo@it.uc3m.es

